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Abstract

In this paper, Bayesian and non-Bayesian estimation of the inverted Topp-
Leone distribution shape parameter are studied when the sample is complete
and random censored. The maximum likelihood estimator (MLE) and Bayes
estimator of the unknown parameter are proposed. The Bayes estimates
(BEs) have been computed based on the squared error loss (SEL) function
and using Markov Chain Monte Carlo (MCMC) techniques. The asymp-
totic, bootstrap (p,t), and highest posterior density intervals are computed.
The Metropolis Hasting algorithm is proposed for Bayes estimates. Monte
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Carlo simulation is performed to compare the performances of the pro-
posed methods and one real data set has been analyzed for illustrative
purposes.

Keywords: Inverted Topp leone distribution, moments, order statistic,
maximum likelihood estimation, Bayesian estimation, MCMC, highest pos-
terior density interval, asymptotic confidence interval, bootstrap confidence
interval, random censoring.

1 Introduction

The Topp-Leone (TL) distribution was originally proposed by [1] as an alter-
native to beta distribution and it has applied for some family data. In recent
years, the TL distribution has received huge attention in the literature; see
for example; [2] showed that the TL distribution exhibits bathtub failure rate
function with widespread applications in reliability. Moreover, [3] showed
that TL distribution possesses some attractive reliability properties such as
bath tub-shape hazard rate, decreasing reversed hazard rate, upside-down
mean residual life, and increasing expected inactivity time. Recently, [4]
derived admissible minimax estimates for the shape parameter of the TL
distribution under squared and linear-exponential loss functions. Recently, [5]
introduced the inverted Topp-Leone (IVT) distribution as a J-shaped distribu-
tion. Which is useful for modeling lifetime Phenomena and she studied more
of its properties.

In this paper, we study classical and Bayesian estimation for the shape
parameter of the IVT distribution when the sample is complete and random
censored.

The random censoring can be expressed as follows: When the units under
test lose or remove from the test before its failure this data is called random
censoring. To more illustrate, in clinical trials or medical tests, some patients
retreat or leave the test before finishing it.

The work in this paper is organized as follows: In Section 2 we intro-
duce the IVT distribution. The maximum likelihood estimator (MLE) of the
unknown parameter, the Bayes estimator, and the confidence interval based
on complete data will be introduced in Section 3, in Section 4 we introduce
the maximum likelihood estimators (MLEs) of the unknown parameters, the
Bayes estimators and the confidence intervals based on random censoring
data. Finally, the paper is concluded in Section 5.
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2 Inverted Topp-Leone Distribution

The Topp Leone distribution is defined with the following pdf and cdf
respectively,

F (t;β) = tβ(2− t)β (1)

And
f(t;β) = β(2− 2t)(2t− t2)β−1 (2)

For 0 < t < 1 and β > 0.
Assume X = 1

T the pdf and cdf of X are given respectively, as

f(x;β) = 2β(x− 1)x−2β−1(2x− 1)β−1, (3)

And
F (x;β) = 1− x−2β(2x− 1)β. (4)

For 1 < x <∞ and β > 0.
In this case, the distribution of X is called inverted Topp-Leone (IVT)

distribution denoted by (β). It can be showed that the pdf (3) satisfies the
following generalized Pearson system of differential equation

´f(x)

f(x)
=

a0 + a1x+ a2x
2

b0 + b1x+ b2x2 + b3x3

where a0 = −2β− 2, a1 = 6β, a2 = −2β− 2, b0 = 0, b1 = 1, b2 = −3 and
b3 = 2.

The IVT distribution may be considered as a J- shaped because f(x) > 0,
df(x)
dx < 0 and for some values d2f(x)

dx2
> 0. And it can be noted that from

Figure 1. Also, Figure 2 shows the cdf of IVT distribution for different values
for the parameter β.

The mode of the IVT (β) is given by 1 +
√

3
2β+2 .

The quantiles of the IVT (β) distribution is given by

xq = q
−1
β

(
1 +

√
1− q

1
β

)
, 0 < q < 1.

The median is a special case from the quantile function, when q = 1
2 ,

x0.5 = (0.5)
−1
β

(
1 +

√
1− (0.5)

1
β

)
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Figure 1 The pdf for IVT distribution.

 
Figure 2 The cdf for IVT distribution.

And the inter-quartile range (IQR) is given as

IQR =

(
3

4

)−1
β

1 +

√
1−

(
3

4

) 1
β

− (1

4

)−1
β

1 +

√
1−

(
1

4

) 1
β

 .

The kth moment about origin µ́k is given by the following theorem.

Theorem 1: the kth-moment about zero µ́k X is given by

µ́k = β
∞∑
j=0

c(k, j)(−1)j

j − k + β
(5)

For k = 1 . . . n and β 6= 1
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Figure 3 The reliability function for IVT distribution.

Where

c(k, 0) = 2k, c(k, 1) = k 2k−1 and

c(k, j) =
k 2k−2j

j!

j−1∏
i=1

(k − j − i), j ≥ 2.

The survival function for the failure time X follows IVT distribution is
defined as

R(x) = x−2β(2x− 1)β (6)

For fixed x means the probability of survival up to time x. Figure 3 shows
the survival function for the IVT distribution with different parameter values.

Moreover, for the IVT distribution, the hazard function is easily
obtained as

h(x) = 2β
x− 1

x(2x− 1)
. (7)

and it has different shapes according to the values of the parameter β as shown
in Figure 4.

The reversed hazard function for the IVT distribution is given as follows

r(x) =
2β(x− 1)x−2β−1(2x− 1)β−1

1− x−2β(2x− 1)β
. (8)

and it has different shapes as shown in Figure 5 according to to the variability
in the parameter β.
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Figure 4 The hazard function for IVT distribution.

Figure 5 The reversed hazard function for IVT distribution.

2.1 Distributions and Moments of Order Statistics from IVT
Distribution

Let X1, X2, . . . , Xn be independent and identically distributed random vari-
ables drawn from IVT distribution. LetX(r); r = 1, 2, . . . , n, be the rth order
statistic, then the pdf of X(r) is defined as

fn(x) = Cn,r[F (x)]r−1[1− F (x)]n−r f(x)
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Where x = x(r), and Cn,r = n!
r!(n−r)! .

fn(x) = 2βCn,r(x− 1)x2β(n−r−1)−1(2x− 1)β(n−r−1)−1

· [1− x2β(2x− 1)β]β(n−r−1)−1

Special cases for X(1) and X(n) are respectively considered as

fn(x) = 2nβ(x− 1)x2β(n−2)−1(2x− 1)nβ−1, x = x(1)

and

fn(x) = 2nβ(x− 1)x−2β−1(2x− 1)β−1[1− x2β(2x− 1)β]
n−1

,

x = x(n)

The joint pdf of x(r) and x(s), 1 ≤ r < s ≤ n, for a sample of size n

fn(x, y) = Cn,r,s[F (x)]r−1[1− F (y)]n−s

× [F (y)− F (x)]s−r−1f(x)f(y)

Where x = x(r), y = x(s) and Cn,r,s = n!
r!(s−r−1)!(n−s)! .

fn(x, y) = 4β2Cn,r,s[1− x2β(2x− 1)β]
r−1

[y2β(2y − 1)β]
n−s

· [x2β(2x− 1)β − y2β(2y − 1)β]s−r−1

· (x− 1)x−2β−1(2x− 1)β−1(y − 1)y−2β−1(2y − 1)β−1,

1 < x < y <∞

In the following theorems, the moments and product moments about
origin will be introduced

Theorem 2: the kth-moment about zero µkr:n of rth order statistic X(r) is
given by

µkr:n = Cn,r

∞∑
j=0

c(k, j)(−1)
1
βB

(
j − k
β

+ 1, n− r + 1

)
(9)

For k = 1 . . . n and r = 1 . . . n,
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Where

c(k, 0) = 2k, c(k, 1) = k 2k−1 and

c(k, j) =
k 2k−2j

j!

j−1∏
i=1

(k − j − i), j ≥ 2,

and B(·, ·) is the beta function.
The kth moment of X(1) is given as

µk1:n = n!

