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Abstract

The estimation of population mean is not meaningful using ordinary least
square method when data contains some outliers. In the current study, we
proposed efficient estimators of population mean using robust regression in
two phase sampling. An extensive simulation study is conduct to examine
the efficiency of proposed estimators in terms of mean square error (MSE).
Real life example and extensive simulation study are cited to demonstrate the
performance of the proposed estimators. Theoretical example and simulation
studies showed that the suggested estimators are more efficient than the
considered estimators in the presence of outliers.

Keywords: Auxiliary information, M-estimator, outliers, robust regression,
two phase sampling.

1 Introduction

In the presence of outliers, OLS method fails to produce efficient results as it
is highly sensitive toward the outliers. Robust regression using redescending
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M-estimator is used as an alternate tool to obtain efficient estimates when
data contain outliers. A numbers of robust regression techniques are available
in literature but most commonly used technique given by Huber (1964) i.e.
M-estimator to remove the effect of outliers.

Two phase sampling is normally applied to obtain auxiliary informa-
tion about population parameters. Neyman (1938) introduced the two phase
sampling to obtain the information on strata sizes. Chand (1975), Kiregyera
(1984), Singh and Vishwakarma (2007), Vishwakarma and Gangele (2014),
Noor-ul-Amin et al. (2016), Misra (2018), Raza et al. (2019), Sabzar et al.
(2020), de Menezes et al. (2021), Ahuja et al. (2021) and Anas et al. (2021)
incorporated auxiliary information in considered sampling design to obtain
efficient estimates.

Huber (1964) developed the following objective function for robust
regression by using yi = a+ bxi + ri.

ρ2(ri) =


r2

2
|r| ≤ v

v|r| − v2

2
|r| > v

(1)

where ‘ri’ is the residual associated with ith observation and v is tuning
constant, which is used to controls the robustness of the M-estimator. Huber
(1964) advised that v = 1.5 s, where “s” is the estimate of population
standard deviation of error (residuals) terms.

The Huber’s (1964) M-estimator is not flexible to weight the larger resid-
uals. To overcome this deficiency an efficient redescending M-estimator is
proposed by Raza et al. (2019) that can control the robustness of estimators up
to a desire level to detect the outliers. The objective function of M-estimator
proposed by Raza et al. (2019) is given as

ρ3(ri) =
v2

2a

[
1−

{
1 +

(r
v

)2}−a
]
|r| ≥ 0 (2)

where ‘v’ and ‘a’ are tuning constants. The optimum values of ‘a’ are 5 and
7. For more details, one can read Raza et al. (2019).

1.1 Notations

Let us consider a finite population of size N having observations
x1, x2 . . . xN . In first phase, sample of size n1(n1 < N) is obtained to collect
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the auxiliary information. In second phase, sample of size n2(n2 < n1) is
selected from n1, to obtain information regarding study variable and auxiliary
variable. The sample mean of auxiliary variable is represented by x̄1 in first
phase. In second phase, the sample mean of auxiliary variable and study
variables are denoted by x̄2 and ȳ2 respectively. The simple random sam-
pling (SRS) without replacement is utilized in both phases. The population
mean of study variable and auxiliary variables are represented as µy and µx
respectively. Following notations are used to develop expression of bias and
means square errors:

ēy2 =
ȳ2 − µy
µy

, ēxi =
x̄i − µx
µx

, where i = 1, 2 (3)

E(ēy2) = E(ēx1) = E(ēx2) = 0,

E(ē2y2) = θ2C
2
y , E(ē2xi) = θiC

2
x where i = 1, 2 (4)

E(ēy2 ēxi) = θiρyxCxCy, where, θi =
1

ni
− 1

N
,

Cx =
σx
µx
, Cy =

σy
µy
,

Hyx = ρyx
Cy
Cx

where ρyx = cor(x, y) (5)

