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Abstract

Accelerated life tests (ALTs) are designed to investigate the lifetime of
extraordinarily reliable things by exposing them to increased stress levels
of stressors such as temperature, voltage, pressure, and so on, in order to
cause early breakdowns. The Nadarajah-Haghighi (NH) distribution is of
tremendous importance and practical relevance in many real-life scenarios
due to its attractive qualities such as its density function always has a zero
mode and its hazard rate function can be increasing, decreasing, or constant.
In this article, the NH distribution is considered as a lifetime distribution
under the step stress partially accelerated life testing (SSPALT) model with
adaptive type II progressively hybrid censored samples. The unknown model
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parameters and acceleration factors are estimated using maximum likelihood
estimation (MLE) method assuming that the impact of stress change in
SSPALT is explained by a tampered random variable (TRV) model. The
Fisher information matrix, which is based on large sample theory, is also
constructed and used to produce the approximate confidence intervals (ACIs).
Furthermore, two potential optimum test strategies based on the A and D
optimality criteria are evaluated. To investigate the performance of the pro-
posed methodologies and statistical assumptions established in this article,
extensive simulations using R software have been conducted. Finally, to
further illustrate the suggested approach, a real-world example based on the
times between breakdowns for a repairable system has been provided.

Keywords: Partially accelerated life testing, Nadarajah-Haghighi distribu-
tion, adaptive type-II progressive hybrid censoring, maximum likelihood
estimation, simulation study.

1 Introduction

In the disciplines of statistics, reliability, and life testing analysis, there are
several discrete and continuous distributions, but the exponential distribution
stands out owing to its memory-less properties. As a result, it is used as a
reference model in the study of reliability and life testing. Due to the limi-
tations of the exponential distribution in explaining only the constant hazard
rate, several extensions of the exponential distribution have been suggested
in the literature by many writers for a variety of reasons. Nadarajah and
Haghighi (2011) proposed one such extension of the exponential distribution,
which is commonly referred to as the NH distribution. In their study, they
pointed out that the density function of the NH distribution always has a zero
mode. Furthermore, its hazard rate function can be increasing, decreasing, or
constant, whereas its density function can be monotonically decreasing while
the hazard rate function is still increasing. Because of all these appealing
characteristics, the NH distribution may be thought of as a viable alternative
to the Weibull, Gamma, and Exponentiated Exponential distributions.

For a random variable T following a NH distribution, the probability
density function (PDF), the cumulative distribution function (CDF) and the
survival function (SF) are given by

f(t;α, β) = αβ(1 + βt)α−1exp[1− (1 + βt)α], t > 0, α > 0, β > 0
(1)
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F (t;α, β) = 1− exp[1− (1 + βt)α], t > 0, α > 0, β > 0 (2)

R(t) = exp[1− (1 + βt)α], t > 0, α > 0, β > 0 (3)

Where β and α are the distribution’s scale and shape parameters. The
exponential distribution and Weibull may be obtained as special cases of the
NH distribution. Also, it has closed forms of survival SF and HRF like the
Weibull, making it an excellent choice for lifetime data analysts.

Some recent studies that have been done based on NH distribution are,
for example, MirMostafaee et al. (2016) computed the best linear unbiased
estimators of the parameters of the distribution using moments of upper
record values of NH distribution. Selim (2018), Sana and Faizan (2019),
briefly described and compared the different methods of frequentist estima-
tion as well as they obtained BEs using different loss functions and gamma
priors. Kamal et al. (2020a) employed a linear combination of NH density
to expand the NH distribution to a four-parameter distribution, and then
looked at a variety of statistical and mathematical characteristics, as well as
the MLE method for estimating the parameters. Minic (2020) discussed the
procedure for obtaining the estimates of parameters using different methods
of estimation and compared them using their biases and mean square errors
(MSEs). For complete data, Kamal et al. (2020b) estimated the MLEs of the
parameters of the NH distribution using SSALT.

Due to the continuous improvement in research and development in
manufacturing industries and the high competition among them to launch
their products within a short time period, the reliability of the products has
improved significantly in the modern era of technological breakthroughs.
Therefore, if one tries to test the life of the products using traditional life
testing procedures, it will be a very time consuming and costly process
to obtain the required failure data to make an efficient prediction about
the product’s lifetimes. So, some special type of testing which can induce
required failures quickly is needed and the answer is ALTs and PALTs.
ALTs were developed in the literature to explore the lifespan of exceptionally
reliable objects by subjecting them to accelerated stress levels of stressors
such as temperature, voltage, pressure, and so on, in order to produce early
breakdowns. There are numerous models under ALTs that are based on
different forms of stress loading, and the most commonly used types are the
constant-stress and the step-stress models. Each sample of tested products are
subjected to some constant levels of constant stress in a constant-stress model
until either all units fail or the test is terminated for some reason such as
censoring scheme. Such constant-stress ALT models have been extensively
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addressed by a number of authors. See, for example, Kamal et al. (2013a),
Rahman et al. (2020), Hakamipour (2021), Zhang et al. (2021), Kamal
(2021), and Abd El-Raheem (2021) among others, for recent additions. While
the test conditions associated with step-stress models do not remain constant
throughout the test, they do change at each specified time or when a specified
number of failures occurs, implying that the stress on a sample of test units
does not remain constant but increases step by step at a prescribed period
or simultaneously when a fixed number of failures occurs. Several writers
investigated step-stress models as well. For example, Saxena et al. (2012),
Kamal et al. (2013b), Hakamipour (2020), Khan and Chandra (2021), Amleh
and Raqab (2021) and others.

In ALT, the breakdown information received under accelerated conditions
is examined and extrapolated to normal stress levels using a suitable physical
model. In some cases, constructing a proper physical model to describe the
life stress connection is difficult, if not impossible. The PALT is a superior
option to doing live tests in these scenarios. PALTs, like ALTs, are divided
into two kinds depending on various types of stress loading: constant-stress
and step-stress models. In a constant-stress PALT model, each sample of
tested items is subjected to normal and accelerated levels of constant stress
until all units fail or the test is discontinued for some reason, such as a cen-
soring scheme. Some relevant references based on the constant-stress PALT
model include Zarrin et al. (2012), Kamal et al. (2013c), Hassan et al. (2020)
and Rabie (2021). In SSPALT, certain items or materials are initially tested at
normal or usage conditions for a predetermined period of time, after which all
surviving items or systems are subjected to accelerated test conditions until
the termination time. So far, several writers have addressed SSPALT analysis;
for example, Goel (1971) presented the TRV model, and DeGroot and Goel
(1979) analysed the optimum design of a PALT within a Bayesian decision
theory framework based on the TRV model. SSPALT is also considered
by Bai and Chung (1992), Bai et al. (1993), Rahman et al. (2016), and
Rahman et al. (2019) who use different lifetime distribution and censoring
algorithms.

Due to time and cost restrictions in life-testing and reliability experi-
ments, researchers typically trim their data using two of the most commonly
used techniques classified as Type-I and Type-II censoring practices. Exper-
iments with Type-I or time censoring schemes have to be terminated by a
predetermined time, while in Type-II or Failure censored scheme, life tests
are terminated when a certain number of failures are reached. Epstein (1954)
proposed a more practicable approach known as a hybrid censorship scheme,
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which is in fact a logical combination of Type-I and Type-II censorship
techniques. It is currently a well-known and widely used method among
scholars such as Banerjee and Kundu (2008) and Balakrishnan and Kundu
(2013), all of whom have made major contributions to the field of reliability
and life testing. All of the above methods lack the ability to delete items
during testing. To deal with this scenario, a more effective and adaptable tech-
nique known as progressive censoring was devised, which allows the deletion
of experimental units throughout the test at various intermittent intervals of
time. For further information on the theory, methodology, and applications of
progressive censoring, see Balakrishnan (2007) and Balakrishnan and Cramer
(2014).