∞∑
j=0

c(k, j)(−1)
1
β

Γ
(
j−k
β + 1

)
Γ
(
j−k
β + n+ 1

) .
The kth moment of X(n) is given as

µkn:n = n
∞∑
j=0

c(k, j)(−1)
1
β

Γ
(
j−k
β + n

)
Γ
(
j−k
β + n+ 1

) .
Theorem 3: the kth and Lth-product moments about zero µ(k,L)r:n of X(r) and
X(s) are given by

µ(k,L)r:n = Cn,r,s

s−r−1∑
j3

∞∑
j2

∞∑
j1

c(k, j1)c(L, j2)

(
s−r−1
j3

)
(−1)

j1+j2
β

+j3

j1−k
β + j3 + r

·B
(
j1 + j2 − k − L

β
+ s, n− s+ 1

)
. (10)

For k = 1 . . . n, L = 1 . . . n and r = 1 . . . n.
Where c (k, j1), c(L, j2) as given in (9).

3 Estimation Based on Complete Samples for IVT
Distribution Shape Parameter

3.1 Maximum Likelihood Estimation

Suppose that X1, X2, . . . , Xn is a simple random sample of size n drawn
from IVT(β). In this section, the shape parameter of the IVT distribution
will be estimated using the MLE as follows.



Inverted Topp-Leone Distribution 623

The likelihood function is given by

l(x;β) =
n∏
i=1

2β(xi − 1)x
−(2β+1)
i (2xi − 1)β−1 (11)

The natural logarithm of the likelihood function is given as

L(x;β) ∝ n log(β)− (2β + 1)
n∑
i=1

log(xi) + (β − 1)
n∑
i=1

log(2xi − 1)

After differentiating the L(x;β) and equating to zero the MLE for β can
be expressed in closed form as follows

β̂ =
n∑n

i=1 log?(x2i /(2xi − 1))
.

3.2 Bayesian Estimation

In this section, we have discussed the Bayesian estimation procedure for
the parameter of the IVT distribution and we get the Bayesian estimate of
the unknown parameter under the squared error loss (SEL) function. We
assume that the unknown parameter of the IVT distribution have gamma prior
distribution and can be written with proportional as follows;

π(β|a1,b1) ∝ βa1−1e−βb1 , β > 0, a1, b1 > 0 (12)

Hyper-parameters determination: The hyper-parameters involved in pri-
ors (12) can be easily evaluated if we consider that prior mean and prior
variance are known. The prior mean and prior variance will be obtained
from the maximum likelihood estimate of (β) by equating the mean and
variance of (β̂j) with the mean and variance of the considered priors
(gamma prior), where j = 1, 2, . . . , k and k is the number of random
samples generated from the model in Section 3.1. Thus, on equating mean
and variance of (β̂j) with the mean and variance of gamma priors, we
get ([6])

1

k

k∑
j=1

β̂j =
a1
b1

&
1

k − 1

k∑
j=1

β̂j − 1

k

k∑
j=1

β̂j

2

=
a1

b1
2
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Now, on solving the above two equations, the estimated hyper-parameters
can be written as

a1 =

(
1
k

∑k
j=1 β̂

j
)2

1
k−1

∑k
j=1

(
β̂j − 1

k

∑k
j=1 β̂

j
)2 &

b1 =
1
k

∑k
j=1 β̂

j

1
k−1

∑k
j=1

(
β̂j − 1

k

∑k
j=1 β̂

j
)2

Based on the likelihood function (11) and the gamma prior (12), the joint
posterior density function of β given the data can be written as

π(β|x) =
π(β)L(β|x)∫∞

0 π(β)L(β|x)dβ
.

Then, the joint posterior density function can be written as

π(β|x) =
1

k(β)

n∏
i=1

2(xi − 1)x
−(2β+1)
i (2xi − 1)β−1βa1e−βb1 (13)

Where,

k(β) =

∫ ∞
0

n∏
i=1

2(xi − 1)x
−(2β+1)
i (2xi − 1)β−1βa1e−βb1dβ,

Thus, the Bayes estimate of β based on SEL function is given by

β̃ = E(β|x)

β̃ =

∫∞
0 βπ(β)L(β|x) dβ∫∞
0 π(β)L(β|x) dβ

(14)

It should be noted that the ratio of integral in (14) cannot be obtained in
closed forms. So, we use the MCMC approximation method to generate sam-
ples from (13) and to calculate the BE of β and also to construct associated
HPD intervals.

Markov Chain Monte Carlo (MCMC) is considered to be a computer-
driven sampling technique. It permits one to characterize a distribution
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without knowing all of the distribution mathematical properties by random
sampling values out of the distribution ([7]). We use Metropolis Hasting
(M-H) method with normal proposal distribution to generate random numbers
from (13). Thus, we perform the following steps of the M-H algorithm to
draw samples from the posterior density (13) and in turn compute the Bayes
estimate of β and construct the corresponding HPD intervals ([8]):

I. Set initial values θ(0), M = burn-in.
II. For i =1,. . . ,N, repeat the following steps.

• Set θ = θ(i−1).
• Generate new candidate parameter values ω from N1(log(θ), Sθ).
• Set θ′ = exp(ω).

• Calculate A = min(1,
π(θ′|x)
π(θ|x) )

• Update θ(i) = θ′ with probability A; otherwise set θ(i) = θ.

The approximate Bayes estimate of θ(i) = (β(i))
′
, i = 1, 2, . . .,N with

respect to SEL function is given by

θ̃BS =
1

N −M

N∑
i=M+1

θ(i),

Where θ̃BS is Bayes estimate under SEL function and M is the burn-in-
period (that is, a number of iterations before the stationary distribution is
achieved).

3.3 Interval Estimation for IVT Distribution Shape Parameter

In this section, we propose different confidence intervals. One is based on the
asymptotic distribution of β, two different bootstrap confidence intervals, and
finally, HPD intervals.

The Asymptotic Confidence Interval

The second derivative for L(x;β) is trivially obtained as

d2L

dβ2
= − n

β2
.

The observed Fisher information matrix is given by

I(β̂) = −d
2L

dβ2

∣∣∣∣
β=β̂

=
n

β̂2
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The asymptotic variance of β̂ is

V (β̂) =
1

I(β̂)
=
β̂2

n
.

The sampling distribution of β̂−β√
V (β̂)

can be approximated by a standard

normal distribution.
The large sample (1− α)100% confidence interval for β is given by

(β̂L, β̂U ) = β̂ ∓ Zα
2

√
V (β̂).

where Zα
2

is the standard normal random variable and (1 − α) is the
confidence coefficient.

Bootstrap Confidence Intervals

The bootstrap confidence intervals are approximate confidence intervals but
in general are better approximate than standard intervals. A parametric boot-
strap interval provides much more information about the population value of
the quantity of interest than does a point estimate. The parametric bootstrap
methods are of two types: –

(i) The percentile bootstrap method (Boot-p) was proposed by [9].
(ii) The Bootstrap-t method (Boot-t) was proposed by [10].

Percentile Bootstrap (Boot-P) Confidence Interval

The boot-p method is rather simple and constructs confidence intervals
directly from the percentiles of the bootstrap distribution of the estimated
parameters. It is given by the following steps:

I. A complete sample is generated from the original data T =

(t1, t2 . . . tn) and the MLE θ̂ = (β̂)
′

of the parameter θ = (β)′ is
computed.

II. Again, an independent complete bootstrap sample T∗ = (t1
∗, t2

∗ . . . tn
∗)

is generated by using θ̂.
III. Now, compute the bootstrap MLE θ̂∗ of parameter θ based on T∗, as in

step-1.
IV. Repeat steps 2–3, B times representing B bootstrap MLE’s θ̂∗’s based

on B different bootstrap samples, i = 1,2,. . . B.
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V. Arrange all θ̂∗’s in an ascending order to obtain the bootstrap sample
i.e. θ̂∗(1) ≤ θ̂∗(2) ≤ . . . ≤ θ̂∗(B). An approximate 100(1 − ω)% boot-p

confidence interval for θ is obtained by (θ̂∗[(ω
2
)×B], θ̂

∗
[(1−ω

2
)×B]).

Where, ω2 is the quantity that helps to determine the bootstrap point.