2 Regression-in-Ratio Estimators in Two Phase Sampling

Kadilar et al. (2004) suggested that information regarding auxiliary variable
like coefficient of variation (Cx) and coefficient of kurtosis (B2(x)) can also
be used to obtain efficient estimators of population mean. Following Kadilar
(2004), Noor-ul-Amin et al. (2016) proposed following regression-in-ratio
estimators for population mean in two phase sampling

ȳOLSl =
ȳ2 + b1(x̄1 − x̄2)

(λlx̄2 + ϕl)
(λlx̄1 + ϕl) l = 1, 2, 3, 4, 5 (6)

where b1 is the OLS estimator of regression coefficient between study variable
and auxiliary variable and

λ1 = 1 & ϕ1 = 0, λ2 = 1 & ϕ2 = Cx, λ3 = 1 & ϕ3 = B2(x),

λ4 = B2(x) & ϕ4 = Cx, λ5 = Cx & ϕ5 = B2(x) (7)
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The following expression of MSE of estimators given in (8) is obtained
using Taylor series approximation up to order one.

MSE(ȳOLSl ) ∼= µ2yθ2C
2
y + {B1µx + µy(1− γl)}(θ2 − θ1)C2

x

{B1µx + µy(1− γl)− 2µyHyx} (8)

where

γ1 = 0, γ2 =
Cx
µx
, γ3 =

β2(x)

µx
,

γ4 =
Cx

µx · β2(x)
and γ5 =

β2(x)

µx · Cx
(9)

In the presence of outlier, in Equation (6) failed to produced reli-
able results. So Noor-ul-Amin et al. (2016) proposed the following robust
regression-in-ratio estimators for population mean in two phase sapling using
Huber (1964) M-estimator

ȳrobl =
ȳ2 + b2(x̄1 − x̄2)

(λlx̄2 + ϕl)
(λlx̄1 + ϕl) (10)

Where b2 is obtained by minimizing the
∑
ρ2(y − a − bx) by using

the objective function defined in Equation (1). Unfortunately, there are some
typing errors in the expression of MSE given by Noor-ul-Amin et al. (2016),
where the correct expression of MSE for the estimator given in Equation (10)
is given as

MSE (ˆ̄yrobl ) ∼= µ2yθ2C
2
y + {B2µx + µy(1− γl)}(θ2 − θ1)C2

x

{B2µx + µy(1− γl)− 2µyHyx} (11)

The values of γl are similar as given in Equation (9).

3 Proposed Regression-in-Ratio Estimators in Two Phase
Sampling

As mentioned earlier, Huber’s (1964) M-estimator does not perform well for
larger values of residuals. To overcome this deficiency, we have proposed the
following regression-in-ratio estimators for population mean in two phase
sampling using the objective function developed by Raza et al. (2019)

ȳprol =
ȳ2 + b3(x̄1 − x̄2)

(λlx̄2 + ϕl)
(λlx̄1 + ϕl) (12)
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where b3 is obtained by minimizing the
∑
ρ3(y − a + bx) by using objec-

tive function defined in Equation (2). The expression of MSE of proposed
regression-in-ratio estimators is obtained as under

MSE (ȳprol ) = µ2yθ2C
2
y + {B3µx + µy(1− γl)}(θ2 − θ1)C2

x

{B3µx + µy(1− γl)− 2µyHyx} (13)

4 Efficiency Comparison

In this session, we compared the efficiencies of proposed estimators with
existing estimators of the basis of MSE. The proposed estimators performed
better if we have,

MSE (ȳprol ) < MSE (ȳrobl ), l = 1, 2, 3, 4, 5

[{µy(1− γl) +B3µx} − {µy(1− γl) +B2µx}]

{{µy(1− γl) +B3µx} − {µy(1− γl) +B2µx} − 2µyHyx} < 0

B3 −B2 < 0 and B3 −B2 >
2Hyx

1− γ1
or

B3 −B2 > 0 and B3 −B2 <
2Hyx

1− γ1

min

(
2B2,

2Hyx

1− γ1

)
< (B3 −B2) < max

(
2B2,

2Hyx

1− γ1

)
(14)

5 Applications

In this section, performance of proposed robust regression-in-ratio estimators
of population mean is compared with and considered estimators using MSEs.
Superiority of proposed regression-in-ratio estimators is supported by using
a real life data example and using extensive simulation study.