In progressively Type-II hybrid censoring, the number of failures required
and the number of items that need to be removed during the experiment are
fixed in advance, but there is no constraint on experiment time. Due to this
reason, the experiment can be very lengthy. In order to tackle this issue,
Kundu and Joarder (2006) introduced a new censoring scheme called the
Type-I Progressive Hybrid Censoring Scheme (T-I PHCS) with an additional
time and failure constraint that the experiment will run until a pre-specified
time point or up to a pre-specified number of failures, whichever comes first.
However, the sample size in T-I PHCS is random and only a few failures
or even no failures would occur before the pre-specified time limit, which
results in lower efficiency of the estimates of the parameters. To resolve the
limitation of the T-I PHCS, Ng et al. (2009) proposed an adaptive type-II
PHCS in which n units are placed on a life test with a predetermined number
of failuresm and a pre-fixed progressive censoring scheme ξ1, ξ2, . . . , ξm but
experimenter is allowed to change the values of some of the ξiS during the
experiment according to the situation. At first failure time y1,m,n, ξ1 test
items are separated from the experiment at random from the remaining n− 1
alive items. At second failure time y2,m,n, ξ2 units of the remaining n−1−ξ1
units are randomly removed and so on. If mth failure time ym,m,n occurs
before pre-specified time η, all the remaining ξm = n −m −

∑m
i=1 ξi units

are removed and the experiment stops at time ym,m,n. In AT-II PHCS, the
experiment is allowed to run over the test termination time limit η. Therefore,
if ym,m,n > η, then the experiment will be terminated as soon as possible by
setting ξc+1, ξc+2, . . . , ξm−1 = 0. This means that if yc,m,n < η < yc+1,m,n,
where c+ 1 < m and xc,m,n is the cth failure time which is occurred before
time η, no surviving item will be removed from the experiment until the
effective sample of m failures is obtained and then all of the remaining units
ξm = n− c−

∑c
i=1 ξi, are removed from the experiment.
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So far, many scholars have been considered SSPALT using AT-II PHCS.
Lin et al. (2009) discussed the MLEs and approximate MLEs of Weibull
parameters and then compared the efficiency of the estimates under two
PHCS. Hemmati and Khorram (2013) obtained MLEs and AMLEs of the
parameters of log-normal distribution using AT-II PHCS and then compared
the results with Type-II PHCS through a simulation study. Ismail (2014)
obtained and compered the MLEs of Weibull distribution parameters based
on two different types of PHCS. Sobhi and Soliman (2015) dealt with the
problem of SSPALT based on AT-II PHCS and obtained the MLEs and BEs of
the parameters of the exponentiated Weibull distributions. Assuming the TRV
model, Zhang and Shi (2016) discuss the MLEs of the unknown parameters of
the extended Weibull distribution. Nassar et al. (2017) investigated the MLEs
of the parameters of the Burr Type-XII distribution and compared the results
based on two different PHCS. Selim (2018) analysed the parameters of expo-
nentiated exponential distribution under step stress accelerated life testing
plans with type-II PHCS. Alam and Ahmed (2020) investigated the MLEs of
Exponentiated Pareto distribution under SSPALT using AT-II PHCS.

Motivated by the fact that the NH distribution is of extreme importance
and practical relevance in many real-life situations, and since no study has
been done based on AT-II PHCS to obtain estimates of the parameters of
the NH distribution under SSPALT, the main goal of this study is to obtain
the MLEs of the parameters of the NH distribution and the acceleration
factors under SSALT based on AT-II PHCS. The remainder of this work is
structured as follows. Section 2 discusses fundamental assumptions and the
testing procedure. Point estimates, the observed Fisher information matrix,
and asymptotic confidence intervals are produced in Section 3. Section 4
discusses optimum test strategies based on A and D optimality. To assess the
performance of the estimations in Section 5, a simulation exercise is carried
out. Section 6 discusses a real-world case to further illustrate the proposed
technique. Section 7 concludes the paper with some results-based discussion.

2 Test Assumptions and Procedure

i. Test is based on simple SSPALT and used only two stress levels Su
(Normal operating conditions) and Sa (Accelerated condition) such that
Su < Sa. There should be at least one failure occurs under each stress
levels Su and Sa.

ii. The failures of the test items at both stress levels Su and Sa follow the
NH distribution given by (1).
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iii. The lifetime Y of the tested item in SSPALT follows a TRV model which
is given by

Y =


T, if T < τ

τ +
(T − τ)

θ
, if T > τ

(4)

where T represents item’s lifetime under stress Su, τ represents the time
point when stress is change to Sa from Su and θ > 1 is an accelerated
factor (AF).

Using TRV model, PDF, CDF and RF at stress Su are obtained as follows

fu(y;α, β) = αβ(1 + βy)α−1exp[1− (1 + βy)α] (5)

Fu(y;α, β) = 1− exp[1− (1 + βy)α] (6)

Ru(y) = exp[1− (1 + βy)α] (7)

and now, PDF, CDF and RF at stress Sa are obtained as follows

fa(y) = αβθ[1 + β(τ + θ(y − τ))]α−1exp[1− {1 + β(τ + θ(y − τ))}α]
(8)

Fa(y) = 1− exp[1− {1 + β(τ + θ(y − τ))}α] (9)

Ra(y) = exp[1− {1 + β(τ + θ(y − τ))}α] (10)

The test based on SSPALT to obtain the failure data under AT-II PHCS
will proceed as follows:

Assume a sample of n items is allocated to the stress level Su to test
under SSPALT with a known progressive censoring scheme ξ1, ξ2, . . . , ξm.
Now test will progress and the items out of n that do not fail up to time
τ under Su are placed through the stress level Sa to test, and the test will
continue until censorship time η is reached. If the mth failure does not occur
within censoring point η, none of the items is omitted out from test. The
testing will continue unless mth failure is recorded, at which point it will be
stopped after eliminating all remaining items. As a result, the implemented
scheme in this case becomes ξ1, ξ2, . . . , ξc, 0, 0, . . . , 0, ξm, and then we will
acquire the observed sample in the form shown below:

y1,m,n < y2,m,n < · · ·< ymu,m,n ≤ τ < ymu+1,m,n < · · · < yc,m,n

< η < yc+1,m,n < · · · < ym,m,n
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Conventional type-II censoring scheme is a special case of the AT-II
PHCS for η → 0, and AT-II PHCS reduced to the classical Type-II PHCS
if η →∞.

3 The ML Estimation Procedure of the Model Parameters

In this section, estimates of unknown model parameters and the acceleration
factor are obtained by the MLE method. This is a more robust and efficient
method that yields estimates with good statistical properties and quantifies
uncertainty through confidence limits.

The likelihood function for SSALT with AT-II PHCS data can be written
as follows:

L(y, α, β, θ) ∝
mu∏
i=1

fu(yi)[Ru(yi)]
ξi

m∏
i=mu+1

fa(yi)[Ra(yi)]
ξi [Ra(ym)]ξm

(11)

Where, yi = yi,m,n; ξm = n−m−
∑c

i=1 ξi

L(y, α, β, θ) ∝
mu∏
i=1

αβ(1 + βyi)
α−1exp{1− 〈1 + βyi〉α}

× [exp{1− 〈1 + βyi〉α}]ξi

×
m∏

i=mu+1

αθβ{1 + β(τ + θ(yi − τ))}α−1

× exp{1− 〈1 + β(τ + θ(yi − τ))〉α}

× [exp{1− 〈1 + β(τ + θ(yi − τ))〉α}]ξi

× [exp{1− 〈1 + β(τ + θ(ym − τ))〉α}]ξm (12)

By taking natural logarithm on both side of the Equation (12), we get
log-likelihood equation L(y, α, β, θ) = ` as follows

` = m(logα+ logβ) + (m−mu)logθ − (m−mu)ξm

× [1− {1 + β(τ + θ(ym − τ))}α]
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+ (α− 1)

mu∑
i=1

log(1 + βyi) +

mu∑
i=1

(1 + ξi){1− (1 + βyi)
α}

+ (α− 1)

m∑
i=mu+1

log{1 + β〈τ + θ(yi − τ)〉}

+
m∑

i=mu+1

(1 + ξi)[1− {1 + β(τ + θ(yi − τ))}α] (13)

3.1 Point Estimates

The MLEs of the parameters α, β and θ can be obtained by solving the
following equations:

∂l

∂α
=
m

α
− (m−mu)ξm{1 + β(τ + θ(ym − τ))}α

× log{1 + β(τ + θ(ym − τ))}+

mu∑
i=1

log(1 + βyi)

−
mu∑
i=1

(1 + ξi)(1 + βyi)
αlog(1 + βyi)

+
m∑

i=mu+1

log{1 + β(τ + θ(yi − τ))}

−
m∑

i=mu+1

(1 + ξi){1 + β(τ + θ(yi − τ))}α

× log{1 + β(τ + θ(yi − τ))} (14)

∂l

∂β
=
m

β
− (m−mu)ξmα(τ + θ(ym − τ)){1 + β(τ + θ(ym − τ))}α−1

+ (α− 1)

mu∑
i=1

yi
(1 + βyi)

− α
mu∑
i=1

(1 + ξi)(1 + βyi)
α−1

+

m∑
i=mu+1

τ + θ(yi − τ)

{1 + β(τ + θ(yi − τ))}
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− α
m∑

i=mu+1

(1 + ξi)(τ + θ(yi − τ)){1 + β(τ + θ(yi − τ))}α−1

(15)

∂l

∂θ
=

(m−mu)

θ
− (m−mu)ξmβ(ym − τ){1 + β(τ + θ(ym − τ))}α−1

+ (α− 1)β
m∑

i=mu+1

(yi − τ)

{1 + β(τ + θ(yi − τ))}

− αβ
m∑

i=mu+1

(1 + ξi)(yi − τ){1 + β(τ + θ(yi − τ))}α−1 = 0

(16)

Equations (14), (15) and (16) are non-linear equations and have no
closed form solution. Some iterative techniques, such as Newton-Raphson
techniques, can therefore be used to obtain a numerical solution of the
estimates.

3.2 Derivation of Fisher’s Information Matrix

The observed FIM can be derived as follows

FIM = −



∂2`

∂α2

∂2`

∂α∂β

∂2`

∂α∂θ

∂2`

∂β∂α

∂2`

∂β2
∂2`

∂β∂θ

∂2`

∂θ∂α

∂2`

∂θ∂β

∂2`

∂θ2


Where, ∂2`

∂α∂β = ∂2`
∂β∂α ; ∂2`

∂β∂θ = ∂2`
∂θ∂β ; and ∂2`

∂α∂θ = ∂2`
∂θ∂α , now elements of

the FIM are given by following equation:

∂2l

∂α2
= −m

α2
− (m−mu)ξm{1 + β(τ + θ(ym − τ))}α

× [log{1 + β(τ + θ(ym − τ))}]2

−
mu∑
i=1

(1 + ξi)(1 + βyi)
α{log(1 + βyi) }2
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−
m∑

i=mu+1

(1 + ξi){1 + β(τ + θ(yi − τ))}α

× [log{1 + β(τ + θ(yi − τ))}]2 (17)

∂2l

∂β2
= −m

β2
− (m−mu)ξmα(α− 1)(τ + θ(ym − τ))2

× {1 + β(τ + θ(ym − τ))}α−1 − (α− 1)

mu∑
i=1

yi
2

(1 + θyi)
2

− α(α− 1)

mu∑
i=1

(1 + ξi)yi
2(1 + βyi)

α−2

− (α− 1)
m∑

i=mu+1

(τ + θ(yi − τ))2

{1 + β(τ + θ(yi − τ))}2

− α(α− 1)
m∑

i=mu+1

(1 + ξi)(τ + θ(yi − τ))2

× {1 + β(τ + θ(yi − τ))}α−2 (18)

∂2l

∂θ2
= −(m−mu)

θ2
− (m−mu)ξmα(α− 1)β2(ym − τ)2

× {1 + β(τ + θ(ym − τ))}α−2

− (α− 1)β2
m∑

i=mu+1

(yi − τ)2

{1 + β(τ + θ(yi − τ))}2

− α(α− 1)β2
m∑

i=mu+1

(1 + ξi)(yi − τ)2

× {1 + β(τ + θ(yi − τ))}α−2 (19)

∂2l

∂α∂β
=

∂2l

∂β∂α
= −(m−mu)ξm(τ + θ(ym − τ))

× {1 + β(τ + θ(ym − τ))}α−1
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× [1 + α log{1 + β(τ + θ(ym − τ))}] +

mu∑
i=1

yi
(1 + βyi)

−
mu∑
i=1

(1 + ξi)yi(1 + βyi)
α−1{1 + α log(1 + βyi)}

+
m∑

i=mu+1

τ + θ(yi − τ)

{1 + β(τ + θ(yi − τ))}

−
m∑

i=mu+1

(1 + ξi)(τ + θ(yi − τ))

× {1 + β(τ + θ(yi − τ))}α−1

× [1 + αlog{1 + β(τ + θ(yi − τ))}] (20)

∂2l

∂β∂θ
=

∂2l

∂θ∂β
= −(m−mu)ξmα(ym − τ){1 + β(τ + θ(ym − τ))}α−2

× [1 + αβ(τ + θ(ym − τ))] + (α− 1)

×
m∑

i=mu+1

(yi − τ)

{1 + β(τ + θ(yi − τ))}2

+ α

m∑
i=mu+1

(1 + ξi)(yi − τ){1 + β(τ + θ(yi − τ))}α−2

× {1 + αβ(τ + θ(yi − τ))} (21)

∂2l

∂α∂θ
=

∂2l

∂θ∂α
= −(m−mu)ξmβ(ym − τ){1 + β(τ + θ(ym − τ))}α−1

× [1 + α log{1 + β(τ + θ(ym − τ))}]

+ β
m∑

i=mu+1

(yi − τ)

{1 + β(τ + θ(yi − τ))}

−
m∑

i=mu+1

(1 + ξi)(yi − τ){1 + β(τ + θ(yi − τ))}α−1

× [1 + αlog{1 + β(τ + θ(yi − τ))}] (22)
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3.3 Confidence Interval Estimates

As we know that the MLEs of the parameters are distributed approximately
according to normal distribution with mean (α, β, θ) and variance (FIM )−1

as n→∞, therefore, (α̂, β̂, θ̂) ∼ N((α, β, θ), (FIM)−1), where, (FIM )−1

stands for inverse of observed FIM. Now, two sided 100(1−δ)% approximate
confidence interval for the parameter (α, β, θ) can be obtained as

α̂± Zδ/2
√
var(α̂); β̂ ± Zδ/2

√
var(β̂); θ̂ ± Zδ/2

√
var(θ̂)

Where Zδ/2 is the (1− δ/2)th quantile of a standard normal distribution

and
√
var(α̂),

√
var(β̂) and

√
var(θ̂) are asymptotic variances of α̂, β̂ and

θ̂ respectively and are obtained by taking the square root of the diagonal
elements of (FIM )−1. By taking the inverse of FIM, we obtain VC matrix as
follows

(FIM )−1 =



∂2`

∂α2

∂2`

∂α∂β

∂2`

∂α∂θ

∂2`

∂β∂α

∂2`

∂β2
∂2`

∂β∂θ

∂2`

∂θ∂α

∂2`

∂θ∂β

∂2`

∂θ2



−1

α=α̂, β=β̂, θ=θ̂

=


var(α̂) covar(α̂β) covar(α̂θ)

covar(β̂α̂) var(β̂) covar(β̂θ)

covar(θ̂α̂) covar(θ̂β̂) var(θ̂)


4 Optimization of Test Plan Using A and D Technique

4.1 A-optimality Criterion (or Trace Criterion)

The first optimality criteria we employed here is A-optimality, which is
obtained by minimizing the trace of the variance-covariance matrix. This may
be done mathematically as follows:

Minimize[tr(FIM)−1] = [var(α) + var(β) + var(θ)]
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4.2 Optimum Test Plans using D-optimality Criterion

Another SSPALT optimality criteria is to determine the appropriate time to
transition stress from a regular to an accelerated state. The D-optimality
criterion is utilized to calculate the optimal stress shift time τ in this work. It is
based on the generalized asymptotic variance (GAV), which is proportional to
the reciprocal of the FIM determinant and takes into consideration the whole
parameter space. As a result, maximization of the FIM determinant corre-
sponds to GAV minimization. The D-optimality function can be expressed as
follows:

GAV (α̂, β̂, θ̂) =
1

det(FIM)
or

1

|FIM |
Where |FIM | can be obtained as follows:

|FIM | =
{(

∂2l

∂α2
× ∂2l

∂β2
× ∂2l

∂β2

)
+

(
∂2l

∂α∂β
× ∂2l

∂β∂θ
× ∂2l

∂θ∂α

)
+

(
∂2l

∂α∂θ
× ∂2l

∂β∂α
× ∂2l

∂θ∂β

)}
−
{(

∂2l

∂θ∂α
× ∂2l

∂β2
× ∂2l

∂α∂θ

)
+

(
∂2l

∂θ∂β
× ∂2l

∂β∂θ
× ∂2l

∂α2

)
+

(
∂2l

∂θ2
× ∂2l

∂β∂α
× ∂2l

∂α∂β

)}
= {eααeββeθθ + 2eαβeαθeβθ} −

{
e2αθeββ + e2βθeαα + e2αβeθθ

}
∂2l

∂α2
= eαα;

∂2l

∂β2
= eββ ;

∂2l

∂β2
= eθθ;

∂2l

∂α∂β
=

∂2l

∂β∂α

= eαβ;
∂2l

∂β∂θ
=

∂2l

∂θ∂β
= eβθ;

∂2l

∂α∂θ
=

∂2l

∂θ∂α
= eαθ

In the context of planning life tests that provide high precision estimates,
the D-optimality criterion has been commonly applied.

5 Simulation Studies

To evaluate the effectiveness of the proposed model, we will employ
a simulation study to estimate the unknown values of the parameters
of the NH distribution. The MLEs their respective MSEs and RABs,
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as well as ACIs with their lengths, are calculated for various sample
combinations. First, values of n,m, τ, η and the number of test items
removed during the test (ξ1, ξ2, . . . , ξm, ξτ ), are defined and then we used
the data y = (y1, y2, . . . , ymu , ymu+1, ymu+2, . . . , ym, ym+1, . . . , yj , η)
obtained under AT-II PHCS by simulation from SSPALT to estimate the
parameters. The simulation procedure for estimation is as follows:

Step 1. Specify the values of n,m, τ and η.
Step 2. Specify the values of α, β, θ.
Step 3. Generate a random sample of size n from the uniform distribution

U(0, 1).
Step 4. Obtain a sample of size mu = n − ξτ at Su for the specified value

of τ and (ξ1, ξ2, . . . , ξmu) for NH distribution using the inverse CDF
method and the data obtained in Step 1. For this purpose, we used

the function yu = 1
β [{1− log(1− u)}

1
α − 1] and the drawn sample

is based on AT-II PHCS.
Step 5. Similarly, obtain a sample of size n − ξτ −mu −

∑mu
l=1 ξl at stress

level Sa with removal scheme ξmu+1, ξmu+2, . . . , ξm and specified
value of η by repeating the whole procedure explained in Steps 1–4
by using the expression ya = 1

θ [ 1β{(1− log(1−u))1/α−1}−τ ]+τ .
Step 6. Now using the data obtained in Steps 1–5, obtain the MLEs Θ =

(α̂, β̂, θ̂) of the parameters.
Step 7. Steps 1–6 should be repeated 10000 times to obtain an average of

MLEs, as well as their MSEs and RABs. Obtain the ACIs along with
their lengths.

Step 8. For different values of (n,m, τ, η) and (α, λ, θ) for the consid-
ered AT-II PHC plan under SSPALT, we use the following removal
schemes:

(a): ξ1 = ξ2 = · · · = ξm−1 = 0 and ξm = n−m,
(b): ξ1 = n−m; ξ2 = · · · = ξm = 0,
(c): ξ1 = ξ2 = · · · = ξm−1 = 1, ξm = n− 2m− 1,

Computation of A-optimality Criteria

Fisher Information Matrix:

(FIH )−1 =

0.021 0.032 0.045
0.032 0.094 0.053
0.045 0.0.053 0.023


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Table 1 The MLEs, MSEs and RABs with (α, β, θ) = (1.5, 2.5, 1.8), τ = 1.75 and
η = 2.5

Estimate of α Estimate of β Estimate of θ
(n,m) Scheme MLE MSE RAB MLE MSE RAB MLE MSE RAB
(40, 25) 1 1.512 0.265 0.208 2.448 0.431 0.397 1.893 0.297 0.259

2 1.514 0.348 0.315 2.523 0.642 0.586 1.916 0.537 0.508
3 1.495 0.227 0.197 2.457 0.396 0.376 1.848 0.271 0.248

(50, 25) 1 1.484 0.253 0.201 2.525 0.418 0.387 1.803 0.274 0.249
2 1.519 0.331 0.297 2.511 0.618 0.578 1.871 0.515 0.487
3 1.523 0.209 0.196 2.491 0.349 0.329 1.853 0.259 0.237

(60, 25) 1 1.515 0.252 0.235 2.486 0.396 0.378 1.796 0.264 0.246
2 1.496 0.315 0.295 2.503 0.593 0.563 1.812 0.494 0.471
3 1.503 0.195 0.181 2.512 0.337 0.317 1.786 0.243 0.224

(40, 30) 1 1.484 0.237 0.214 2.507 0.385 0.369 1.817 0.258 0.245
2 1.518 0.306 0.285 2.521 0.578 0.548 1.809 0.476 0.458
3 1.493 0.189 0.174 2.502 0.331 0.319 1.794 0.237 0.221

(50, 30) 1 1.512 0.229 0.217 2.519 0.376 0.351 1.806 0.248 0.219
2 1.507 0.297 0.286 2.484 0.564 0.537 1.819 0.451 0.428
3 1.513 0.187 0. 172 2.469 0.326 0.304 1.786 0.223 0.207

(60, 30) 1 1.518 0.218 0.206 2.512 0.362 0.345 1.789 0.237 0.219
2 1.506 0.278 0.253 2.506 0.552 0.532 1.811 0.437 0.418
3 1.511 0.182 0.171 2.512 0.319 0.307 1.794 0.217 0.203

Table 2 The MLEs, MSEs and RABs with (α, β, θ) = (1.5, 2.5, 1.8), τ = 2.0 and η = 3.0

Estimate of α Estimate of β Estimate of θ
(n,m) Scheme MLE MSE RAB MLE MSE RAB MLE MSE RAB
(40, 25) 1 1.489 0.241 0.223 2.485 0.418 0.395 1.862 0.283 0.271

2 1.494 0.462 0.418 2.496 0.627 0.608 1.814 0.519 0.493
3 1.511 0.218 0.192 2.494 0.381 0.352 1.793 0.264 0.257

(50, 25) 1 1.487 0.232 0.219 2.502 0.403 0.382 1.831 0.271 0.246
2 1.508 0.457 0.413 2.513 0.618 0.593 1.822 0.502 0.491
3 1.494 0.212 0.199 2.501 0.362 0.349 1.819 0.257 0.249

(60, 25) 1 1.508 0.228 0.216 2.498 0.397 0.377 1.796 0.262 0.247
2 1.531 0.437 0.398 2.518 0.605 0.589 1.816 0.487 0.468
3 1.51 0.207 0.191 2.501 0.348 0.331 1.794 0.251 0.237

(40, 30) 1 1.489 0.221 0.213 2.506 0.386 0.362 1.797 0.247 0.228
2 1.513 0.416 0.395 2.486 0.593 0.565 1.805 0.468 0.453
3 1.483 0.201 0.187 2.514 0.337 0.315 1.791 0.231 0.211

(50, 30) 1 1.512 0.217 0.203 2.503 0.373 0.355 1.814 0.238 0.224
2 1.509 0.392 0.371 2.485 0.578 0.551 1.802 0.442 0.436
3 1.511 0.194 0.182 2.489 0.321 0.304 1.789 0.219 0.206