Bootstrap-t (Boot-t) Confidence Intervals

The bootstrap-t confidence interval is given by the following steps:

I. Steps 1 and 2 of boot-p and boot-t methods are the same.

II. Compute the bootstrap-t statistic T∗ =
θ̂∗b−θ̂√
v(θ̂∗b)

for θ̂∗b where b = 1,

2,. . . B.
III. To obtain a set of bootstrap statistics T∗i; i = 1, 2, . . . ,B repeat steps 2–

3, B times.
IV. Let T∗(1) ≤ T∗(2) ≤ · · · ≤ T∗(B) be the ordered values of T∗i;

i = 1, 2, . . . ,B.
V. Now, the approximate 100(1 − ω)% boot-t confidence interval for

parameter θ is obtained by(
θ̂ − T̂ ∗[(1−ω

2
)×B]

√
v(θ̂), θ̂ − T̂ ∗[(ω

2
)×B]

√
v(θ̂)

)
Highest Posterior Density (HPD) Intervals

The HPD intervals for the unknown parameters can be constructed by using
the following algorithm: let θ(1), θ(2), . . . , θ(n) be the corresponding ordered
MCMC sample, to construct the HPD interval, let θ(j) be the jth smallest
of {θ(i)} and denote Dj(n) = (θ(j), θ(j+[(1−ϕ)n])), where 0 < ϕ < 1
For j = 1, 2, . . . ,n−[(1 − ϕ)n] be the HPD intervals then the best HPD
interval that has the smallest interval width from Dj(n),s. So, we can say
Dj∗(n) = (θ(j∗), θ(j∗+[(1−ϕ)n])), be HPD interval for the unknown parameters
have the smallest interval width among all Dj∗(n)′s. Where j∗ is chosen
so that

θ(j∗+[(1−ϕ)n]) − θ(j∗) = min
1≤j≤n−[(1−ϕ)n]

(θ(j+[(1−ϕ)n]) − θ(j))

Where θ(j) = β(j), and θ(i) = β(i) then the HPD intervals for the
unknown parameters can be constructed.
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3.4 Simulation Study

A simulation study was carried to check the performance of the accuracy
of point and interval estimates for several cases, for which estimate the one
parameter of IVT distribution (β) for the number of replications (m = 1000),
for different sample sizes (n) as n = 25, 50, 80, 100 and different parameters
values. All the computations are performed using statistical software R.

The simulations results for MLE are summarized in Tables 2, 3, 4, and 5
and obtained by the following steps:

i. Specify initial values for parameter (β) as (0.5), (0.8), (1.2) and (1.9).
ii. Specify the sample size n. as n = 25, 50, 80, 100.

iii. Generate n standard uniform variates i.e. U ∼ Uniform(0, 1).
iv. Generated complete samples of size n from IVT (β) distribution by using

the formula x = U
−1
β (1 +

√
1− U

1
β )

v. Obtain the maximum likelihood estimates (MLEs).
vi. Obtain the mean, bias, mean squared error (MSE), asymptotic and boot-

strap confidence intervals (CI’s) for the unknown parameters, average
interval lengths (AILs), and coverage probability (CP) for the different
sample size.

vii. Repeat steps 1–5 1000 times.

And the simulation results for the Bayesian estimate are summarized in
Tables 2, 3, 4, and 5 which are obtained by the following steps:

i. Step I, ii, iii, iv, and v of the MLE simulation are the same
ii. By using the M-H algorithm shown in Section 3.2 under the informa-

tive prior and the non-informative prior and repeat the chain N times
(N = 10000) to obtain MCMC samples.

• For informative prior, we compute the hyperparameters for all
simulation cases as in Table 1.
• For non-informative prior (P-II) we assume that hyper-parameter

values are a1 = b1 = 0.

iii. Compute the approximate Bayes estimator of β under SEL function is
given by

β̃SEL =
1

N −M

N∑
i=M+1

gSEL(β(i)), i = 1, 2, . . . , N.

Where M (=2000) is the burn-in-period (that is, a number of iterations
before the stationary distribution is achieved).
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Table 1 The hyper parameters values under complete data

Initial Values

Hyper-Parameters β0 = 0.5 β0 = 0.8 β0 = 1.2 β0 = 1.9

30 a1 23.97 23.95 23.94 23.88

b1 45.85 28.75 19.21 12.00

50 a1 48.92 48.93 48.99 48.97

b1 95.59 59.47 40.02 25.21

80 a1 78.91 78.86 79.05 79.04

b1 155.47 97.51 64.86 41.17

100 a1 98.90 98.97 99.06 98.90

b1 195.76 123.19 82.52 51.58

Table 2 Average estimated values, MSEs, bias, asymptotic and bootstrap (t-p) CI intervals
of MLEs and BEs of IVT distribution parameters under complete data

β01 = 0.5

MLE Bayesian P-I Bayesian P-II

N Parm

Mean MSE/Bias
Asymptotic CI

AILs/CP
Boot.p CI
AIL/CP

Boot.t CI
AIL/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

25 β̂ 0.5228
0.0123/0.0228
(0.3179,0.7277)

0.4099/99.7

(0.3639,0.8017)
0.4378/88.5

(0.3415,0.7519)
0.4104/92

0.5016
0.0010/0.0016
(0.4739,0.5300)

0.0561/81

0.5000
0.0042/0.0000
(0.4445,0.5557)

0.1112/80

50 β̂ 0.5117
0.0059/0.0117
(0.3699,0.6536)

0.2837/99.0

(0.3940,0.6841)
0.2901/91.3

(0.3831,0.6651)
0.2820/92.7

0.5009
0.0010/0.0009
(0.4732,0.5293)

0.0561/81.67

0.5001
0.0033/0.0001
(0.4473,0.5542)

0.1069/81.50

80 β̂ 0.5076
0.0036/0.0076
(0.3963,0.6188)

0.2224/98.17

(0.4114,0.6367)
0.2252/90.50

(0.4048,0.6264)
0.2215/92.00

0.5032
0.0008/0.0032
(0.4761,0.5307)

0.0547/81.50

0.5019
0.0028/0.0019
(0.4508,0.5524)

0.1015/84.33

100 β̂ 0.5052
0.0029/0.0052
(0.4062,0.6042)

0.1980/97.83

(0.4183,0.6179)
0.1996/90.50

(0.4132,0.6103)
0.1972/91.33

0.5025
0.0007/0.0025
(0.4764,0.5289)

0.0525/84.8

0.5017
0.0024/0.0017
(0.4521,0.5514)

0.0993/85.8

Note: parm – parameter, AIL-average interval length.

Repeat step i–iii (1000) times to obtain the mean, bias, mean squared error
(MSE), HPD intervals for the unknown parameters, average interval lengths
(AILs), and coverage probability (CP) for the different sample sizes.

From tabulated values in Tables 2, 3, 4, and 5 it can be noticed that:

i. As expected, with respect to MSEs, higher values of n lead to better
estimates.
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Table 3 Average estimated values, MSEs, bias, asymptotic and bootstrap (t-p) CI intervals
of MLEs and BEs of IVT distribution parameters under complete data

β01 = 0.8

MLE Bayesian P-I Bayesian P-II

N Parm

Mean MSE/Bias
Asymptotic CI

AILs/CP
Boot.p CI
AIL/CP

Boot.t CI
AIL/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

25 β̂ 0.8330
0.0315/0.0330
(0.5065,1.1595)

0.6530/99.8

(0.5798,1.2723)
0.6925/90.2

(0.5463,1.1982)
0.6519/94

0.5271
0.0757/0.2729
(0.4939,0.5607)

0.0668/82.2

0.5440
0.0690/0.2560
(0.4828,0.6057)

0.1228/85

50 β̂ 0.8228
0.0153/0.0228
(0.5948,1.0509)

0.4561/98.2

(0.6332,1.1003)
0.4671/90.8

(0.6158,1.0699)
0.4541/93.2

0.5528
0.0623/0.2472
(0.5110,0.5949)

0.0839/88.00

0.5822
0.0506/0.2178
(0.5139,0.6496)

0.1358/88.67

80 β̂ 0.8088
0.0095/0.0088
(0.6315,0.9860)

0.3545/98.83

(0.6545,1.0149)
0.3604/92.50

(0.6448,0.9998)
0.3550/94.67

0.5788
0.0501/0.2212
(0.5254,0.6321)

0.1067/94.83

0.6155
0.0365/0.1845
(0.5404,0.6870)

0.1466/94.50

100 β̂ 0.8034
0.0067/0.0034
(0.6459,0.9609)

0.3149/98.83

(0.6642,0.9822)
0.3180/90.83

(0.6574,0.9720)
0.3147/92.17

0.5948
0.0433/0.2052
(0.5346,0.6537)

0.1191/97

0.6339
0.0300/0.1661
(0.5560,0.7060)

0.1500/94.8

Table 4 Average estimated values, MSEs, bias, asymptotic and bootstrap (t-p) CI intervals
of MLEs and BEs of IVT distribution parameters under complete data

β01 = 1.2

MLE Bayesian P-I Bayesian P-II

N Parm

Mean MSE/Bias
Asymptotic CI

AILs/CP
Boot.p CI
AIL/CP

Boot.t CI
AIL/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

25 β̂ 1.2462
0.0709/0.0462
(0.7577,1.7347)

