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Abstract

In this article an attempt has been made to develop a flexible single parameter
continuous distribution using Weibull distribution. The Weibull distribution
is most widely used lifetime distributions in both medical and engineer-
ing sectors. The exponential and Rayleigh distribution is particular case
of Weibull distribution. Here in this study we use these two distributions
for developing a new distribution. Important statistical properties of the
proposed distribution is discussed such as moments, moment generating
and characteristic function. Various entropy measures like Rényi, Shannon
and cumulative entropy are also derived. The kth order statistics of pdf
and cdf also obtained. The properties of hazard function and their limiting
behavior is discussed. The maximum likelihood estimate of the parameter is
obtained that is not in closed form, thus iteration procedure is used to obtain
the estimate. Simulation study has been done for different sample size and
MLE, MSE, Bias for the parameter λ has been observed. Some real data
sets are used to check the suitability of model over some other competent
distributions for some data sets from medical and engineering science. In
the tail area, the proposed model works better. Various model selection
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criterion such as -2LL, AIC, AICc, BIC, K-S and A-D test suggests that
the proposed distribution perform better than other competent distributions
and thus considered this as an alternative distribution. The proposed single
parameter distribution is found more flexible as compare to some other two
parameter complicated distributions for the data sets considered in the present
study.

Keywords: Bonferroni and Gini coefficient, K-S test, MLE, Moments,
MRLF, Rényi and Shannon entropy.

1 Introduction

The exponentiated exponential, Weibull, Gamma, Lognormal distribution and
their weighted version have an extensive usage in the fields of medical and
engineering sciences. Some weighted distributions defined in the statistical
literature, for example the weighted inverted exponential distribution [18],
weighted Weibull distribution [19] and [25], weighted multivariate normal
distribution [15], weighted inverse Weibull distribution [17], weighted three
parameter Weibull distribution [2]. A two parameter weighted exponential
distribution introduced [21] based on a modified weighted version of Azza-
lini’s approach [3]. A two parameter general class of distribution based on
Lindley and a compounded exponential distribution with Lindley distribution
for decreasing hazard has been discussed and apply to the real data sets [6]
and [7].

The Rayleigh distribution is a particular form of two parameter Weibull
distribution and widely used to model, events that occur in different fields
of natural sciences. The generalized Rayleigh distribution is studied [14],
[27] and [20]. Recently [16] observed that the two parameter generalized
Rayleigh distribution that can be used quite effectively in modeling strength
and life time data. Different methods to estimate the unknown parameters of
the generalized Rayleigh and discussed several interesting properties [11].
The Weibull Rayleigh distribution developed [12] and derived its statis-
tical properties. Exponentiated inverse Rayleigh distribution (EIRD) was
introduced [13] and discussed its various statistical properties and it is a
generalized form of inverse Rayleigh distribution [24]. A two parameter
model introduced [1] as a competitive extension for Rayleigh distribution
using the TIHL-G distributions and defined it as type 1 half-logistic Rayleigh
distribution (TIHLR) and discussed its statistical properties and simulation
studies.
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A random variable X is said to have a mixture of two distributions φ1(x)
and φ2(x) if its probability distribution is given by

f(x) = η1φ1(x) + η2φ2(x)

where η1 and η2 are two positive number such that η1 + η2 = 1.

In this paper an attempt has been made to develop a single parameter
continuous distribution on the same logic what has been used in the process
of development of Lindley distribution. Therefore in this study, exponential
and Rayleigh distribution have been mixed with a suitable mixing param-
eter. Its first four moments, mean residual life function hazard function
and various entropy has been discussed. Estimation of the parameter has
been discussed and the suitability of distribution is tested on some real
data set.

2 Proposed Continuous Distribution

The probability density function (pdf) of Weibull distribution is given by

fw(x; k, λ) = λkxk−1e−λx
k

(1)

In the above equation, if we put k = 1, the distribution become
exponential distribution and for k = 2, the distribution become Rayleigh
distribution.

Now we consider mixing parameter as p = λ
λ+α , we have

f(x) = pf(x; 1, λ) + (1− p)f(x; 2, λ)

=
λ

λ+ α
λe−λx +

α

λ+ α
2λxe−λx

2

=
λ

λ+ α
e−λx

(
λ+ 2αxe−λx(x−1)

)
; α > 0, λ > 0 (2)

If α = 0 in the Equation (2), we have an exponential distribution
and if α = 1 in the Equation (2), we have a mixture of exponential and
Rayleigh distribution with mixing proportion λ

λ+1 . This distribution is named
as Rayleigh-exponential distribution (RED) and the pdf is given as

f(x) =
λ

λ+ 1
e−λx

(
λ+ 2xe−λx(x−1)

)
; λ > 0 (3)
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The plot of pdf of RED is given as
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Figure 1 Probability density function of RED.