5.1 Real Life Data Example

The data used in this example is about the level of apple production ‘y’ in
tons as variable of interest and numbers of apple trees (X, 1 unit = 100 trees)
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Table 1 Statistics of data used in Example 4.1

N = 94 σyx = 43324466

ρ = 0.9011 µx = 724.099

B2 = 12.287 µy = 9384.309

B1 = 16.764 σx = 1607.573

B3 = 7.0560 σy = 29907.48

Cx = 2.220 B2 (x) = 27.703

Figure 1 Apple production and number of trees.

as auxiliary variable in 94 villages of the Akdeniz Region in Turkey, 1999.
(Source: Institute of Statistics, Republic of Turkey). Statistics regarding the
population of Example are given in Table 1 and Graph of the used data is
presented in Figure 1. Presence of outliers is verified from this Figure 1.

A sample of size n1 = 50 is taken in first phase from the population
using SRS without replacement to obtain the auxiliary information. Three
different samples of sizes 5, 10 and 30 at phase II are considered to check the
efficiencies of proposed estimators.

By incorporating the data in R programming, the MSE of proposed and
considered estimators are calculated using Equations (7), (11) and (13). The
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Table 2 R.E of proposed estimators w.r.t considered estimators in two phase sampling at
n1 = 50

n2 R.E ȳOLS1 ȳOLS2 ȳOLS3 ȳOLS4 ȳOLS5 ȳrob1 ȳrob2 ȳrob3 ȳrob4 ȳrob5

5 ȳpro1 2.68 2.66 2.54 2.68 2.68 1.65 1.65 1.70 1.65 1.60

ȳpro2 2.68 2.67 2.55 2.68 2.69 1.64 1.65 1.70 1.64 1.59

ȳpro3 2.76 2.75 2.62 2.76 2.77 1.56 1.57 1.61 1.56 1.51

ȳpro4 2.68 2.67 2.54 2.68 2.68 1.65 1.65 1.70 1.65 1.60

ȳpro5 2.59 2.58 2.46 2.59 2.60 1.67 1.67 1.72 1.67 1.62

10 ȳpro1 2.35 2.34 2.24 2.35 2.36 1.52 1.53 1.56 1.52 1.49

ȳpro2 2.36 2.35 2.25 2.36 2.36 1.52 1.52 1.56 1.52 1.48

ȳpro3 2.41 2.40 2.30 2.41 2.42 1.45 1.46 1.49 1.45 1.42

ȳpro4 2.35 2.34 2.24 2.35 2.36 1.52 1.53 1.56 1.52 1.48

ȳpro5 2.29 2.28 2.19 2.29 2.30 1.54 1.54 1.58 1.54 1.50

30 ȳpro1 1.66 1.65 1.60 1.66 1.66 1.25 1.25 1.27 1.25 1.24

ȳpro2 1.66 1.65 1.61 1.66 1.66 1.25 1.25 1.27 1.25 1.23

ȳpro3 1.68 1.67 1.62 1.68 1.68 1.22 1.22 1.23 1.22 1.20

ȳpro4 1.66 1.65 1.60 1.66 1.66 1.25 1.25 1.27 1.25 1.24

ȳpro5 1.64 1.63 1.58 1.64 1.64 1.26 1.26 1.28 1.26 1.25

R.Es of proposed estimators with considered estimators are obtained by using
Equation (14) and presented in Table 2.