0.9770/99.5

(0.8672,1.9088)
1.0417/90.0

(0.8149,1.7930)
0.9781/93.5

0.5445
0.4310/0.6555
(0.5049,0.5855)

0.0806/87.2

0.5707
0.3999/0.6293
(0.5033,0.6373)

0.1341/87.7

50 β̂ 1.2240
0.0315/0.0240
(0.8847,1.5632)

0.6785/99.3

(0.9392,1.6380)
0.6988/90.2

(0.9154,1.5962)
0.6808/901.3

0.5867
0.3776/0.6133
(0.5261,0.6469)

0.1208/94.00

0.6292
0.3289/0.5708
(0.5435,0.7112)

0.1677/93.17

80 β̂ 1.2187
0.0183/0.0187
(0.9517,1.4858)

0.5341/99.00

(0.9862,1.5308)
0.5446/90.33

(0.9707,1.5067)
0.5360/91.67

0.6328
0.3231/0.5672
(0.5466,0.7215)

0.1749/99.00

0.6813
0.2718/0.5187
(0.5764,0.7784)

0.2020/97.00

100 β̂ 1.2005
0.0136/0.0005
(0.9652,1.4358)

0.4706/98.67

(0.9930,1.4692)
0.4763/92.17

(0.9813,1.4519)
0.4706/94.00

0.6622
0.2908/0.5378
(0.5587,0.7652)

0.2065/100

0.7092
0.2434/0.4908
(0.5973,0.8125)

0.2152/99.5

Note: parm – parameter, AIL-average interval length.
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Table 5 Average estimated values, MSEs, bias, asymptotic and bootstrap (t-p) CI intervals
of MLEs and BEs of IVT distribution parameters under complete data

β01 = 1.9

MLE Bayesian P-I Bayesian P-II

N Parm

Mean MSE/Bias
Asymptotic CI

AILs/CP
Boot.p CI
AIL/CP

Boot.t CI
AIL/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

25 β̂ 1.9903
0.1939/0.0903
(1.2101,2.7705)

1.5604/98.8

(1.3833,3.0372)
1.6539/90.3

(1.3066,2.8667)
1.5602/93.5

0.5540
1.8131/1.3460
(0.5103,0.5989)

0.0885/89

0.5885
1.7235/1.3115
(0.5162,0.6584)

0.1422/89.3

50 β̂ 1.9426
0.0809/0.0426
(1.4042,2.4811)

1.0769/98.8

(1.4925,2.6002)
1.1077/90.7

(1.4525,2.5301)
1.0777/92.5

0.6128
1.6583/1.2872
(0.5367,0.6911)

0.1544/98.00

0.6611
1.5382/1.2389
(0.5603,0.7570)

0.1968/97.00

80 β̂ 1.9198
0.0450/0.0198
(1.4991,2.3405)

0.8414/98.50

(1.5555,2.4048)
0.8493/90.83

(1.5334,2.3704)
0.8370/92.33

0.6791
1.4925/1.2209
(0.5599,0.8021)
0.2423/100.00

0.7319
1.3672/1.1681
(0.6028,0.8503)

0.2475/99.67

100 β̂ 1.9174
0.0411/0.0174
(1.5416,2.2932)

0.7516/98.83

(1.5854,2.3433)
0.7579/89.83

(1.5695,2.3196)
0.7502/90.67

0.7231
1.3870/1.1769
(0.5759,0.8760)

0.3001/100

0.7714
1.2763/1.1286
(0.6251,0.9018)

0.2767/99.8

ii. It is also noticed that the maximum likelihood estimates compete well
with non-informative Bayes estimates, and the performance of the
Bayes estimates obtained under informative prior is better than the
non-informative Bayes estimates.

iii. It can also be noticed that under informative prior the AILs and asso-
ciated CPs of HPD intervals are better than those of non-informative
priors, bootstrap (p, t), and asymptotic confidence intervals respectively.

3.5 Application to Real Data Set

In this section, the IVT distribution will be fitted to a real data set, to
show how the IVT distribution can be applied in practice. moreover the IVT
distribution will also compare with other inverted distributions that are fitted
this data such as: inverse exponential (IE), inverse Rayleigh (IR), inverse
Lindley(IL). And they will be introduced below as

The cdf, pdf of the inverse exponential (IE) distribution are respectively as

FIE(x) = e−
λ
x x > 0 and λ > 0 and fIE(x) =

λ

x2
e−

λ
x .
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Table 6 MLEs, AIC, BIC, AICC and HQIC values, and Kolmogorov-Smirnov statistics for
carbon fibers data

Measures

Model MLE p-value K-S -2log L AIC BIC AICc HQIC

IVT 5.6313 0.1197 0.1211 90.3201 92.3201 94.8844 90.3617 93.3566

IE 1.5680 0.0000 0.4528 290.4326 292.4326 294.9969 290.4742 293.4691

IR 1.5293 0.0000 0.3407 173.0542 175.0542 177.6185 173.0958 176.0907

IL 2.0773 0.0000 0.4350 280.3121 282.3121 284.8765 280.3538 283.3487

The cdf, pdf of the inverse Rayleigh (IR) distribution are respectively as:

FIR(x) = e−(
σ
x
)2 x > 0 and σ > 0 and

fIR(x) =
2σ2

x3
e
−(σ

x
)2

.

The cdf, pdf of the inverse Lindley (IL) distribution are respectively as

FIL(x) =

[
1 +

θ

1 + θ

1

x

]
e−

θ
x x > 0 and θ > 0 and

fIL(x) =
θ2

1 + θ

(
1 + x

x3

)
e−

θ
x .

The data set consists of 100 observations of breaking stress of carbon
fibers in (Gba) which are listed as follows:

1.061, 1.117, 1.162, 1.183, 1.187, 1.192, 1.196, 1.213, 1.215, 1.219, 1.220,
1.224, 1.225, 1.228, 1.237, 1.240, 1.244, 1.259, 1.261, 1.263, 1.276, 1.310,
1.321, 1.329, 1.331, 1.337, 1.351, 1.359, 1.388, 1.408, 1.449, 1.449, 1.450,
1.459, 1.471, 1.475, 1.477, 1.480, 1.489, 1.501, 1.507, 1.515, 1.530,1.530,
1.533, 1.544, 1.544, 1.552, 1.556, 1.562, 1.566, 1.585, 1.586, 1.599, 1.602,
1.614, 1.616, 1.617, 1.628, 1.684, 1.711, 1.718, 1.733, 1.738, 1.743, 1.759,
1.777, 1.794, 1.799, 1.806, 1.814, 1.816, 1.828, 1.830, 1.884, 1.892, 1.944,
1.972, 1.984, 1.987, 2.020, 2.030, 2.029, 2.035, 2.037, 2.043, 2.046, 2.059,
2.111, 2.165, 2.686, 2.778, 2.972, 3.504, 3.863, 5.306

Figure 6 shows that the empirical date compared by the inverted distribu-
tions namely IVT, IE, IR and IL.
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Figure 6 Empirical distribution for lifetimes for carbon fibers data.

4 Estimation Based on Random Censored Samples for IVT
Distribution Shape Parameter

4.1 Model Assumption and Description

The random censoring can be described as follows: if we have n units
under test, Let their lifetime is T1,T2, . . . ,Tn which are independent and
identically distributed (iid) random variables with pdf fT (t), t > 0 and cdf
FT (t)t > 0, their random censoring times are C1, C2, . . . , Cn which are iid
with pdf gC(c), c > 0 and cdf FC(c), c > 0, assume Ti

′s and Ci
′s be mutually

independent. Note that, between Ti
′s and Ci

′s, only one will be observed.
Further, let the actual observed time be Xi = min (Ti,Ci) ,i = 1, . . . ,n, and
the indicator variable δi are defined as

δi =

{
1; Ti ≤ Ci

0; Ti > Ci
(15)

The censored data (Xi) is known as the random censoring samples. The
likelihood function under random censoring is given by [11]

L =

n∏
i=1

[fT (x)SC(xi)]
δi [gC(xi)RT (xi)]

1−δi (16)

Where, RT (xi) = 1− FT (t) and SC(xi) = 1− FC(c).
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4.2 Maximum Likelihood Estimation

In this section, we obtain the MLEs for the unknown parameters of the IVT
distribution. Let the lifetime T and censoring time C follow IVT (β1) and IVT
(β2) respectively. Then the likelihood function for the unknown parameters
under random censoring becomes:

L =

n∏
i=1

[2β1(xi − 1)xi
−2β1−2β2−1(2xi − 1)β1+β2−1]

δi

[2β2(xi − 1)x−2β2−2β1−1(2xi − 1)β2+β1−1]
1−δi

(17)

where
∑n

i=1 δi = r is the observed number of uncensored lifetimes or
failures.