(60, 30) 1 1.513 0.201 0.192 2.504 0.362 0.348 1.799 0.227 0.203
2 1.502 0.376 0.342 2.513 0.567 0.542 1.804 0.438 0.416
3 1.497 0.188 0.167 2.507 0.312 0.295 1.784 0.199 0.181
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Table 3 The MLEs, MSEs and RABs with (α, β, θ) = (1.2, 2.8, 1.8), τ = 1.75 and η =
2.5

Estimate of α Estimate of β Estimate of θ
(n,m) Scheme MLE MSE RAB MLE MSE RAB MLE MSE RAB
(40, 25) 1 1.213 0.243 0.231 2.784 0.432 0.416 1.804 0.274 0.258

2 1.289 0.483 0.464 2.795 0.634 0.619 1.852 0.536 0.518
3 1.204 0.229 0.218 2.803 0.387 0.362 1.808 0.254 0.231

(50, 25) 1 1.218 0.236 0.223 2.808 0.423 0.406 1.817 0.259 0.225
2 1.193 0.474 0.454 2.812 0.621 0.613 1.805 0.523 0.507
3 1.198 0.221 0.211 2.785 0.376 0.355 1.798 0.237 0.211

(60, 25) 1 1.227 0.227 0.209 2.813 0.411 0.398 1.785 0.251 0.228
2 1.217 0.465 0.442 2.789 0.608 0.586 1.803 0.512 0.489
3 1.189 0.214 0.202 2.813 0.371 0.347 1.784 0.223 0.208

(40, 30) 1 1.189 0.218 0.197 2.803 0.399 0.383 1.798 0.241 0.219
2 1.206 0.447 0.428 2.791 0.596 0.572 1.813 0.487 0.469
3 1.218 0.209 0.196 2.813 0.368 0.347 1.783 0.208 0.196

(50, 30) 1 1.223 0.212 0.192 2.818 0.362 0.339 1.806 0.232 0.214
2 1.214 0.427 0.412 2.809 0.583 0.554 1.806 0.473 0.456
3 1.189 0.201 0.187 2.796 0.342 0.327 1.793 0.201 0.192

(60, 30) 1 1.217 0.206 0.196 2.808 0.357 0.329 1.808 0.219 0.202
2 1.187 0.419 0.401 2.811 0.576 0.549 1.787 0.455 0.428
3 1.206 0.193 0.178 2.802 0.338 0.317 1.819 0.185 0.167

Table 4 The MLEs, MSEs and RABs with (α, β, θ) = (1.2, 2.8, 1.8), τ = 2.0 and η = 4.0

Estimate of α Estimate of β Estimate of θ
(n,m) Scheme MLE MSE RAB MLE MSE RAB MLE MSE RAB
(40, 25) 1 1.207 0.235 0.218 2.822 0.427 0.412 1.823 0.265 0.248

2 1.276 0.463 0.437 2.813 0.629 0.608 1.812 0.515 0.497
3 1.228 0.217 0.196 2.825 0.367 0.349 1.864 0.237 0.223

(50, 25) 1 1.294 0.226 0.204 2.796 0.416 0.397 1.825 0.253 0.229
2 1.214 0.451 0.426 2.794 0.604 0.583 1.825 0.509 0.486
3 1.223 0.208 0.189 2.782 0.351 0.338 1.902 0.215 0.198

(60, 25) 1 1.221 0.213 0.198 2.817 0.404 0.385 1.794 0.238 0.216
2 1.232 0.436 0.392 2.812 0.592 0.569 1.823 0.495 0.468
3 1.213 0.201 0.182 2.815 0.335 0.317 1.787 0.207 0.185

(40, 30) 1 1.187 0.206 0.183 2.826 0.397 0.362 1.798 0.221 0.199
2 1.195 0.424 0.387 2.817 0.567 0.547 1.826 0.478 0.442
3 1.214 0.194 0.173 2.827 0.317 0.302 1.841 0.195 0.163

(50, 30) 1 1.215 0.199 0.168 2.798 0.382 0.361 1.816 0.207 0.188
2 1.189 0.411 0.383 2.739 0.546 0.529 1.834 0.452 0.428
3 1.193 0.181 0.162 2.767 0.301 0.285 1.797 0.175 0.149

(60, 30) 1 1.219 0.188 0.156 2.832 0.363 0.339 1.783 0.192 0.165
2 1.192 0.397 0.368 2.814 0.528 0.507 1.828 0.431 0.416
3 1.231 0.175 0.153 2.827 0.294 0.267 1.809 0.167 0.135
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Table 5 The MLEs, MSEs and RABs with (α, β, θ) = (1.2, 2.8, 1.8), τ = 2.5 and η = 4

Estimate of α Estimate of β Estimate of θ
(n,m) Scheme MLE MSE RAB MLE MSE RAB MLE MSE RAB
(40, 25) 1 1.225 0.228 0.202 2.815 0.417 0.401 1.814 0.243 0.229

2 1.218 0.435 0.419 2.789 0.532 0.474 1.829 0.498 0.453
3 1.237 0.192 0.181 2.822 0.396 0.381 1.817 0.226 0.215

(50, 25) 1 1.281 0.215 0.201 2.843 0.402 0.381 1.871 0.227 0.213
2 1.178 0.417 0.396 2.815 0.514 0.493 1.816 0.477 0.452
3 1.194 0.184 0.165 2.789 0.385 0.367 1.798 0.214 0.201

(60, 25) 1 1.264 0.203 0.186 2.811 0.392 0.377 1.779 0.208 0.196
2 1.301 0.408 0.382 2.798 0.483 0.437 1.826 0.452 0.435
3 1.193 0.175 0.156 2.827 0.367 0.341 1.764 0.201 0.186

(40, 30) 1 1.189 0.195 0.178 2.824 0.364 0.351 1.778 0.193 0.181
2 1.207 0.395 0.357 2.798 0.468 0.437 1.821 0.434 0.417
3 1.215 0.164 0.147 2.813 0.356 0.338 1.823 0.186 0.167

(50, 30) 1 1.221 0.188 0.162 2.813 0.352 0.333 1.793 0.183 0.165
2 1.218 0.373 0.341 2.799 0.443 0.421 1.832 0.416 0.393
3 1.197 0.157 0.138 2.794 0.341 0.317 1.798 0.177 0.153

(60, 30) 1 1.218 0.173 0.157 2.843 0.332 0.308 1.823 0.169 0.147
2 1.196 0.358 0.339 2.816 0.427 0.408 1.825 0.398 0.373
3 1.217 0.145 0.133 2.825 0.307 0.287 1.812 0.153 0.138

Table 6 The 95% ACIs of (α̂, β̂, θ̂) with (α, β, θ) = (1.5, 2.5, 1.8), τ = 1.75 and η = 2.5

CI of α̂ CI of β̂ CI of θ̂
(n, m) Schemes Lower Upper Lower Upper Lower Upper
(40, 25) 1 0.993 2.031 1.603 3.293 1.311 2.475

2 0.832 2.196 1.265 3.781 0.863 2.969
3 1.05 1.94 1.681 3.233 1.317 2.379

(50, 25) 1 0.988 1.98 1.706 3.344 1.266 2.34
2 0.87 2.168 1.3 3.722 0.862 2.88
3 1.113 1.933 1.807 3.175 1.345 2.361

(60, 25) 1 1.021 2.009 1.71 3.262 1.279 2.313
2 0.879 2.113 1.341 3.665 0.844 2.78
3 1.121 1.885 1.851 3.173 1.31 2.262

(40, 30) 1 1.019 1.949 1.752 3.262 1.311 2.323
2 0.918 2.118 1.388 3.654 0.876 2.742
3 1.123 1.863 1.853 3.151 1.329 2.259

(50, 30) 1 1.063 1.961 1.782 3.256 1.32 2.292
2 0.925 2.089 1.379 3.589 0.935 2.703
3 1.146 1.88 1.83 3.108 1.349 2.223

(60, 30) 1 1.091 1.945 1.802 3.222 1.324 2.254
2 0.961 2.051 1.424 3.588 0.954 2.668
3 1.154 1.868 1.887 3.137 1.369 2.219
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Table 7 The 95% ACIs of (α̂, β̂, θ̂) with (α, β, θ) = (1.5, 2.5, 1.8), τ = 2.0 and η = 3.0