The cdf of RED is given by

F (x;λ) =

∫ x

0
f(t)dt = 1− λe−λx + e−λx

2

λ+ 1
(4)
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Figure 2 Cumulative distribution function of RED.

The survival function S(t), which is a probability that a patient or item
will survive beyond any specified time t.

S(t) = 1− F (t) =
λe−λt + e−λt

2

λ+ 1
(5)

and the corresponding hazard function of RED distribution is given by

h(x) =
f(x)

1− F (x)
=
λ
(
λ+ 2xe−λx(x−1)

)(
λ+ e−λx(x−1)

) (6)
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Figure 3 Survival function of RED.

Now from Equation (6)

lim
x→0

h(x) =
λ2

λ+ 1
(7)

lim
x→ 1

λ

h(x) =

(
λ2 + 2e−(

1
λ
−1)
)

(
λ+ e−(

1
λ
−1)
) (8)

lim
x→∞

h(x) = λ (9)
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Figure 4 Hazard function of RED.

From Equations (7), (8), (9) and Figure 4, we can say that the hazard of
RED is first increasing then decreasing and finally it become constant.

3 Moments

The rth order moments is given by

E(Xr) =

∫ ∞
0

xrf(x)dx =

∫ ∞
0

xr
λ

λ+ 1
e−λx

(
λ+ 2xe−λx(x−1)

)
dx
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=
λ2

λ+ 1

∫ ∞
0

xre−λxdx+
1

(λ+ 1)λ
r
2

∫ ∞
0

(λx2)
r
2 e−λx

2
d(λx2)

=
λ2

λ+ 1

Γ(r + 1)

λr+1
+

Γ
(
r
2 + 1

)
(λ+ 1)λ

r
2

=
λ

λ+ 1

(
r!

λr

)
+

(
r
2

)
!

(λ+ 1)λ
r
2

(10)

Now the moments of the distribution is obtained as

E(X) =
1

λ+ 1

(
1 +

1

2

√
π

λ

)
(11)

E(X2) =
3

λ(λ+ 1)
(12)

E(X3) =
3

λ(λ+ 1)

(
2

λ
+

1

4

√
π

λ

)
(13)

E(X4) =
2

λ2(λ+ 1)

(
1 +

12

λ

)
(14)

V (X) = E(X2)− (E(X))2 =
1

λ+ 1

[
3

λ
− 1

λ+ 1

(
1 +

1

2

√
π

λ

)2
]

(15)

Median of the distribution is given by the equation∫ M

0

λ

λ+ 1
e−λx

(
λ+ 2xe−λx(x−1)

)
=

1

2
(16)

i.e
e−λM

λ+ 1

(
λ+ e−λM(M−1)

)
=

1

2
(17)

This is a non linear equation we can solve it by numerically.

4 Quantile Function

The quantile function xq of RED is the real solution of the equation given
below

F (xq) = p

(λ+ 1)(1− p)eλxq = λ+ e−λ[(xq−
1
2
)2− 1

4 ] (18)
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The equation is not in closed form thus the solution of xq may obtain
iteratively. If q = 0.5 in the above equation, we can get median of the
distribution.

5 Generating Function

Theorem 1 Moment generating function of RED is given by

λ2

(λ+ 1)(λ− t)
+

1

λ+ 1
+

te
t2

4λ

2
√
λ(λ+ 1)

Γ

(
1

2
,
t2

4λ

)
Proof:

Mx(t) =

∫ ∞
0

etxf(x)dx =
λ

λ+ 1

∫ ∞
0

e−(λ−t)x
(
λ+ 2xe−λx(x−1)

)
dx

Now

λ2

(λ+ 1)(λ− t)

∫ ∞
0

e−(λ−t)xd ((λ− t)x)

+
λ

λ+ 1

∫ ∞
0

2xe−x(λx−t)dx

=
λ2

(λ+ 1)(λ− t)
+

1

λ+ 1

∫ ∞
0

e−x(λx−t)d(x(λx− t))

+
t

λ+ 1

∫ ∞
0

e−x(λx−t)dx

After simplification on last integral we get,

λ2

(λ+ 1)(λ− t)
+

1

λ+ 1

+
te

t2

4λ

√
λ(λ+ 1)

∫ ∞
0

e
−
(
x
√
λ− t

2
√
λ

)2
d

[(
x
√
λ− t

2
√
λ

)]
(19)

Now let (x
√
λ− t

2
√
λ

)2 = z,we have 2(x
√
λ− t

2
√
λ

)d(x
√
λ− t

2
√
λ

) = dz,

also x→ 0, z → t2

4λ and x→∞, z →∞.