Then, the corresponding log-likelihood function can be written as

l = rlog(2β1) +
n∑
i=1

δilog(xi − 1) + (−2β2 − 2β1 − 1)
n∑
i=1

δi log(xi)

+ (β1 + β2 − 1)
n∑
i=1

δilog(2xi − 1) + (n− r)log(2β2)

+
n∑
i=1

(1− δi)log(xi − 1) + (−2β1 − 2β2 − 1)
n∑
i=1

(1− δi)log(xi)

+ (β2 + β1 − 1)
n∑
i=1

(1− δi)log(2xi − 1) (18)

Differentiating (18) with respect to β1 and β2 gets:

∂l

∂β1
=

r

β1
− 2

n∑
i=1

δilog(xi) +
n∑
i=1

δilog(2xi − 1)

− 2
n∑
i=1

(1− δi)log(xi)

+
n∑
i=1

(1− δi)log(2xi − 1) (19)
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∂l

∂β2
=
n− r
β2
− 2

n∑
i=1

δilog(xi) +

n∑
i=1

δilog(2xi − 1)

− 2
n∑
i=1

(1− δi)log(xi)

+
n∑
i=1

(1− δi)log(2xi − 1) (20)

Equating the first derivatives in (19) and (20) to zero and solving for β1
and β2 to get the MLEs β̂1 and β̂2 of β1 and β2, respectively in closed form
as follows

β̂1 =
r

2
∑n

i=1 δilog(x) −
∑n

i=1 δilog(2x− 1)

+2
∑n

i=1 (1− δi)log(x)−
∑n

i=1 (1− δi)log(2x− 1)

and

β̂2 =
n− r

2
∑n

i=1 δilog(x) −
∑n

i=1 δilog(2x− 1)

+2
∑n

i=1 (1− δi)log(x)−
∑n

i=1 (1− δi)log(2x− 1)

4.3 Bayes Estimation for IVT Shape Parameter

In this section, we have discussed the Bayesian estimation procedure for
the parameters of the IVT distribution based random censoring samples and
we get BEs of the unknown parameters under the squared error loss (SEL)
function. We assume that the unknown parameter of the IVT distribution has
the independent gamma prior and can be written with proportional as follows;

π(β1|a1, b1) ∝ β1a1−1e−β1b1 , β1 > 0, a1, b1 > 0 (21)

π(β2|a2, b2) ∝ β2a2−1e−β2b2 , β2 > 0, a2, b2 > 0 (22)

Therefore, the joint prior density of β1 and β2 can be written with
proportional as follows:

π(β1, β2) ∝ β1a1−1β2a2−1e−(β1b1+β2b2)β1, β2 > 0, a1, a2,b1,b2 > 0
(23)
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Hyper-parameters determination: As in Section 3.2, the hyper-parameters
involved in priors (21) and (22) can be easily evaluated, if we consider
that prior mean and prior variance are known. The prior mean and prior
variance will be obtained from the maximum likelihood estimates of (β1, β2)

by equating the mean and variance of (β̂j1, β̂
j
2) with the mean and variance

of the considered priors (gamma prior), where j = 1, 2, . . . , k and k is the
number of random samples generated from the model in Section 4.2. Thus,
on equating mean and variance of (β̂j1, β̂

j
2) with the mean and variance of

gamma priors, we get

1

k

k∑
j=1

β̂j1 =
a1
b1

&
1

k − 1

k∑
j=1

(β̂j1 −
1

k

k∑
j=1

β̂j1)

2

=
a1

b1
2

Now, on solving the above two equations, the estimated hyper-parameters
can be written as

a1 =

(
1
k

∑k
j=1 β̂

j
1

)2
1

k−1
∑k

j=1

(
β̂j1 − 1

k

∑k
j=1 β̂

j
1

)2 &

b1 =
1
k

∑k
j=1 β̂

j
1

1
k−1

∑k
j=1

(
β̂j1 − 1

k

∑k
j=1 β̂

j
1

)2
A similar procedure for determining the hyperparameters (a2,b2) can be

used for β2.
Based on the likelihood function (17) and the joint prior density (23), the

joint posterior density β1 and β2 given the data can be written as

π(β1, β2|x) =
π(β1, β2)L(β1, β2|x)∫∞

0

∫∞
0 π(β1, β2)L(β1, β2|x)dβ1dβ2

.

Then, the joint posterior function can be written as

π(β1, β2|x) =
1

k(β1, β2)
4β1

r+a1−1β2
(n−r)+a2−1e−(β1b1+β2b2)

n∏
i=1

(xi − 1)δi
n∏
i=1

(xi − 1)1−δi
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n∏
i=1

xi
(−2β1−2β2−1)δi

n∏
i=1

xi
(−2β2−2β1−1)(1−δi)

n∏
i=1

(2xi − 1)(β2−β1−1)δi

n∏
i=1

(2xi − 1)(β1−β2−1)(1−δi) (24)

Where,

k(β1, β2) =

∫ ∞
0

∫ ∞
0

4β1
r+a1−1β2

(n−r)+a2−1e−(β1b1+β2b2)

·
n∏
i=1

(xi − 1)δi ·
n∏
i=1

(xi − 1)1−δi

·
n∏
i=1

xi
(−2β1−2β2−1)δi

n∏
i=1

xi
(−2β2−2β1−1)(1−δi)

·
n∏
i=1

(2xi − 1)(β2−β1−1)δi

·
n∏
i=1

(2xi − 1)(β1−β2−1)(1−δi) dβ1, dβ2,

Thus, the Bayes estimate of g(β1, β2) based on SEL function is given by

g̃BS(β1, β2) = E(g(β1, β2)|x)

g̃BS(β1, β2) =

∫∞
0

∫∞
0 g(β1, β2)π(β1, β2)L(β1, β2|x) dβ1dβ2∫∞
0

∫∞
0 π(β1, β2)L(β1, β2|x) dβ1dβ2

(25)

It should be noted that the ratio of integral in (25) cannot be obtained
in closed forms. So, we use the MCMC approximation method to generate
samples from (24) and to calculate the BEs of β1 and β2 and also to con-
struct associated HPD intervals. where we use the M-H method with normal
proposal distribution.
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4.4 Interval Estimation Based on Random Censoring
Samples

In this section, we propose different confidence intervals. One is based on
the asymptotic distribution of β1 and β2, two different bootstrap confidence
intervals and finally, HPD intervals.

Asymptotic Confidence Intervals

The asymptotic variance-covariance matrix of the MLEs of β1 andβ2 can
be obtained by inverting the observed information matrix, and is given as
follows: 

−E
(
∂2`

∂β1
2

)
−E

(
∂2`

∂β1∂β2

)

−E
(

∂2`

∂β2∂β1

)
−E

(
∂2`

∂β2
2

)

−1

(θ=θ̂)

=

[
V11 V12

V21 V22

]

Where θ̂ = (β̂1, β̂2)
′

and θ = (β1, β2)
′. The elements of the observed

information matrix for β1 and β2 are given as follows:

∂2l

∂β1
2

∣∣∣∣
θ=θ̂

= − r

β̂21

Then the observed fisher information

I(β̂1) = − ∂2l

∂β1
2

∣∣∣∣
θ=θ̂

=
r

β̂21

The asymptotic variance of β̂1 is

V (β̂1) =
1

I(β̂1)
=
β̂21
r
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and

∂2l

∂β2
2

∣∣∣∣
θ=θ̂

= −(n− r)
β2

2

I(β̂1) = − ∂2l

∂β2
2

∣∣∣∣
θ=θ̂

=
n− r
β̂22

The asymptotic variance of β̂2 is

V (β̂2) =
1

I(β̂2)
=

β̂22
n− r

The sampling distribution of β̂i−βi√
v(β̂i)

where i = 1, 2, can be approximated

by a standard normal distribution. The large (1−α)100% confidence intervals
for β1 and β2 are given by

(β̂iL, β̂iU ) = β̂i ± Zα
2

√
v(β̂i) where i = 1, 2.