CI of α̂ CI of β̂ CI of θ̂
(n, m) Schemes Lower Upper Lower Upper Lower Upper
(40, 25) 1 1.017 1.961 1.666 3.304 1.307 2.417

2 0.588 2.4 1.267 3.725 0.797 2.831
3 1.084 1.938 1.747 3.241 1.276 2.31

(50, 25) 1 1.032 1.942 1.712 3.292 1.3 2.362
2 0.612 2.404 1.302 3.724 0.838 2.806
3 1.078 1.91 1.791 3.211 1.315 2.323

(60, 25) 1 1.061 1.955 1.72 3.276 1.282 2.31
2 0.674 2.388 1.332 3.704 0.861 2.771
3 1.104 1.916 1.819 3.183 1.302 2.286

(40, 30) 1 1.056 1.922 1.749 3.263 1.313 2.281
2 0.698 2.328 1.324 3.648 0.888 2.722
3 1.089 1.877 1.853 3.175 1.338 2.244

(50, 30) 1 1.087 1.937 1.772 3.234 1.348 2.28
2 0.741 2.277 1.352 3.618 0.936 2.668
3 1.131 1.891 1.86 3.118 1.36 2.218

(60, 30) 1 1.119 1.907 1.794 3.214 1.354 2.244
2 0.765 2.239 1.402 3.624 0.946 2.662
3 1.129 1.865 1.895 3.119 1.394 2.174

Table 8 The 95% ACIs of (α̂, β̂, θ̂) with (α, β, θ) = (1.2, 2.8, 1.8), τ = 1.75 and η = 2.5

CI of α̂ CI of β̂ CI of θ̂
(n, m) Schemes Lower Upper Lower Upper Lower Upper
(40, 25) 1 0.737 1.689 1.937 3.631 1.267 2.341

2 0.342 2.236 1.552 4.038 0.801 2.903
3 0.755 1.653 2.044 3.562 1.31 2.306

(50, 25) 1 0.755 1.681 1.979 3.637 1.309 2.325
2 0.264 2.122 1.595 4.029 0.78 2.83
3 0.765 1.631 2.048 3.522 1.333 2.263

(60, 25) 1 0.782 1.672 2.007 3.619 1.293 2.277
2 0.306 2.128 1.597 3.981 0.799 2.807
3 0.77 1.608 2.086 3.54 1.347 2.221

(40, 30) 1 0.762 1.616 2.021 3.585 1.326 2.27
2 0.33 2.082 1.623 3.959 0.858 2.768
3 0.808 1.628 2.092 3.534 1.375 2.191

(50, 30) 1 0.807 1.639 2.108 3.528 1.351 2.261
2 0.377 2.051 1.666 3.952 0.879 2.733
3 0.795 1.583 2.126 3.466 1.399 2.187

(60, 30) 1 0.813 1.621 2.108 3.508 1.379 2.237
2 0.366 2.008 1.682 3.94 0.895 2.679
3 0.828 1.584 2.14 3.464 1.456 2.182
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Table 9 The 95% ACIs of (α̂, β̂, θ̂) with (α, β, θ) = (1.2, 2.8, 1.8), τ = 2.0 and η = 4.0

CI of α̂ CI of β̂ CI of θ̂
(n, m) Schemes Lower Upper Lower Upper Lower Upper
(40, 25) 1 0.746 1.668 1.985 3.659 1.304 2.342

2 0.369 2.183 1.58 4.046 0.803 2.821
3 0.803 1.653 2.106 3.544 1.399 2.329

(50, 25) 1 0.851 1.737 1.981 3.611 1.329 2.321
2 0.33 2.098 1.61 3.978 0.827 2.823
3 0.815 1.631 2.094 3.47 1.481 2.323

(60, 25) 1 0.804 1.638 2.025 3.609 1.328 2.26
2 0.377 2.087 1.652 3.972 0.853 2.793
3 0.819 1.607 2.158 3.472 1.381 2.193

(40, 30) 1 0.783 1.591 2.048 3.604 1.365 2.231
2 0.364 2.026 1.706 3.928 0.889 2.763
3 0.834 1.594 2.206 3.448 1.459 2.223

(50, 30) 1 0.825 1.605 2.049 3.547 1.41 2.222
2 0.383 1.995 1.669 3.809 0.948 2.72
3 0.838 1.548 2.177 3.357 1.454 2.14

(60, 30) 1 0.851 1.587 2.121 3.543 1.407 2.159
2 0.414 1.97 1.779 3.849 0.983 2.673
3 0.888 1.574 2.251 3.403 1.482 2.136

Table 10 The 95% ACIs of (α̂, β̂, θ̂) with (α, β, θ) = (1.2, 2.8, 1.8), τ = 2.5 and η = 4

CI of α̂ CI of β̂ CI of θ̂
(n, m) Schemes Lower Upper Lower Upper Lower Upper
(40, 25) 1 0.778 1.672 1.998 3.632 1.338 2.29

2 0.365 2.071 1.746 3.832 0.853 2.805
3 0.861 1.613 2.046 3.598 1.374 2.26

(50, 25) 1 0.86 1.702 2.055 3.631 1.426 2.316
2 0.361 1.995 1.808 3.822 0.881 2.751
3 0.833 1.555 2.034 3.544 1.379 2.217

(60, 25) 1 0.866 1.662 2.043 3.579 1.371 2.187
2 0.501 2.101 1.851 3.745 0.94 2.712
3 0.85 1.536 2.108 3.546 1.37 2.158

(40, 30) 1 0.807 1.571 2.111 3.537 1.4 2.156
2 0.433 1.981 1.881 3.715 0.97 2.672
3 0.894 1.536 2.115 3.511 1.458 2.188

(50, 30) 1 0.853 1.589 2.123 3.503 1.434 2.152
2 0.487 1.949 1.931 3.667 1.017 2.647
3 0.889 1.505 2.126 3.462 1.451 2.145

(60, 30) 1 0.879 1.557 2.192 3.494 1.492 2.154
2 0.494 1.898 1.979 3.653 1.045 2.605
3 0.933 1.501 2.223 3.427 1.512 2.112



Statistical Inference Under Step Stress Partially Accelerated Life Testing 605

Table 11 Optimum stress change time using Tables 1–5

For Table 1 For Table 2 For Table 3 For Table 4 For Table 5

(n, m) τ τ∗ τ τ∗ τ τ∗ τ τ∗ τ τ∗

(40, 25) 1.75 1.728 2 1.976 1.75 1.737 2 2.104 2.5 2.432

(50, 25) 1.75 1.749 2 1.994 1.75 1.758 2 1.982 2.5 2.621

(60, 25) 1.75 1.763 2 2.107 1.75 1.741 2 1.979 2.5 2.541

(40, 30) 1.75 1.772 2 1.893 1.75 1.767 2 1.874 2.5 2.429

(50, 30) 1.75 1.732 2 2.092 1.75 1.737 2 2.118 2.5 2.315

(60, 30) 1.75 1.741 2 1.985 1.75 1.747 2 2.036 2.5 2.604

Table 12 Times between failures for a repairable system
0.11 0.30 0.40 0.45 0.59 0.63 0.70 0.71 0.74 0.77 0.94 1.06 1.17 1.23 1.23
1.24 1.43 1.46 1.49 1.74 1.82 1.86 1.97 2.23 2.37 2.46 2.63 3.46 4.36 4.73

A-optimality criteria is to minimize the trace of diagonal elements of
variance-covariance matrix that is nothing but has been obtained by taking
the inverse of FIM.

Minimize[tr(FIM )−1] = [var(α) + var(β) + var(θ)]

= [0.021 + 0.094 + 0.023] = 0.138

6 Real Life Application

In this section, we will examine a real-world data set to show how the NH dis-
tribution performs in practice. Murthy et al. (2004, Ch15, Page 278) provided
the real-world data used in this study. Table 12 shows the considered real
data, which consists of the duration between failures for a repairable system.
The Kolmogorov-Smirnov (K-S) statistic is used to assess the goodness-of-fit
of the NH distribution. The K-S statistic uses the K-S distance between the
empirical and referenced cumulative distributions, as well as the accompany-
ing p-values, to determine the goodness of fit. In terms of K-S distance and p
value, we also compare its goodness-of-fit to the Weibull distribution.