λ2

(λ+ 1)(λ− t)
+

1

λ+ 1
+

te
t2

4λ

2
√
λ(λ+ 1)

∫ ∞
t2

4λ

z
1
2
−1e−zdz (20)
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Where Γ(s, x) =
∫∞
x ts−1e−tdt is upper incomplete gamma function.

Finally from (20) we get our required results as

λ2

(λ+ 1)(λ− t)
+

1

λ+ 1
+

te
t2

4λ

2
√
λ(λ+ 1)

Γ

(
1

2
,
t2

4λ

)
(21)

Corollary 1 If we replace it for t in equation number (21) we get the
characteristic function as

Φx(t) =

∫ ∞
0

eitxf(x)dx

=
λ2

(λ+ 1)(λ− it)
+

1

λ+ 1
+

ite
−t2
4λ

2
√
λ(λ+ 1)

Γ

(
1

2
,
−t2

4λ

)
(22)

6 Bonferroni and Lorenz Curves

The Bonferroni, Lorenz curves and Bonferroni, Gini indices have applica-
tions not only in economics to study the income and poverty, but also in other
fields like reliability, insurance, medical and demography. The Bonferroni [8]
and Lorenz curves are defined by

B(p) =
1

pµ

∫ q

0
xf(x)dx and L(p) =

1

µ

∫ q

0
xf(x)dx (23)

Respectively where, µ = E(x) and q = F−1(p). The Bonferroni and
Gini indices are defined by

B = 1−
∫ 1

0
B(p)dp and G = 1− 2

∫ 1

0
L(p)dp (24)

Here

B(p) =
1

pµ

λ

λ+ 1

∫ q

0
xe−λx

(
λ+ 2xe−λx(x−1)

)
dx

=
1

pµ

1

λ+ 1

∫ q

0
(λx)e−(λx)d(λx) +

1

pµ

1

λ+ 1

∫ q

0
2λx2e−λx

2
dx

=
1

pµ

1

λ+ 1

[
1− (1 + λq)e−(λq)

]
+

1

pµ

1

λ+ 1
I1 (25)
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Now let λx2 = z; 2λxdx = dz =⇒ 2dx = dz√
λz

and x → 0, z → 0;

x→ q, z → λq2

I1 =
1√
λ

∫ λq2

0

√
ze−zdz =⇒ I1 = −qe−λq2 +

1√
λ

∫ λq2

0

e−z

2
√
z
dz

(26)

Let
√
z = u; dz

2
√
z

= du; z → 0, u→ 0; z → λq2, u→ q
√
λ, then

I1 = −qe−λq2 +
1√
λ

∫ q
√
λ

0
e−u

2
du = −qe−λq2 +

1√
λ

√
π

2
erf(q

√
λ)

(27)

Since,

erf(x) =
2√
π

∫ x

0
e−t

2
dt

Now from (25) and (27) we get the expression of Bonferroni curve

B(p) =
1

pµ

1

λ+ 1

[[
1− (1 + λq)e−(λq)

]
+

(
1

2

√
π

λ
erf(q

√
λ)− qe−(λq2)

)]

=

[[
1− (1 + λq)e−(λq)

]
+
(
1
2

√
π
λerf(q

√
λ)− qe−(λq2)

)]
p
(
1 + 1

2

√
π
λ

) (28)

where µ = 1
λ+1(1 + 1

2

√
π
λ ), mean of the distribution and the Lorenz curve is

obtained as

L(p) =

[[
1− (1 + λq)e−(λq)

]
+
(
1
2

√
π
λerf(q

√
λ)− qe−(λq2)

)]
(
1 + 1

2

√
π
λ

) (29)

7 Mean Residual Life Function

The mean residual life function is defined by

m(x) = E[X − x|X > x] =
1

1− F (x)

∫ ∞
x

[1− F (t)]dt



678 B. P. Singh and U. Dhar Das

=

∫ ∞
x

λe−λt + e−λt
2

λ+ 1
dt

=
1

λ+ 1

∫ ∞
x

e−λtd(λt) +
1

λ+ 1

∫ ∞
x

e−λt
2
dt

Now let λt2 = z; 2λtdt = dz =⇒ 2dt = dz√
λz

and t → x, z → λx2;
t→∞, z →∞

e−λx

λ+ 1
+

1

λ+ 1

∫ ∞
λx2

e−z

2
√
λz
dz i.e

e−λx

λ+ 1
+

1

2
√
λ(λ+ 1)

∫ ∞
λx2

z−
1
2 e−zdz (30)

Now from (30) the MRLF obtained as

m(x) =
e−λx

λ+ 1
+

Γ
(
λx2, 12

)
2
√
λ(λ+ 1)

(31)

Now if we put x = 0 in equation number (31) then we get m(0) =
1

λ+1

(
1 + 1

2

√
π
λ

)
, which is mean of the distribution and Γ(∗, ∗) is the upper

incomplete gamma function.