R.E(ȳprol ) =
MSE (ȳul)

MSE (ȳprol )
, l = 1, 2, . . . 5 and u = 1, 2 (15)

where ȳ1l = ȳOLSl and ȳ2l = ȳrobl .
The Table 2 indicates that proposed regression-in-ratio estimators worked

efficiently in two phase sampling to estimate the population mean as compare
to the considered estimators, for all samples sizes. Performance of estimators
given by Noor-ul-Amin et al. (2016) is better than OLS estimators but signif-
icantly less than proposed estimators for all conditions. At small sample of
size n2 = 5, proposed estimator ȳpro1 is 268% efficient than OLS estimators
ȳOLS1 and 165% efficient than estimator ȳrob1 . As the sample size of phase
II increases i.e. n2 = 30, efficiency of estimator ȳpro1 is 166% as compare to
estimator ȳOLS1 and 125%, relative to estimators ȳrob1 . So increase of phase
II sample size decreases the R.E of the proposed estimator but it remains
higher than considered estimators.
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Figure 2 Generated population with 2% outliers.

5.2 Simulation Study

The usefulness of suggested regression-in-ratio estimators to estimate the
population mean in two phase sampling is evaluated using extensive sim-
ulation study. The R-programing is used to generate a bivariate normal
population of size N = 1000 with mean vector µ = [µx, µy] = [10, 2] and

variance covariance matrix
∑

=

[
1 0.85
0.85 1

]
. To examine the robustness

of proposed estimators, two different levels of contaminations of outliers are
used in the population i.e. 2%, and 6% which are termed as low level and
high level of containments respectively using a bivariate normal distribution
with mean vector µ = [30, 15] and variance covariance vector is similar
as discussed above. A sample of 100 values is chosen using SRS without
replacement from the considered population in Phase I to obtain auxiliary
information and sample of sizes 10, 20 and 30 are drawn using SRS without
replacement in phase II to obtain the information regarding the variable of
interest and auxiliary variable.

For each sample size, 50000 iterations are carried out to obtained the MSE
of ȳul using following formula

MSE (ȳul) =
1

50000

50000∑
i=1

(ȳiul − µy)2, l = 1, 2, 3, 4, 5 and u = 1, 2, 3

(16)
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Table 3 R.E of proposed estimators w.r.t. considered estimators in two phase sampling at
n1 = 100 and 2% outliers