Bootstrap Confidence Intervals

As in Section 3.3, two types of parametric bootstrap methods are considered

(iii) Percentile bootstrap method (Boot-p)
(iv) Bootstrap-t method (Boot-t)

Percentile Bootstrap (Boot-P) Confidence Interval

It given by the following steps:

i. A randomly censored sample is generated from the original data T =

(t1, t2 . . . tn) and the MLE θ̂ = (β̂1, β̂2)′ of the parameter θ = (β1, β2)
′

is computed.
ii. Again, an independent randomly censored bootstrap sample T∗ =

(t1
∗, t2

∗ . . . tn
∗) is generated by using θ̂.

iii. Now, compute the bootstrap MLE θ̂∗ of parameter θ based on T∗, as in
step-1.

iv. Repeat steps 2–3, B times representing B bootstrap MLE’s θ̂∗’s based
on B different bootstrap samples, i = 1,2,. . . B.
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v. Arrange all θ̂∗’s in an ascending order to obtain the bootstrap sample
i.e. θ̂∗(1) ≤ θ̂∗(2) ≤ · · · ≤ θ̂∗(B). An approximate 100(1 − ω)% boot-p

confidence interval for θ is obtained by (θ̂∗[(ω
2
)×B], θ̂

∗
[(1−ω

2
)×B]).

Where, ω2 is the quantity that helps to determine the bootstrap point.

Bootstrap-t (Boot-t) Confidence Intervals

The bootstrap-t confidence interval is given by the following steps:

i. Steps 1 and 2 of boot-p and boot-t methods are the same.

ii. Compute the bootstrap-t statistic T∗ =
θ̂∗b−θ̂√
v(θ̂∗b)

for θ̂∗b where b = 1,

2,. . . B.
iii. To obtain a set of bootstrap statistics T∗i; i = 1, 2, . . . ,B repeat steps 2–

3, B times.
iv. Let T∗(1) ≤ T∗(2) ≤ · · · ≤ T∗(B) be the ordered values of

T∗i; i = 1, 2, . . . ,B.
v. Now, the approximate 100(1 − ω)% boot-t confidence interval for

parameter θ is obtained by(
θ̂ − T̂ ∗[(1−ω2 )×B]

√
v(θ̂), θ̂ − T̂ ∗[(ω2 )×B]

√
v(θ̂)

)
Highest Posterior Density (HPD) Intervals

As in Section 3.3, the HPD intervals for the unknown parameters can be con-
structed. let θ(1), θ(2), . . . , θ(n) be the corresponding ordered MCMC sample,
to construct the HPD interval, let θ(j) be the jth smallest of {θ(i)} and denote
Dj(n) = (θ(j), θ(j+[(1−ϕ)n])), where 0 < ϕ < 1. For j = 1, 2, . . . , n− [(1−
ϕ)n] be the HPD intervals then the best HPD interval that has the smallest
interval width from Dj(n)’s. So, we can say Dj∗(n) = (θ(j∗), θ(j∗+[(1−ϕ)n])),
be HPD interval for the unknown parameters have the smallest interval width
among all Dj∗(n)’s. Where j∗ is chosen so that

θ(j∗+[(1−ϕ)n]) − θ(j∗) = min
1≤j≤n−[(1−ϕ)n]

(θ(j+[(1−ϕ)n]) − θ(j))

Where θ(j) = β1(j), β2(j), and θ(i) = β1(i), β2(i) then the HPD intervals
for the unknown parameters can be constructed.
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4.5 Simulation Study

A simulation study was carried to check the performance of the accuracy
of point and interval estimates for several cases, for which estimate the
two parameters of IVT distribution (β1 and β2) for number of replications
(m = 1000), for different sample sizes (n) as n = 25, 50, 80, 100
and different parameters values. All the computations are performed using
statistical software R.

The simulations results for MLEs are summarized in Tables 8, 9, 10, and
11 and obtained by the following steps:

i. Specify initial values for parameters (β1 and β2) as (0.5, 0.3), (0.8, 0.9),
(1.2, 1) and (1.9, 1.5).

ii. Specify the sample size n. as n = 25, 50, 80, 100.
iii. Generate n standard uniform variates i.e. U ∼ Uniform(0, 1).
iv. Generated samples of size n from IVT (β1) distribution (lifetimes) and

IVT (β2) (censoring times) distribution by using the formula

t = U
−1
β1

(
1 +

√
1− U

1
β1

)
and

c = U
−1
β2

(
1 +

√
1− U

1
β2

)
, respectively.

v. Calculate the times xi = min(Ti, Ci) and the censorship indicators δi,
which are equal to 1 if Ti < Ci and 0 otherwise.

vi. Obtain the maximum likelihood estimates (MLEs).
vii. Obtain the mean, bias, mean squared error (MSE), asymptotic and boot-

strap confidence intervals (CI’s) for the unknown parameters, average
interval lengths (AILs), and coverage probability (CP) for the different
sample size.

viii. Repeat steps 1–5 1000 times.

And the simulation results for Bayesian estimates are summarized in
Tables 8, 9, 10, and 11 which are obtained by the following steps:

iv. Step I, ii, iii, iv, and v of the MLEs simulation are the same
v. By using the M-H algorithm shown in Section 4.2 under the informa-

tive prior and the non-informative prior and repeat the chain N times
(N = 10000) to obtain MCMC samples.

• For informative prior, we compute the hyperparameters for all
simulation cases as in Table 7.
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Table 7 The Hyper Parameters Values under random censoring data
Initial Values

β01 = 0.5, β01 = 0.8, β01 = 1.2, β01 = 1.9,
Hyper-Parameters β02 = 0.3 β02 = 0.9 β02 = 1 β02 = 1.5

30 a1 18.0 13.61 15.74 16.23
a2 10.9 15.28 13.28 12.73
b1 34.9 16.49 8.23 8.23
b2 34.7 16.34 8.18 8.18

50 a1 30.7 22.81 22.81 27.64
a2 18.3 26.12 26.12 21.41
b1 60.2 27.87 14.15 14.15
b2 60.2 27.86 14.17 14.17

80 a1 49.6 36.91 42.88 43.81
a2 29.5 42.19 36.21 35.25
b1 97.8 45.93 22.98 22.98
b2 97.8 45.90 22.97 22.97

100 a1 61.3 46.57 54.36 55.37
a2 37.7 52.37 44.60 43.60
b1 121.7 57.66 28.86 28.86
b2 121.7 57.61 28.84 28.84

• For non-informative prior (P-II) we assume that hyper-parameter
values are a1 = b1 = a2 = b2 = a3 = b3 = a4 = b4 = a5 = b5 =
0.

vi. Compute the approximate Bayes estimator of g(β1, β2) under SEL is
given by

g̃SEL(β1, β2) =
1

N −M

N∑
i=M+1

gSEL(β1
(i), β2

(i), ), i = 1, 2, . . . , N.

Where M (=2000) is the burn-in-period (that is, a number of iterations
before the stationary distribution is achieved).

vii. Repeat step i–iii 1000 times to obtain the mean, bias, mean squared error
(MSE), HPD intervals for the unknown parameters, average interval
lengths (AILs), and coverage probability (CP) for the different sample
size.

From the results in Tables 8–11 the following conclusion can be made:

i. Similar to the complete case based on MSEs, higher values of n lead to
better estimates.
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Table 8 Average estimated values, MSEs, bias, asymptotic and bootstrap (t-p) CI intervals
of MLEs and BEs of IVT distribution parameters under random censoring data

β01 = 0.5, β02 = 0.3

MLE Bayesian P-I Bayesian P-II

N Parm

Mean MSE/Bias
Asymptotic CI

AILs/CP
Boot.p CI
AIL/CP

Boot.t CI
AIL/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

25 β̂1 0.5167
0.0149/0.0167
(0.2829,0.7504)

0.4675/99.4

(0.3223,0.8120)
0.4897/91

(0.3158,0.7965)
0.4806/91.8

0.7764
0.0787/0.2764
(0.7307,0.8221)

0.0914/83

0.7955
0.0917/0.2955
(0.7392,0.8522)

0.1130/80.6

β̂2 0.3135
0.0102/0.0135
(0.1323,0.4948)

0.3625/100

(0.1603,0.5384)
0.3781/100

(0.1638,0.5515)
0.3876/100

0.8056
0.2583/0.5056
(0.7425,0.8716)

0.1291/88.6

0.8264
0.2820/0.5264
(0.7547,0.8978)

0.1431/85.4

50 β̂1 0.5096
0.0093/0.0096
(0.3315,0.6877)