8 Rényi Entropy

We know that the entropy is a measure of uncertainty. In 1960, Rényi [5]
defined a generalization of Shannon entropy which depends on a parameter
and it is defined by,

e(η) =
1

1− η
log

[∫ ∞
0

fη(x)dx

]
=

1

1− η
log

[∫ ∞
0

(
λ

λ+ 1

)η
e−ηλx

[
λ+ 2xe−λx(x−1)

]η
dx

]

=
1

1− η
log

λ2η

(λ+ 1)η

[∫ ∞
0

e−ηλx

[
1 +

2xe−λx(x−1)

λ

]η
dx

]
(32)
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Now applying binomial expansion (1 + x)n =
∑n

k=0

(
n
k

)
xk from above

equation we get

=
1

1− η
log

λ2η

(λ+ 1)η

∫ ∞
0

e−ηλx
η∑
k=0

(
η

k

)(
2xe−λx(x−1)

λ

)k
dx

=
1

1− η
log

λ2η

(λ+ 1)η

η∑
k=0

(
η

k

)(
2

λ

)k [∫ ∞
0

xke−(η−k)λxe−kλx
2
dx

]

Using e−x =
∑∞

k=0
(−x)k
k! , we get

=
1

1− η
log

λ2η

(λ+ 1)η

η∑
k=0

(
η

k

)(
2

λ

)k

×

[∫ ∞
0

xke−(η−k)λx
∞∑
l=0

(−1)l
(kλx2)l

l!
dx

]

=
1

1− η
log

λ2η

(λ+ 1)η

η∑
k=0

(
η

k

)(
2

λ

)k ∞∑
l=0

(−1)l
(kλ)l

l!

×
[∫ ∞

0
xk+2le−(η−k)λxdx

]
After simplification we get our required expression.

e(η) =
1

1− η
log

[
λ2η

(λ+ 1)η

η∑
k=0

∞∑
l=0

(−1)l
(
η

k

)(
2

λ

)k
(kλ)l

l!

Γ(k + 2l + 1)

{(η − k)λ}k+2l+1

]

8.1 Cumulative Residual Entropy

Cumulative residual entropy is defined as

ΥCR = −
∫ ∞
0

Pr(X > x) logPr(X > x)dx
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= −
∫ ∞
0

(
λe−λx + e−λx

2

λ+ 1

)
log

(
λe−λx + e−λx

2

λ+ 1

)
dx

= −
∫ ∞
0

(
λe−λx + e−λx

2

λ+ 1

)

×

[
log

(
λ

λ+ 1

)
− λx+ log

(
1 +

e−λx
2+λx

λ

)]
dx

=
−1

λ+ 1
log

(
λ

λ+ 1

)∫ ∞
0

(
λe−λx + e−λx

2
)
dx

+
λ

λ+ 1

∫ ∞
0

x
(
λe−λx + e−λx

2
)
dx

− λ

λ+ 1

∫ ∞
0

(
λe−λx + e−λx

2
)

log

(
1 +

e−λx
2+λx

λ

)
dx

(33)

Applying logarithmic expansion log(1 + x) =
∑∞

k=1(−1)k−1 x
k

k on last
part of integrand of equation number (33), we get

= − 1

λ+ 1
log

(
λ

λ+ 1

)(
1 +

1

2

√
π

λ

)
+

1

λ+ 1

∫ ∞
0

(λx)e−(λx)d(λx)

+
1

2(λ+ 1)

∫ ∞
0

e−(λx
2)d(λx2)− 1

λ+ 1

∫ ∞
0

(
λe−λx + e−λx

2
)

∞∑
k=1

(−1)k−1

kλk

∫ ∞
0

(
λe−λx + e−λx

2
)
e
−k
(
λe−λx+e−λx

2
)
dx

After simplification we obtained the cumulative residual entropy as

ΥCR = − 1

λ+ 1
log

(
λ

λ+ 1

)(
1 +

1

2

√
π

λ

)

+
1

3(λ+ 1)

1

2

√
π

λ

∞∑
k=1

(−1)k−1

kλk

λeλk(
k−1
2k )

2

√
k

+
e

(
λk2

4(k+1)

)
√
k + 1


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8.2 Shannon Entropy

Shannon entropy introduced by Shannon [9] is a limiting case of Rényi
entropy it is widely used in Physics. The Rényi entropy tends to Shannon
entropy as η → 0.