n2 R.E ȳOLS1 ȳOLS2 ȳOLS3 ȳOLS4 ȳOLS5 ȳrob1 ȳrob2 ȳrob3 ȳrob4 ȳrob5

10 ȳpro1 3.34 3.26 2.62 3.34 2.60 1.85 1.78 28 1.85 1.27

ȳpro2 3.51 3.42 2.75 3.50 2.73 1.94 1.87 1.35 1.94 1.34

ȳpro3 5.40 5.26 4.22 5.39 4.20 2.99 2.88 2.07 2.98 2.05

ȳpro4 3.35 3.26 2.62 3.34 2.61 1.85 1.79 1.29 1.85 1.27

ȳpro5 5.46 5.32 4.27 5.45 4.25 3.02 2.91 2.10 3.02 2.08

20 ȳpro1 3.01 2.92 2.24 3.01 2.23 1.88 1.81 1.30 1.88 1.29

ȳpro2 3.15 3.05 2.35 3.15 2.33 1.97 1.89 1.36 1.96 1.35

ȳpro3 4.56 4.43 3.40 4.56 3.38 2.85 2.74 1.98 2.84 1.96

ȳpro4 3.02 2.92 2.25 3.01 2.23 1.88 1.81 1.31 1.88 1.30

ȳpro5 4.60 4.46 3.43 4.59 3.41 2.87 2.76 1.99 2.87 1.98

30 ȳpro1 2.98 2.89 2.23 2.98 2.21 1.74 1.68 1.23 1.74 1.22

ȳpro2 3.10 3.00 2.32 3.09 2.30 1.81 1.74 1.28 1.81 1.27

ȳpro3 4.15 4.03 3.10 4.14 3.08 2.42 2.34 1.72 2.42 1.70

ȳpro4 2.99 2.90 2.23 2.98 2.21 1.74 1.68 1.23 1.74 1.22

ȳpro5 4.18 4.06 3.13 4.18 3.10 2.44 2.36 1.73 2.44 1.71

where ȳ1l = ȳOLSl , ȳ2l = ȳrobl , ȳ3l = ȳprol and µy is the mean of ȳiul from
50000 samples. The graph of generated population with 2% contamination of
outliers is presented in Figure 2.

The MSE of proposed and considered estimators are calculated by using
Equation (16). The R.Es of considered regression-in-ratio estimators of pop-
ulation mean are calculated by using Equation (15) and presented in Tables 3
and 4.

Table 3 depicted that performance of proposed estimators for population
mean in two phase sampling is better than OLS and considered robust esti-
mators for all sample sizes at low level contamination of outliers i.e. 2%.
The R.E of proposed estimator ȳpro1 at sample of size 10 is 3.34 i.e. 334 %
as compare to estimator ȳOLS1 and 1.85 i.e. 185% as compare to estimator
ȳrob1 . These R.Es are 298% and 174% respectively at phase II sample of size
30 with reference to estimator ȳpro1 . It is also concluded from Table 3 that
estimators given by Noor-ul-Amin et al. (2016) have overall high R.Es than
OLS estimators. It is due to low level of contamination of outliers. As the
sample size of Phase II increases performance of considered estimators of
population mean improves significantly but still remains less than proposed
regression-in-ratio estimators for population mean.
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Table 4 R.E of proposed estimators w.r.t. considered estimators in two phase sampling at
n1 = 100 and 6% outliers