0.3562/98.8

(0.3566,0.7218)
0.3652/91.8

(0.3516,0.7124)
0.3608/92.6

0.7658
0.0728/0.2658
(0.7224,0.8101)

0.0877/82.4

0.7922
0.0896/0.2922
(0.7368,0.8489)

0.1122/81.6

β̂2 0.3033
0.0054/0.0033
(0.1663,0.4403)

0.2740/100

(0.1837,0.4644)
0.2806/100

(0.1855,0.4702)
0.2847/100

0.7549
0.2090/0.4549
(0.6728,0.8428)

0.1701/96.6

0.7779
0.2330/0.4779
(0.6892,0.8662)

0.1770/89.2

80 β̂1 0.5067
0.0051/0.0067
(0.3666,0.6467)

0.2802/99.2

(0.3817,0.6646)
0.2829/92.4

(0.3809,0.6631)
0.2822/92.6

0.7476
0.0630/0.2476
(0.7018,0.7951)

0.0933/86.2

0.7959
0.0915/0.2959
(0.7411,0.8512)

0.1101/80.8

β̂2 0.3014
0.0032/0.0014
(0.1936,0.4093)

0.2157/100

(0.2038,0.4214)
0.2176/100

(0.2073,0.4282)
0.2209/100

0.6897
0.1532/0.3897
(0.5947,0.8014)

0.2067/99.6

0.7189
0.1809/0.4189
(0.5977,0.8385)

0.2408/95.8

100 β̂1 0.5040
0.0038/0.0040
(0.3785,0.6294)

0.2509/99

(0.3913,0.6441)
0.2529/93

(0.3898,0.6417)
0.2518/93

0.7381
0.0582/0.2381
(0.6912,0.7882)

0.0970/88.8

0.8002
0.0938/0.3002
(0.7465,0.8534)

0.1068/81.6

β̂2 0.3101
0.0025/0.0101
(0.2118,0.4084)

0.1966/100

(0.2205,0.4181)
0.1976/100

(0.2230,0.4226)
0.1996/100

0.6651
0.1345/0.3651
(0.5643,0.7857)

0.2214/100

0.6791
0.1491/0.3791
(0.5329,0.8252)

0.2923/97.6

Note: parm – parameter, AIL-average interval length.

ii. The CPs of the MLEs are better than those of the CPs of Bayes esti-
mates obtained under informative prior and the non-informative Bayes
estimates, respectively.

iii. The MSEs of the MLEs are less than the BEs under the SEL function.
iv. It can be noticed that under informative prior the AILs and of HPD inter-

vals are better than those of non-informative priors, Bootstrap (t – p), and
MLEs.

v. Estimates obtained by the MLEs and BEs are almost unbiased.
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Table 9 Average estimated values, MSEs, bias, asymptotic and bootstrap (t-p) CI intervals
of MLEs and BEs of IVT distribution parameters under random censoring data

β01 = 0.8, β02 = 0.9

MLE Bayesian P-I Bayesian P-II

N Parm

Mean MSE/Bias
Asymptotic CI

AILs/CP
Boot.p CI
AIL/CP

Boot.t CI
AIL/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

25 β̂1 0.8253
0.0488/0.0253
(0.3962,1.2544)

0.8582/99

(0.4672,1.3612)
0.8940/92

(0.4648,1.3586)
0.8938/92.2

0.8181
0.0028/0.0181
(0.7713,0.8670)

0.0957/81.8

0.8200
0.0050/0.0200
(0.7604,0.8788)

0.1184/82

β̂2 0.9350
0.0715/0.0350
(0.4778,1.3923)

0.9145/82

(0.5544,1.5140)
0.9596/82

(0.5452,1.4932)
0.9480/83

0.8812
0.0038/0.0188
(0.8299,0.9334)

0.1035/79.8

0.8702
0.0058/0.0298
(0.8085,0.9317)

0.1232/81

50 β̂1 0.8183
0.0295/0.0183
(0.4870,1.1496)

0.6626/99.4

(0.5296,1.2066)
0.6770/93.6

(0.5308,1.2093)
0.6785/93.4

0.8275
0.0038/0.0275
(0.7803,0.8758)

0.0955/79.2

0.8363
0.0055/0.0363
(0.7765,0.8951)

0.1186/81.8

β̂2 0.9373
0.0357/0.0373
(0.5825,1.2921)

0.7096/79.2

(0.6287,1.3562)
0.7275/79.2

(0.6263,1.3512)
0.7249/80.4

0.8707
0.0039/0.0293
(0.8205,0.9231)

0.1027/80.8

0.8580
0.0061/0.0420
(0.7954,0.9209)

0.1255/83

80 β̂1 0.8036
0.0169/0.0036
(0.5462,1.0609)

0.5147/98.6

(0.5727,1.0942)
0.5214/93

(0.5747,1.0969)
0.5222/93

0.8454
0.0047/0.0454
(0.7934,0.8988)

0.1054/85.6

0.8626
0.0075/0.0626
(0.7979,0.9249)

0.1270/86

β̂2 0.9192
0.0205/0.0192
(0.6438,1.1945)

0.5507/75.2

(0.6731,1.2292)
0.5561/75.2

(0.6737,1.2290)
0.5553/75.2

0.8583
0.0044/0.0417
(0.8072,0.9111)

0.1040/82.6

0.8322
0.0088/0.0678
(0.7658,0.8992)

0.1334/84.4

100 β̂1 0.8076
0.0142/0.0076
(0.5772,1.0381)

0.4609/98.4

(0.5980,1.0632)
0.4653/92.4

(0.6011,1.0681)
0.4670/91.6

0.8542
0.0055/0.0542
(0.8008,0.9082)

0.1074/85.6

0.8737
0.0095/0.0737
(0.8043,0.9420)

0.1377/85

β̂2 0.9091
0.0172/0.0091
(0.6645,1.1536)

0.4891/76

(0.6883,1.1833)
0.4950/76

(0.6870,1.1810)
0.4941/76

0.8424
0.0057/0.0576
(0.7904,0.8964)

0.1060/85

0.8147
0.0118/0.0853
(0.7397,0.8894)

0.1497/86.4

Note: parm – parameter, AIL-average interval length.

4.6 Application to Real Data

In this section, the IVT distribution will be fitted to a real data set, to show
how the IVT distribution can be applied in practice. These data are taken
from a lung cancer study described by [12]. These data show remission times
(in days) of a group of 15 patients. The data set is given as: (8, 10, 11, 25*,
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Table 10 Average estimated values, MSEs, bias, asymptotic and bootstrap (t-p) CI intervals
of MLEs and BEs of IVT distribution parameters under random censoring data

β01 = 1.2, β02 = 1

MLE Bayesian P-I Bayesian P-II

N Parm

Mean MSE/Bias
Asymptotic CI

AILs/CP
Boot.p CI
AIL/CP

Boot.t CI
AIL/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

25 β̂1 1.2187
0.0898/0.0187
(0.6286,1.8088)

1.1802/99

(0.7254,1.9592)
1.2338/89.8

(0.719,1.938)
1.220/90.2

0.8356
0.1357/0.3644
(0.7851,0.8876)

0.1025/82.8

0.8367
0.1364/0.3633
(0.7768,0.8969)

0.1201/80.6

β̂2 1.0266
0.0706/0.0266

(0.4856,,1.5675)
1.0818/97.2

(0.5694,1.7048)
1.1355/97.2

(0.572,1.712)
1.140/97

0.8817
0.0176/0.1183
(0.8309,0.9335)

0.1026/79.6

0.8770
0.0200/0.1230
(0.8177,0.9366)

0.1189/80.2

50 β̂1 1.2130
0.0540/0.0130
(0.7578,1.6681)

0.9102/98.6

(0.8157,1.7496)
0.9339/90.6

(0.815,1.745)
0.931/90.6

0.8275
0.0038/0.0275
(0.7803,0.8758)

0.0955/79.2

0.8363
0.0055/0.0363
(0.7765,0.8951)

0.1186/81.8

β̂2 1.0196
0.0486/0.0196
(0.6027,1.4364)

0.8337/98.2

(0.6536,1.5091)
0.8555/98.2

(0.658,1.517)
0.859/98.2

0.8707
0.0039/0.0293
(0.8205,0.9231)

0.1027/80.8

0.8580
0.0061/0.0420
(0.7954,0.9209)

0.1255/83

80 β̂1 1.1970
0.0329/0.0030
(0.8413,1.5527)

0.7114/98.4

(0.8809,1.5994)
0.7185/89.8

(0.879,1.594)
0.716/90

0.8968
0.0949/0.3032
(0.8237,0.9706)