E(− log f(x)) = −
∫ ∞
0

f(x) log f(x)dx (34)

Now from (2) we get∫ ∞
0

[
log

(
λ

λ+ 1

)
− λx+ log

(
λ+ 2xe−λx(x−1)

)]
f(x)dx

= log

(
λ

λ+ 1

)∫ ∞
0

f(x)dx− λE(x)

+ log λ

∫ ∞
0

f(x)dx+

∫ ∞
0

log

[
1 +

2xe−λx(x−1)

λ

]
f(x)dx

Applying logarithmic expansion log(1 + x) =
∑∞

k=1(−1)k−1 x
k

k we get

log

(
λ2

λ+ 1

)
− λ

λ+ 1

(
1 +

1

2

√
π

λ

)

+
λ

λ+ 1

∞∑
k=0

(−1)k−12k

kλk

∫ ∞
0

xke−kλx(x−1)
[
λe−λx + 2xe−λx

2
]
dx

Now applying e−x =
∑∞

m=0(−1)mxm

m! , we get

log

(
λ2

λ+ 1

)
− λ

λ+ 1

(
1 +

1

2

√
π

λ

)
+

λ

λ+ 1

∞∑
k=0

(−1)k−12k

kλk∫ ∞
0

xk
∞∑
m=0

(−1)m (λkx(x− 1))m

m!

[
λe−λx + 2xe−λx

2
]
dx (35)

Again applying binomial theorem (1 − x)n =
∑n

k=0

(
n
k

)
(−x)k in

equation number (35) we get

log

(
λ2

λ+ 1

)
− λ

λ+ 1

(
1 +

1

2

√
π

λ

)
+

λ

λ+ 1

∞∑
k=0

(−1)k−12k

kλk
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∞∑
m=0

(−1)m+1 (λk)m

m!

∫ ∞
0

xk+m
m∑
n=0

(
m

n

)
xn
[
λe−λx + 2xe−λx

2
]
dx

= log

(
λ2

λ+ 1

)
− λ

λ+ 1

(
1 +

1

2

√
π

λ

)
+

λ

λ+ 1

∞∑
k=0

(−1)k−12k

kλk

∞∑
m=0

(−1)m+1 (λk)m

m!

m∑
n=0

(
m

n

)
[∫ ∞

0
λxk+m+ne−λxdx+ 2

∫ ∞
0

xk+m+n+1e−λx
2
dx

]

= log

(
λ2

λ+ 1

)
− λ

λ+ 1

(
1 +

1

2

√
π

λ

)
+

λ

λ+ 1

∞∑
k=0

(−1)k−12k

kλk

∞∑
m=0

(−1)m+1 (λk)m

m!

m∑
n=0

(
m

n

)[
Γ(k +m+ n+ 1)

λk+m+n+1
+

Γ(k+m+n+2
2 )

λ
k+m+n

2

]

After simplification we obtained Shannon entropy as

log

(
λ2

λ+ 1

)
− λ

λ+ 1

(
1 +

1

2

√
π

λ

)

+
λ

λ+ 1
ζλ;k,m,n

[
Γ(k +m+ n+ 1)

λk+m+n+1
+

Γ(k+m+n+2
2 )

λ
k+m+n

2

]
(36)

where

ζλ;k,m,n =

∞∑
k=0

∞∑
m=0

m∑
n=0

(−1)k+m2kkm−1

λk−mm!

(
m

n

)

9 Order Statistics

Let x1, x2, . . . xn be a random sample of size n from the RED. Let X(1) <
X(2) < · · · < X(n) denote the corresponding order statistics. The p.d.f. and
the c.d.f. of the k th order statistic, say Y = X(k) are given by

fY (y) =
n!

(k − 1)!(n− k)!
F k−1(y){1− F (y)}n−kf(y)
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or

fY (y) =
n!

(k − 1)!(n− k)!

n−k∑
l=0

(
n− k
l

)
(−1)lF k+l−1(y)f(y) (37)

and

FY (y) =
n∑
j=k

(
n

j

)
F j(y){1− F (y)}n−j

or

FY (y) =

n∑
i=k

n−j∑
l=0

(
n

j

)(
n− i
l

)
(−1)lF i+l(y) (38)

Now, using equation number (2) and (4) in Equations (37) and (38) we
get the corresponding pdf and the cdf of k − th order statistics of the RED
are obtained as

fY (y) =
n!