To evaluate the validity of the fitted model, we applied the K-S test,
which yielded a K-S distance of 0.11308 and a p-value of 0.8377. MLEs, K-S
distances, and p-values are all computed using the R software. A plot of the
empirical CDF against fitted CDF, as well as a histogram of data versus fitted
PDF of the NH and Weibull distributions, are shown in Figure 1. Table 13
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Figure 1 The empirical CDF vs the fitted CDF, the data histogram versus the fitted PDF.

Table 13 MLEs, K-S distances and p-values based on complete data
Estimated Parameters

Distribution α β K-S Distance p-Value
NH 4.4487206 0.0976619 0.11308 0.8377
Weibull 1.463405 2.192368 0.074834 0.996

lists the estimated values of the parameters, K-S distances, and accompanying
p-values based on complete data.

The model matches the data fairly well, as evidenced by the p-values,
Figure 1, and K-S distances. According to Table 13, in the field of ALT
modeling, the NH distribution may indeed be a preferable alternative to the
Weibull distribution for lifetime data analysis.

Now, using SSPALT, we will analyse the supplied data by setting the
value of τ to be 1.2 and η to be 2.4. Now we take the total number of failures
m = 20 from a total of n = 30 observations. To generate AT-II PHC data, we
additionally assume the ξi values as ξ1 = ξ2 = · · · = ξ8 = 0, ξ9 = ξ10 = 1,
ξ11 = 0, ξ12 = 1, ξ13 = 0, ξ14 = ξ15 = 1, ξ16 = ξ17 = ξ18 = ξ19 = 0,
ξ20 = 5. As a result, failure data generated under normal and stress conditions
from the real data given in Table 14 is as follows:

Table 14 The generated AT-II PHC data set
Normal Condition: 0.11 0.30 0.40 0.45 0.59 0.63 0.70 0.71 0.74 0.94 1.17
Stress Condition: 1.23 1.24 1.43 1.49 1.82 1.86 1.97 2.23 2.37
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On the basis of the AT-II PHC data reported in Table 14, the parameters
have been estimated for the NH distribution under the SSPALT model, and
the obtained results are reported below in the Table 15:

Table 15 MLEs with MSEs under SSPALT for AT-II PHC data
Censoring α̂ β̂ θ̂

AT-II PHCS MLE MSE MLE MSE MLE MSE
1.512977 0.0057683 0.8767266 0.0032576 1.674958 0.028726

7 Discussion and Conclusion

In this article, the NH distribution is employed as a lifespan distribution for
failures of objects put in SSPALT. AT-II PHCS was utilized to collect data
from the experiment because of its flexibility in removing data from the
experiment after it was started. In AT-II PHCS, whenever a failure happens,
pre-specified objects from the experiment can be deleted. At each failure, the
process is repeated until a targeted number of failures or the time limit for the
experiment is reached. The MLE method was used to estimate the parameters,
assuming that the influence of stress change in SSPALT is explained by a TRV
model.

Thorough simulations have been conducted using R software to assess the
efficacy of the suggested approach and statistical assumptions in this study.
Tables 1–5 shows that the MSEs decrease for all increasing values of m, while
all other variables, n, τ , and η, remain constant. We can also see that when
(n, m) increases, the values of MSEs and RABs decrease. When we increase
the stress change time τ , the MSEs and RABs get smaller, and we likewise
receive reduced values of these estimates when we increase the censoring
time η.

For estimated parameters, 95% ACIs were also obtained and are shown
in Tables 6–10. Additionally, optimal test techniques based on the A and D
optimality criteria were assessed. The FIM was likewise designed to provide
the optimum value for its inverse. The A-optimality criterion reveals that this
matrix has the least variance, which is nothing more than the inverse FIM
trace. Table 11 depicts the optimal stress change timings. Finally, a real-world
example based on the times between breakdowns for a repairable system was
offered to better demonstrate the proposed technique, and the findings based
on the real case were fairly promising. Therefore, it may be concluded that
the model performs well enough to be considered for use in real-world studies
where failures follow NH distribution patterns.



608 M. Kamal et al.

References

[1] Nadarajah, S., and Haghighi, F. (2011). An extension of the exponential
distribution. Statistics, 45(6), 543–558.

[2] Mir Mostafaee, S. K., Asgharzadeh, A., and Fallah, A. (2016). Record
values from NH distribution and associated inference. Metron, 74(1),
37–59.

[3] Sana, M. S., and Faizan, M. (2019). Bayesian Estimation for Nadarajah-
Haghighi Distribution Based on Upper Record Values. Pak J Stat Oper
Res, 15(1), 217–230.

[4] Selim, M.A. (2018). Estimation and prediction for Nadarajah-Haghighi
distribution based on record values, Pak J Stat, 34(1), 77–90.

[5] Kamal, M., Alamri, O. A., and Ansari, S. I. (2020a). A new extension
of the Nadarajah Haghighi model: mathematical properties and appli-
cations. Journal of Mathematical and Computational Science, 10(6),
2891–2906.

[6] MINIC, M. (2020). Estimation of parameters of Nadarajah-Haghighi
extension of the exponential distribution using perfect and imperfect
ranked set sample. Yugoslav Journal of Operations Research, 30(2),
177–198.

[7] Kamal, M., Rahman, A., Ansari, S. I., and Zarrin, S. (2020b). Statistical
Analysis and Optimum Step Stress Accelerated Life Test Design for
Nadarajah Haghighi Distribution. Reliability: Theory & Applications,
15(4), 1–9.

[8] Kamal, M., Zarrin, S., and Islam, A. (2013a). Accelerated life testing
design using geometric process for Pareto distribution. Int. J. of Adv.
Statistics and Probability, 1(2), 25–31.

[9] Rahman, A., Sindhu, T. N., Lone, S. A., and Kamal, M. (2020). Statis-
tical inference for Burr Type X distribution using geometric process in
accelerated life testing design for time censored data. Pakistan Journal
of Statistics and Operation Research, 16(3), 577–586.

[10] Hakamipour, N. (2021). Comparison between constant-stress and step-
stress accelerated life tests under a cost constraint for progressive type I
censoring. Sequential Analysis, 40(1), 17–31.

[11] Zhang, X., Yang, J., and Kong, X. (2021). Planning constant-stress
accelerated life tests with multiple stresses based on D-optimal design.
Quality and Reliability Engineering International, 37(1), 60–77.



Statistical Inference Under Step Stress Partially Accelerated Life Testing 609

[12] Kamal, M. (2021). Parameter estimation for progressive censored data
under accelerated life test with k levels of constant stress. Reliability:
Theory & Applications, 16(3), 149–159.

[13] Abd El-Raheem, A. M. (2021). Optimal design of multiple constant-
stress accelerated life testing for the extension of the exponential distri-
bution under type-II censoring. Journal of Computational and Applied
Mathematics, 382, 113094.

[14] Saxena, S., Zarrin, S., Kamal, M., and Ul-Islam, A. (2012). Optimum
step stress accelerated life testing for Rayleigh distribution. Interna-
tional Journal of Statistics and Applications, 2(6), 120–125.

[15] Kamal, M., Zarrin, S. and Islam, A. (2013b). Step stress accelerated life
testing plan for two parameter Pareto distribution. Reliability: Theory &
Applications, 8(1), 30–40.

[16] Hakamipour, N. (2020). Approximated optimal design for a bivariate
step-stress accelerated life test with generalized exponential distribution
under type-I progressive censoring. International Journal of Quality &
Reliability Management, 38(5), 1090–1115. https://doi.org/10.1108/IJ
QRM-05-2020-0150

[17] Khan, M. A., and Chandra, N. (2021). Optimal Plan and Estimation
for Bivariate Step-Stress Accelerated Life Test under Progressive Type-
I Censoring. Pakistan Journal of Statistics and Operation Research,
17(3), 683–694.

[18] Amleh, M. A., and Raqab, M. Z. (2021). Inference in Simple Step-Stress
Accelerated Life Tests for Type-II Censoring Lomax Data. Journal of
Statistical Theory and Applications, 20(2), 364–379.