n2 R.E ȳOLS1 ȳOLS2 ȳOLS3 ȳOLS4 ȳOLS5 ȳrob1 ȳrob2 ȳrob3 ȳrob4 ȳrob5

10 ȳpro1 5.18 4.97 4.15 5.16 4.22 5.14 4.93 4.11 5.12 4.18

ȳpro2 5.64 5.42 4.52 5.62 4.60 5.59 5.37 4.47 5.57 4.55

ȳpro3 8.46 8.12 6.78 8.43 6.89 8.38 8.05 6.71 8.35 6.83

ȳpro4 5.22 5.01 4.18 5.20 4.25 5.17 4.96 4.14 5.15 4.21

ȳpro5 8.12 7.80 6.50 8.09 6.62 8.05 7.72 6.44 8.02 6.55

20 ȳpro1 3.80 3.64 2.98 3.78 3.03 3.76 3.61 2.95 3.75 3.00

ȳpro2 4.06 3.90 3.19 4.05 3.24 4.03 3.86 3.16 4.01 3.21

ȳpro3 5.63 5.39 4.42 5.61 4.49 5.58 5.35 4.37 5.56 4.45

ȳpro4 3.82 3.66 3.00 3.80 3.05 3.78 3.63 2.97 3.77 3.02

ȳpro5 5.48 5.25 4.30 5.46 4.37 5.43 5.21 4.26 5.41 4.33

30 ȳpro1 3.05 2.93 2.42 3.04 2.46 3.04 2.91 2.41 3.03 2.45

ȳpro2 3.23 3.10 2.56 3.22 2.61 3.22 3.09 2.55 3.20 2.60

ȳpro3 4.20 4.03 3.33 4.18 3.39 4.18 4.01 3.32 4.16 3.38

ȳpro4 3.06 2.94 2.43 3.05 2.48 3.05 2.93 2.42 3.04 2.47

ȳpro5 4.10 3.93 3.26 4.08 3.31 4.08 3.92 3.24 4.07 3.30

From Table 4, it is concluded that as the percentage of outliers increases in
the population, efficiencies of considered estimators given in Equation (12)
for population mean decrease like the estimators given in Equation (6) and
the level of robustness decayed significantly due to high level of contami-
nations of outliers. For example, at phase II sample of size 10, the R.E of
ȳpro1 is 518% and 514% as compare to OLS estimator ȳOLS1 and robust
estimator ȳrob1 respectively. These R.Es become 305% and 304% respec-
tively at n2 = 30. It is practically proved that estimators for population
mean based on redescending estimator proposed by Huber (1964) failed to
produce robust estimates at high level of contamination of outliers as their
performance is similar to the estimators based on OLS technique at this level
of contamination.

6 Conclusion

Results obtained in above sections concluded that proposed regression-in-
ratio estimators performed significantly better than considered estimators
of population mean for all condition and for all sample sizes in two phase
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sampling design. It is suggested that devised estimators should be utilized for
estimation of population mean in two phase sampling design as they outfit
the considered estimators for population mean. The proposed estimators can
be used in other sampling designs and in quality control to obtain efficient
estimator of mean when data have outliers.
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Appendix

Using the notations given in Section 1.1, following expression is obtained for
the estimator given in (14).

ȳprol ∼=
[µy(1 + ēy2) + b3µx(ēx1 − ēx2)](λlµx(1 + ēx1) + ϕl)

(λlµx(1 + ēx2) + ϕl)

ȳprol ∼=
[µy(1 + ēy2) + b3µx(ēx1 − ēx2)]((1 + ēx1) + ϕl

λlµx
)

((1 + ēx2) + ϕl
λlµx

)

ȳprol ∼=
[µy(1 + ēy2) + b3µx(ēx1 − ēx2)]((1 + ēx1) + γl)

((1 + ēx2) + γl)

where

γl =
ϕl
λlµx

ȳprol ∼= [µy(1 + ēy2) + b3µx(ēx1 − ēx2)]((1 + ēx1) + γl)((1 + ēx2) + γl)
−1

Expanding last term up to order one

ȳprol ∼= [µy(1 + ēy2) + b3µx(ēx1 − ēx2)]((1 + ēx1) + γl)

(1− ēx2 − γl + 2γlēx2)

∼= [µy(1 + ēy2) + b3µx(ēx1 − ēx2)](1 + (1− γl))(ēx1 − ēx2)

ȳprol − µy ∼= [µy(1 + ēy2)(1 + (1− γl))(ēx1 − ēx2)

+ b3µx(ēx1 − ēx2)(1 + (1− γl))(ēx1 − ēx2)]
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Ignoring square and higher order terms

ȳt − µy ∼= µy ēy2 + µy(1− γl)(ēx1 − ēx2) + b3µx(ēx1 − ēx2)

ȳt − µy ∼= µy ēy2 + {µy(1− γl) + b3µx}(ēx1 − ēx2)

Squaring and applying expectation on both sides

MSE (ȳ) ∼= µ2yθ2C
2
y + C2

x{µy(1− γl) + b3µx}2(θ2 − θ1)

+ 2µy{µy(1− γl) + b3µx}(θ1ρxyCxCy − θ2ρxyCxCy)
MSE (ȳ) = µ2yθ2C

2
y + C2

x{µy(1− γl) + b3µx}2(θ2 − θ1)

+ 2µy{µy(1− γl) + b3µx}(θ1 − θ2)HyxC
2
x

MSE (ȳ) = µ2yθ2C
2
y + C2

x{µy(1− γl) + b3µx}2(θ2 − θ1)

+ 2µy{µy(1− γl) + b3µx}(θ1 − θ2)HyxC
2
x

The MSE of proposed regression-in-ratio estimators is obtained as under

MSE (ȳprol ) = µ2yθ2C
2
y + {B3µx + µy(1− γl)}(θ2 − θ1)C2

x

{B3µx + µy(1− γl)− 2µyHyx}
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