(k − 1)!(n− k)!

n−k∑
l=0

k+l−1∑
m=0

(
n− k
l

)(
k + l − 1

m

)

(−1)l+m
λe−λ(m+1)x

(λ+ 1)(m+1)

[
λ+ e−λx(x−1)

]m (
λ+ 2xe−λx(x−1)

)
(39)

and

FY (y) =
n∑
i=k

n−i∑
l=0

i+l∑
m=0

m∑
u=0

(
n

i

)(
n− i
l

)(
i+ l

m

)(
m

u

)
(−1)l+mλm−ue−λux(x−1) (40)

10 Maximum Likelihood Estimation

The proposed distribution RED is a single parameter distribution and may
estimate using method of maximum likelihood. The likelihood function for
the proposed distribution can be written as

L(x;λ) =

n∏
i=1

λe−λxi

λ+ 1

(
λ+ 2xie

−λxi(xi−1)
)
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or

`(λ) =

[
λ

λ+ 1

]n
e−λ

∑n
i=1 xi

n∏
i=1

(
λ+ 2xie

−λxi(xi−1)
)

Now, log-likelihood can be given as

log `(λ) = n log λ−n log(λ+1)−λ
n∑
i=1

xi+

n∑
i=1

log
(
λ+ 2xie

−λxi(xi−1)
)

Differentiating the above equation with respect to λ partially, we get,

∂ log `

∂λ
=
n

λ
− n

λ+ 1
−

n∑
i=1

xi +

n∑
i=1

1− 2x2i (xi − 1)e−λxi(xi−1)(
λ+ 2xie−λxi(xi−1)

) (41)

This is a non-linear equation we solve this by Newton Raphson method.

11 Simulation Study

In this section, an extensive numerical investigation will be carried out to
evaluate the performance of MLE for RED. Performance of estimators is
evaluated through their biases, and mean square errors (MSEs), variances
(MLEs) for different sample sizes. Different sample of sizes are considered
as n = 10, 30, 50, 100, 200 and 500 in addition with different values of
λ = 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5 and 3. The experiment will replicate with
10,000 times.

In each experiment the estimate of the parameter λ will be obtained by
methods of maximum likelihood estimation. The Biases, MSEs, Variances
and estimates are reported in Table 1. We clearly observe from the Table 1,
the values of bias and MSE of the parameter decreases as the sample size n
increases, it proves the consistency of the estimator.

12 Real Data Application

The application of RED have been discussed with the following real data
sets. The first data is about failure and service times for a particular model
windshield of aircraft from [10], originally given in [22]. The data consist
153 observations. Among them 88 are classified as failed windshields and
the remaining 65 are censored i.e. working at the time of taking observations.
The unit for measurement is 1000 hours. The second data set represents
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Table 1 Simulation results for different values of the parameter λ

λ = 0.25

n Bias MSE Var. Est.

λ = 0.5

n Bias MSE Var. Est.

10 0.0355 0.0617 0.0170 0.2855 10 0.0481 0.0688 0.0486 0.5481

30 0.0100 0.0046 0.0040 0.2600 30 0.0148 0.0136 0.0137 0.5148

50 0.0060 0.0023 0.0022 0.2560 50 0.0112 0.0080 0.0079 0.5112

100 0.0025 0.0011 0.0011 0.2528 100 0.0073 0.0040 0.0039 0.5073

200 0.0019 0.0005 0.0005 0.2519 200 0.0035 0.0018 0.0019 0.5035

500 0.0009 0.0002 0.0002 0.2509 500 0.0034 0.0007 0.0007 0.5034

λ = 0.75

n Bias MSE Var. Est.

λ = 1.0

n Bias MSE Var. Est.

10 0.0615 0.0981 0.0909 0.8115 10 0.0819 0.1609 0.1454 1.0819

30 0.0215 0.0263 0.0264 0.7715 30 0.0311 0.0444 0.0420 1.0311

50 0.0124 0.0156 0.0153 0.7624 50 0.0257 0.0252 0.0248 1.0257

100 0.0038 0.0074 0.0074 0.7539 100 0.0096 0.0136 0.0120 1.0096

200 0.0032 0.0038 0.0038 0.7532 200 0.0134 0.0067 0.0060 1.0134

500 -0.0035 0.0020 0.0020 0.7465 500 -0.0038 0.0024 0.0023 0.9961

λ = 1.5

n Bias MSE Var. Est.