[19] Zarrin, S., Kamal, M., and Saxena, S. (2012). Estimation in constant
stress partially accelerated life tests for Rayleigh distribution using type-
I censoring. Reliability: Theory & Applications, 7(4), 41–52.

[20] Kamal, M., Zarrin, S., and Islam, A. U. (2013c). Constant stress partially
accelerated life test design for inverted Weibull distribution with type-I
censoring. Algorithms Research, 2(2), 43–49.

[21] Hassan, A. S., Nassr, S. G., Pramanik, S., and Maiti, S. S. (2020).
Estimation in constant stress partially accelerated life tests for Weibull
distribution based on censored competing risks data. Annals of Data
Science, 7(1), 45–62.

[22] Rabie, A. (2021). E-Bayesian estimation for a constant-stress partially
accelerated life test based on Burr-X Type-I hybrid censored data.
Journal of Statistics and Management Systems, 1–19.

https://doi.org/10.1108/IJQRM-05-2020-0150
https://doi.org/10.1108/IJQRM-05-2020-0150


610 M. Kamal et al.

[23] Goel, P. K. (1971). Some estimation problems in the study of tampered
random variables. (Ph.D. Thesis), Department of Statistics, Cranegie-
Mellon University, Pittsburgh, Pennsylvania.

[24] DeGroot, M. H., and Goel, P. K. (1979). Bayesian estimation and opti-
mal designs in partially accelerated life testing. Nav Res Logist, 26(2),
223–235.

[25] Bai, D. S., and Chung, S. W. (1992). Optimal design of partially accel-
erated life tests for the exponential distribution under type-I censoring.
IEEE Trans Reliab, 41(3), 400–406.

[26] Bai, D. S., Chung, S. W., and Chun, Y. R. (1993a). Optimal design of
partially accelerated life tests for the lognormal distribution under type
I censoring. Reliab Eng Syst Saf, 40(1), 85–92.

[27] Rahman, A., Lone, S. A., and Islam, A. (2016). Parameter Estimation
of Mukherjee-Islam Model under Step Stress Partially Accelerated Life
Tests with Failure Constraint. Reliability: Theory & Applications, 11(4).

[28] Rahman, A., Lone, S. A., and Islam, A. (2019). Analysis of exponenti-
ated exponential model under step stress partially accelerated life testing
plan using progressive type-II censored data. Investigación Operacional,
39(4), 551–559.

[29] Epstein, B. (1954). Truncated life tests in the exponential case. AnnMath
Stat, 555–564.

[30] Banerjee, A., and Kundu, D. (2008). Inference based on type-II hybrid
censored data from a Weibull distribution. IEEE Trans Reliab, 57(2),
369–378.

[31] Balakrishnan, N., and Kundu, D. (2013). Hybrid censoring: Models,
inferential results and applications. Comput Stat Data Anal, 57(1),
166–209.

[32] Balakrishnan, N. (2007). Progressive censoring methodology: an
appraisal. Test, 16(2), 211–296.

[33] Balakrishnan, N., and Cramer, E. (2014). The art of progressive cen-
soring: applications to reliability and quality, Statistics for industry and
technology, Springer Link.

[34] Kundu, D., and Joarder, A. (2006). Analysis of Type-II progressively
hybrid censored data. Comput Stat Data Anal, 50(10), 2509–2528.

[35] Ng, H. K. T., Kundu, D., and Chan, P. S. (2009). Statistical analysis of
exponential lifetimes under an adaptive Type-II progressive censoring
scheme. Nav Res Logist (NRL), 56(8), 687–698.



Statistical Inference Under Step Stress Partially Accelerated Life Testing 611

[36] Lin, C. T., Ng, H. K. T., and Chan, P. S. (2009). Statistical inference
of Type-II progressively hybrid censored data with Weibull lifetimes.
Comm Stat Theor Meth, 38(10), 1710–1729.

[37] Hemmati, F., and Khorram, E. (2013). Statistical analysis of the log-
normal distribution under type-II progressive hybrid censoring schemes.
Comm Stat Simulat Comput, 42(1), 52–75.

[38] Ismail, A. A. (2014). Inference for a step-stress partially accelerated life
test model with an adaptive Type-II progressively hybrid censored data
from Weibull distribution. J Comput Appl Math, 260, 533–542.

[39] Sobhi, M. M. A., and Soliman, A. A. (2016). Estimation for the expo-
nentiated Weibull model with adaptive Type-II progressive censored
schemes. Appl Math Model, 40(2), 1180–1192.

[40] Zhang, C., and Shi, Y. (2016). Estimation of the extended Weibull
parameters and acceleration factors in the step-stress accelerated life
tests under an adaptive progressively hybrid censoring data. J Stat
Comput Simulat, 86(16), 3303–3314.

[41] Nassar, M., Nassr, S. G., and Dey, S. (2017). Analysis of burr Type-XII
distribution under step stress partially accelerated life tests with Type-I
and adaptive Type-II progressively hybrid censoring schemes. Ann Data
Scien, 4(2), 227–248.

[42] Selim, M.A. (2018). Estimation and prediction for Nadarajah-Haghighi
distribution based on record values, Pak J Stat, 34(1), 77–90.

[43] Alam, I., and Ahmed, A. (2020). Parametric and Interval Estimation
Under Step-Stress Partially Accelerated Life Tests Using Adaptive
Type-II Progressive Hybrid Censoring. Annl Dat Scien, 1–13. https:
//doi.org/10.1007/s40745-020-00249-1

[44] Murthy, D. P., Xie, M., and Jiang, R. (2004). Weibull models (Vol. 505).
John Wiley and Sons, Inc., Hoboken, New Jersey.

https://doi.org/10.1007/s40745-020-00249-1
https://doi.org/10.1007/s40745-020-00249-1


612 M. Kamal et al.

Biographies

Mustafa Kamal is an Assistant Professor at Saudi Electronic University’s
College of Science and Theoretical Studies. In 2013, he received his Ph.D.
(Statistics) from Aligarh Muslim University, India. He authored more than 20
research papers that have been published in a variety of international journals.
His main research interests include Accelerated Life testing & Reliability
theory. Currently he is working on Bayesian estimation, Artificial intelligence
and neural networks techniques, Sustainable Energy, Survey Sampling; Order
Statistics; Statistical Inference and Distribution Theory.

Ahmadur Rahman is working as Assistant Professor in the department
of Statistics and Operations Research, Aligarh Muslim University, Aligarh.
He received his Bachelor, Master and PhD degree from Aligarh Muslim Uni-
versity in Statistics. He has published several research papers in national and
international reputed journals. His areas of research are Life Testing, Accel-
erated Life Testing Plans, Reliability Analysis, Survival Analysis, Bayesian
inference and Econometrics with R language/software.



Statistical Inference Under Step Stress Partially Accelerated Life Testing 613

Shazia Zarrin earned her Ph.D. in “Statistics” from the Department of Statis-
tics and Operations Research, Aligarh Muslim University, India. Her primary
research interests are in reliability theory and accelerated life testing. She is
currently working on the Bayesian estimation technique in life testing and
reliability estimation and applying computational techniques to field reliabil-
ity and survival data using R software. She is an active reviewer for a number
of prestigious international journals.

Haneefa Kausar earned her Ph.D. in “Operations Research” from the
Department of Statistics and Operations Research, Aligarh Muslim Univer-
sity, Aligarh, India. Her area of research is Mathematical Programming,
Bi-level Programming, Multi-level Programming, Linear Fractional Pro-
gramming, Non Linear Fractional Programming and Accelerated Life Testing
plan. She has published number of papers in very good journals.




	Introduction
	Test Assumptions and Procedure
	The ML Estimation Procedure of the Model Parameters
	Point Estimates
	Derivation of Fisher's Information Matrix
	Confidence Interval Estimates

	Optimization of Test Plan Using A and D Technique
	A-optimality Criterion (or Trace Criterion)
	Optimum Test Plans using D-optimality Criterion

	Simulation Studies
	Real Life Application
	Discussion and Conclusion