0.1469/90.6

0.8949
0.0971/0.3051
(0.8198,0.9697)

0.1499/89.2

β̂2 1.0106
0.0274/0.0106
(0.6839,1.3373)

0.6534/98.2

(0.7169,1.3782)
0.6612/98.2

(0.721,1.385)
0.664/98.2

0.8678
0.0202/0.1322
(0.8194,0.9178)

0.0984/81.4

0.8430
0.0292/0.1570
(0.7754,0.9098)

0.1344/84.2

100 β̂1 1.2072
0.0300/0.0072
(0.8884,1.5259)

0.6376/97.4

(0.9179,1.5619)
0.6440/89.8

(0.919,1.563)
0.645/89.6

0.9254
0.0789/0.2746
(0.8375,1.0153)

0.1778/92.8

0.9117
0.0866/0.2883
(0.8321,0.9905)

0.1584/92.2

β̂2 0.9892
0.0221/0.0108
(0.7008,1.2776)

0.5768/98.6

(0.7250,1.3079)
0.5830/98.6

(0.732,1.318)
0.586/98.4

0.8585
0.0227/0.1415
(0.8060,0.9121)

0.1060/84.8

0.8269
0.0348/0.1731
(0.7580,0.8960)

0.1381/86

Note: parm – parameter, AIL-average interval length.

42, 72, 82, 100*, 110, 118, 126, 144, 228, 314, 411). The observations with
(*) sign the censored times. For this data set, the unknown parameter (β) of
the IVT distribution will be estimated by the maximum-likelihood method,
and with this, the estimate (MLE), the values of the Kolmogorov-Smirnov
(KS) statistic (the distance between the empirical CDFs and the fitted CDFs),
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Table 11 Average estimated values, MSEs, bias, asymptotic and bootstrap (t-p) CI intervals
of MLEs and BEs of IVT distribution parameters under random censoring data

β01 = 1.9, β02 = 1.5

MLE Bayesian P-I Bayesian P-II

N Parm

Mean MSE/Bias
Asymptotic CI

AILs/CP
Boot.p CI
AIL/CP

Boot.t CI
AIL/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

Mean MSE/Bias
HPD Intervals

AILs/CP

25 β̂1 1.9730
0.2336/0.0730
(1.0320,2.9139)

1.8819/99.2

(1.1918,3.1674)
1.9756/91

(1.1657,3.1094)
1.9437/92.2

0.8561
1.0929/1.0439
(0.8003,0.9125)

0.1122/84.4

0.8401
1.1279/1.0599
(0.7800,0.9002)

0.1202/82.4
β̂2 1.5562

0.2129/0.0562
(0.7223,2.3900)

1.6677/98

(0.8511,2.6028)
1.7517/98

(0.8547,2.6203)
1.7656/98

0.9039
0.3589/0.5961
(0.8519,0.9561)

0.1041/82.4

0.8776
0.3920/0.6224
(0.8187,0.9373)

0.1186/81.6
50 β̂1 1.9533

0.1433/0.0533
(1.2337,2.6729)

1.4392/98.6

(1.3309,2.8133)
1.4824/90.4

(1.3165,2.7856)
1.4691/91

0.8939
1.0159/1.0061
(0.8206,0.9696)

0.1491/88

0.8711
1.0629/1.0289
(0.8050,0.9366)

0.1316/84.4
β̂2 1.5116

0.1032/0.0116
(0.8795,2.1438)

1.2643/99.4

(0.9563,2.2620)
1.3058/99.4

(0.9610,2.2722)
1.3112/99.4

0.9040
0.3585/0.5960
(0.8530,0.9563)

0.1033/81.2

0.8709
0.4008/0.6291
(0.8112,0.9316)

0.1204/78.8
80 β̂1 1.9069

0.0789/0.0069
(1.3462,2.4676)

1.1214/99.2

(1.4060,2.5392)
1.1332/92

(1.4057,2.5360)
1.1304/92

0.9425
0.9206/0.9575
(0.8461,1.0439)

0.1978/95.8

0.9054
0.9933/0.9946
(0.8279,0.9841)

0.1562/89
β̂2 1.5348

0.0666/0.0348
(1.0321,2.0374)

1.0053/99.2

(1.0822,2.1027)
1.0204/99.2

(1.0888,2.1126)
1.0238/99.2

0.9058
0.3563/0.5942
(0.8564,0.9569)

0.1005/80.2

0.8553
0.4206/0.6447
(0.7928,0.9179)

0.1250/80.2
100 β̂1 1.9187

0.0635/0.0187
(1.4163,2.4211)

1.0048/99.2

(1.4640,2.4791)
1.0150/92.2

(1.4638,2.4775)
1.0138/92.2

0.9807
0.8491/0.9193
(0.8607,1.1018)

0.2411/98.4

0.9333
0.9384/0.9667
(0.8425,1.0200)

0.1774/92.2
β̂2 1.5120

0.0537/0.0120
(1.0663,1.9577)

0.8914/100

(1.1043,2.0070)
0.9027/100

(1.1113,2.0186)
0.9073/100

0.9056
0.3564/0.5944
(0.8561,0.9558)

0.0998/80.2

0.8487
0.4290/0.6513
(0.7839,0.9136)

0.1296/81.6

Note: parm – parameter, AIL-average interval length.

Akaike information criterion (AIC ), Bayesian information criterion (BIC)
and Hannan-Quinn information criterion (HQIC) are calculated. These results
are summarized in Table 12:

Table 12 The Values of Goodness of Fit Test for Lung Cancer Data Set to the IVT
distribution

k-s
Distribution B −2log L AIC BIC HQIC D-statistics p-value
IVT 0.277 299.65 301.7 302.2 301.5 0.3408 0.0751
IVT* 0.309 42.71 44.71 43.4 41.98 0.5452 0.4137
Note: (*) indicates the censoring times’ distribution.
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Table 13 The MLEs and BEs of the parameters from lung cancer data set

BEs Under SEL Function Confidence Intervals

AILs (HPD Interval)

Parameter MLEs P-I P-II AILs (Asy CI) P-I P-II

β̂1 0.2437 0.2355 0.1761 0.2672
(0.1341,0.4012)

0.1284
(0.881,0.3165)

0.0533
(0.1494,0.2027)

β̂2 0.0375 0.0344 0.0321 0.1083
(0.0074,0.1158)

0.1083
(0.0232,0.0476)

0.0108
(0.027,0.0378)

Note: AILs- Average interval lengths.

Figure 7 Empirical distribution for lifetimes for lung cancer data.

From Table 12, the null hypothesis is not rejected, these lung cancer data
may be modeled by the IVT distribution.

Moreover, MLE and Bayesian estimation methods are applied for esti-
mating the model unknown parameter. For calculation of BEs, the hyper-
parametersa1, b1, a2 and b2 are chosen such that the expected value Mβ1 of
β1 is 0.2437 with a variance Vβ1 = 0.0046 giving a1 = 13 and b1 = 53.34,
the expected value Mβ2 of β2 is 0.0375 with a variance Vβ2 = 0.0007 giving
a2 = 2 and b2 = 53.33. these results are listed in Table 13.

The empirical distribution for lifetimes and for censoring times for the
lung cancer data are represented in Figures 7 and 8 respectively.

Furthermore, the inverted distributions defined in Section 3.5 can be used
to fit this data also with numerical results listed in Table 14 and Figure 9.
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Figure 8 Empirical distribution for censoring times for lung cancer data.

Table 14 MLEs, AIC, BIC AICC and HQIC values, and Kolmogorov- Smirnov statistics for
Lung Cancer Data lifetimes

Measures
Model MLE p-value K-S −2log L AIC BIC AICc HQIC

IL 32.725 0.1052 0.3013 −195.5445 181.3550 182.0630 179.6216 181.3474
IE 36.90926 0.1051 0.3014 −179.3469 181.3469 182.0550 179.6136 181.3394
IR 0.824718 0.0000 0.5911 −179.3550 211.8932 212.6012 210.1599 211.8857

Figure 9 Empirical distribution for different lifetimes for lung cancer data.
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5 Conclusion

In this paper, we have obtained the maximum likelihood estimates and Bayes
estimates for the unknown parameter of the IVT distribution based on com-
plete and random censoring data, the confidence intervals, HPD intervals, and
bootstrap (p-t) intervals are also obtained. We perform some simulations to
see the performances of the MLEs and BEs incomplete and random censoring
data. One real data set has been re-analyzed based on random censoring data.
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