λ = 2.0

n Bias MSE Var. Est.

10 0.1108 0.3189 0.2836 1.6108 10 0.1518 0.5312 0.4755 2.1518

30 0.0435 0.0829 0.0819 1.5435 30 0.0578 0.1382 0.1358 2.0578

50 0.0353 0.0501 0.0482 1.5353 50 0.0366 0.0804 0.0790 2.0366

100 0.0160 0.0252 0.0234 1.5160 100 0.0263 0.0384 0.0387 2.0263

200 0.0048 0.0120 0.0115 1.5047 200 0.0139 0.0188 0.0191 2.0138

500 -0.0008 0.0062 0.0045 1.4992 500 -0.0027 0.0076 0.0075 1.9973

λ = 2.5

n Bias MSE Var. Est.

λ = 3.0

n Bias MSE Var. Est.

10 0.2094 0.8579 0.7365 2.7094 10 0.2452 1.1826 1.0440 3.2452

30 0.0572 0.2110 0.2028 2.5572 30 0.0715 0.3035 0.2881 3.0715

50 0.0317 0.1176 0.1178 2.5317 50 0.0493 0.1707 0.1679 3.0493

100 0.0213 0.0595 0.0579 2.5213 100 0.0216 0.0826 0.0817 3.0216

200 0.0242 0.0283 0.0289 2.5242 200 0.0097 0.0401 0.0403 3.0097

500 0.0149 0.0129 0.0114 2.5149 500 0.0041 0.0157 0.0160 3.0041

40 patients suffering from blood cancer (leukemia) from one of ministry of
health hospitals in Saudi Arabia [4] and the third data set consists of survival
times of guinea pigs injected with different amount of tubercle bacilli and was
studied [26], the data represents the survival times of Guinea pigs in days.
Summary measures of data sets are given in Table 2. The pp-plot and TTT
plot are shown in the Figures 5, 8, 11 for respective data sets. The fitted pdf
plots for EE, EIRD, TIHLR, Lindley, Exponential and proposed distribution
(RED) is display in the Figures 6, 9, 12 also the empirical cdf and fitted cdf
of respective data sets are shown in the Figures 7, 10, 13.

It is reveals that all the data sets are under dispersed and positively skewed
except second data set.
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Table 2 Summary of three data sets
Data Sets n Mean Sd Median Skewness Kurtosis Min Max
Aircraft windsheild 65 2.081 1.230 2.065 0.449 2.784 0.046 5.140
Leukaemia 40 3.141 1.359 3.348 -0.417 2.274 0.315 5.381
Guinea pigs 72 1.754 1.044 1.450 1.328 4.914 0.100 5.550

The above data sets used for checking the suitability of proposed distribu-
tion RED along with some other distributions viz. exponentiated exponential
distribution (EE) proposed by [23] , exponentiated Inverse Rayleigh distri-
bution (EIRD) introduced by [13], type 1 half-logistic Rayleigh distribution
(TIHLR) proposed [1], exponential and Lindley distribution. The ML esti-
mates, value of -2LL, Akaike Information criteria (AIC), Corrected Akaike
Information criteria (AICc), Hannan-Quinn information criterion (HQIC)
are presented in the Tables 3, 5 and 7 and also K-S statistic, A-D statistic
and there associated p-value of the considered distributions are presented in
Tables 4, 6 and 8. The AIC, BIC, AICc, HQIC, K-S and A-D Statistics are
computed using the following formulae:

AIC = −2LL+ 2k, BIC = −2LL+ k log n

AICc = AIC +
2k2 + 2k

n− k − 1
, HQIC = −2LL+ 2klog(log(n))

D = sup
x
|Fn(x)− F0(x)| A2 = −N − S;

S =

N∑
i=1

2i− 1

N
[logF (Yi) + log(1− F (YN+1−i))]

where k = the number of parameters, n = the sample size, and the Fn(x)
is empirical distribution function F0(x) is the theoretical cumulative dis-
tribution function and Yi are the ordered data. The best distribution is the
distribution corresponding to lower values of -2LL, AIC, BIC, AICc, K-S
and A-D statistics and there corresponding higher p-values respectively.
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Figure 5 pp-plot and TTT plot for the aircraft windshield data.
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Table 3 -2LL and information criterion for aircraft windshield data
Estimate

Distribution α θ -2LL AIC BIC AICc HQIC
RED 0.1930 212.59 214.59 216.77 214.66 215.45
EE 1.9458 0.7024 212.63 216.63 220.98 216.82 218.35
EIRD 0.2148 0.1591 322.60 326.60 330.95 326.79 328.31
TIHLR 0.5920 0.3880 215.20 219.20 223.55 219.39 220.91
Lindley 0.7543 215.32 217.32 219.49 217.38 218.17
Exponential 0.4804 225.30 227.30 229.47 227.36 228.15

Table 4 Kolmogorov-Smirnov and Anderson-Darling Statistic for aircraft windshield data
Distribution K-S p-value A-D p-value
RED 0.0719 0.8663 0.9309 0.3953
EE 0.1405 0.1397 1.3609 0.2134
EIRD 0.3639 0.0000 13.122 0.0000
TIHLR 0.1422 0.1308 2.6584 0.0411
Lindley 0.1588 0.0671 2.3349 0.0607
Exponential 0.2132 0.0045 4.1845 0.0071
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Figure 6 Fitted pdf for the aircraft windshield data.
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Figure 7 Fitted cdf for the aircraft windshield data.
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Figure 8 pp-plot and TTT plot for the blood cancer (leukaemia) data.

Table 5 -2LL and information criterion for blood cancer (leukaemia) data
Estimate

Distribution α θ -2LL AIC BIC AICc HQIC
RED 0.0839 145.35 147.35 149.04 147.46 147.96
EE 3.5189 0.6141 149.92 153.92 157.30 154.25 155.15
EIRD 0.4437 0.9562 196.05 200.05 203.43 200.37 201.27
TIHLR 0.2737 0.4364 137.41 144.79 144.79 141.73 142.63
Lindley 0.5269 160.50 162.50 164.19 162.60 163.11
Exponential 0.3184 171.56 173.56 175.24 173.67 174.17

Table 6 Kolmogorov-Smirnov and Anderson-Darling Statistic for blood cancer (leukaemia)
data

Distribution K-S p-value A-D p-value
RED 0.1318 0.4903 1.1906 0.2709
EE 0.1612 0.2495 1.7137 0.1330
EIRD 0.7730 0.0000 6.3646 0.0006
TIHLR 0.1181 0.6315 0.6944 0.5625
Lindley 0.2405 0.0195 3.6452 0.0132
Exponential 0.3002 0.0015 5.4782 0.0017
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Figure 9 Fitted pdf for the blood cancer (leukaemia) data.
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Figure 10 Fitted cdf for the blood cancer (leukaemia) data.
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Figure 11 pp-plot and TTT plot for survival times of guinea pigs data.

Table 7 -2LL and information criterion for survival times of guinea pigs data
Estimate

Distribution α θ -2LL AIC BIC AICc HQIC
RED 0.3252 195.23 197.23 199.51 197.29 198.14
EE 3.4932 1.1181 188.95 192.95 197.51 193.13 194.77
EIRD 0.4077 0.4584 277.57 281.57 286.12 281.74 283.38
TIHLR 0.6602 0.4906 204.51 208.51 213.07 208.68 210.33
Lindley 0.8744 213.05 215.05 217.33 215.11 215.96
Exponential 0.5702 224.89 226.89 229.17 226.95 227.79

Table 8 Kolmogorov-Smirnov and Anderson-Darling Statistic survival times of guinea pigs
data

Distribution K-S p-value A-D p-value
RED 0.1200 0.2508 1.0113 0.3511
EE 0.0883 0.6290 0.4572 0.7901
EIRD 0.4213 0.0000 10.437 0.0000
TIHLR 0.1866 0.0133 3.7647 0.0114
Lindley 0.1866 0.0133 3.7647 0.0114
Exponential 0.2832 0.0000 6.8837 0.0004
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Figure 12 Fitted pdf for the survival times of guinea pigs data.
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Figure 13 Fitted cdf for the survival times of guinea pigs data.

13 Conclusion

In this paper, we propose and explore the properties of the proposed distri-
bution named as Rayleigh-Exponential Distribution (RED). We investigate
some of its statistical properties like rth order moment, quantile function,
moment generating function, characteristics function, Bonferroni, Lorenz
curves, mean residual life function. Some entropy has been discussed like
Rényi, Shannon entropy and cumulative residual entropy. The maximum
likelihood method is employed to estimate the parameter. We fit the real data
sets to demonstrate the flexibility and aptness of the proposed distribution.
The RED performs better than other distributions for the first data set but
in other two data set its rank is second. This shows that the RED is a
competent model to some other two parameters models also. We hope that the
RED distribution will attract wider application in areas such as engineering,
survival and lifetime data, hydrology, economics and other areas.
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