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Abstract

This paper addresses the problem of estimating ratio of two population means
by using quantitative auxiliary knowledge in the form of first and second
moments. Through this paper, an improved generalized two phase sampling
estimator has been proposed. The relative bias and mean squared error of the
suggested estimator has been derived and studied. Also, a comparative study
with the conventional estimators has been included to establish its superiority.
Besides theoretical comparisons, a subset of optimum estimators having the
same minimum mean squared error (MSE) is also explored. An empirical
study is also carried out to support theoretical results.
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1 Introduction

Sampling theory deals with optimum combination of sampling and estimation
procedures so that inferences about the population parameters are made with
minimum error. The challenging issue of estimating ratio of two population
means assumes great importance in the enormous literature of sampling
theory. Since past sixty decades, numerous authors have highlighted the
concept of incorporating auxiliary information at estimation stage resulting
in enhancement of the efficiency and precision of estimators. In almost
every field of scientific study like agriculture, forestry, economics surveys,
management, biomedical sciences and the likes, estimation of population
ratio assumes significant importance. Input-output ratio in an industrial sur-
vey, outlay on employees to the entire expenses, proportion of liquid to
total assets, profitability rate, crop production rate, literacy rate are some
illustrations of estimating ratio of two population parameters. Many a times,
a health analyst may be interested in estimating growth index by measuring
the ratio of weight to height using chest and skull circumference as auxiliary
variables. Many elite survey statisticians have made meritorious efforts to
estimate population ratio. For greater knowledge one may see Murthy (1967),
Cochran (1977), Sukhatme et al. (1984), Singh and Chaudhary (1997) and
Mukhopadhyay (2012).

A wide literature depicts the contribution of several authors who
addressed this problem and estimated population ratio by using supplemen-
tary knowledge in whatsoever form available. To acquire knowledge on the
various historical developments in this context, distinguished works of Singh
(1965, 1967, 1969), Shah and Shah (1978), Tripathi (1980), Singh (1982),
Singh (1998), Biradar and Singh (1997–98), Upadhyaya et al. (2000), Singh
and Rani (2005, 2006), Singh and Naqvi (2015) and Kumar and Srivastava
(2018) can be revisited. Although, ample of similar estimators by renowned
statisticians are registered in sampling literature, yet there always remains
potential and possibilities for improvements. An earnest effort in this regard
is made in the subsequent sections of this manuscript.

2 Proposed Estimator

Subsidiary information on one or more auxiliary variable may be known
beforehand through census reports, pilot survey, and historical data. Many
a times a sampler may encounter a practical situation wherein parametric
information associated with the auxiliary variables is not known apriori. This
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subsidiary information may sometimes be completely or partially lacking. To
overcome such difficult situations, Neyman (1938) proposed double or two
phase sampling technique. This sampling technique is highly recommended
as it happens to be more flexible, robust and considerably cost effective
(economical) procedure to develop reliable estimates of unknown population
characteristics.

Let (y1, y2) be the variables under the reference of study highly correlated
with the auxiliary variable x. Using SRSWOR design in either phases, a
double sampling or two-phase sampling technique is described as:

(i) At the first phase, we select a preliminary large sample (x′1, x
′
2, . . . , x

′
n′)

whose size is n′ from a population U having N distinct units. The first
phase sample is taken on only ancillary variableX and its sample mean
is denoted byx̄′.

(ii) At the second phase, we select a small sub sample {(y11, y21, x1), (y12,
y22, x2), . . . , (y1n, y2n, xn)} of size n from the large first phase sample.
The second phase sample is observed on both the study variable Y1, Y2

and the auxiliary variable X and their respective means is represented
by ȳ1, ȳ2 and x̄.

Let us denote

x̄′ =
1

n′

n′∑
i=1

x′i, ȳ1 =
1

n

n∑
i=1

y1i, ȳ2 =
1

n

n∑
i=1

y2i, x̄ =
1

n

n∑
i=1

xi

Let population parameters Y 1, Y 2 and X̄ denotes population mean and
S2
Y1
, S2

Y2
and S2

X denotes population variance of main variable under study
and correlated ancillary character.

We have

Y 1 =
1

N

N∑
i=1

Y1i, Y 2 =
1

N

N∑
i=1

Y2i, X̄ =
1

N

N∑
i=1

Xi,

S2
Y1 =

1

N − 1

N∑
i=1

(Y1i − Y1)2, S2
Y2 =

1

N − 1

N∑
i=1

(Y2i − Y2)2,

S2
X =

1

N − 1

N∑
i=1

(Xi −X)2
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Sy1x =
1

N − 1

N∑
i=1

(Y1i − Ȳ1)(Xi − X̄),

Sy2x =
1

N − 1

N∑
i=1

(Y2i − Ȳ2)(Xi − X̄)

Sy1y2 =
1

N − 1

N∑
i=1

(Y1i − Ȳ1)(Y2i − Ȳ2) and

µrst =
1

N

N∑
i=1

(Y1i − Ȳ1)r(Y2i − Ȳ2)s(Xi − X̄)t; r, s, t = 0, 1, 2, 3, 4.

σ2
Y1 =

1

N

N∑
i=1

(Y1i − Y1)2, σ2
Y2 =

1

N

N∑
i=1

(Y2i − Y2)2,

σ2
X =

1

N

N∑
i=1

(Xi −X)2, ρ =
SY1Y2
SY1SY2

, ρ1 =
SY1X
SY1SX

,

ρ2 =
SY2X
SY2SX

, C2
Y1 =

S2
Y1

Ȳ 2
1

, C2
Y2 =

S2
Y2

Ȳ 2
2

, C2
X =

S2
X

X̄2
.

It is indeed essential to emphasize that auxiliary information in terms
of moments about zero, that is x̄, x̄′, θ̄x and θ̄′x has been utilized to define a
generalized class of double sampling estimator represented as R̂g for efficient
estimation of population ratio as

R̂g = g

(
ȳ1, ȳ2,

x̄

x̄′
,
θ̄x
θ̄′x

)
= g(ȳ1, ȳ2, u1, u2) (1)

where R = Ȳ1
Ȳ2

, R̂ = ȳ1
ȳ2

, x̄
x̄′ = u1, θ̄x

θ̄′x
= u2, θ̄x = 1

n

∑n
i=1 x

2
i , θ̄

′
x =

1
n′
∑n

i=1 x
′2
i and g(ȳ1, ȳ2, u1, u2) satisfies the validity conditions of Taylor’s

series expansion is a bounded function of t = (Ȳ1, Ȳ2, u1, u2) such that

(i) At the point T = (Ȳ1, Ȳ2, 1, 1) we have

g(t = T ) = R =
Ȳ1

Ȳ2
(2)
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(ii) The first order partial derivatives are

g1 =

(
∂g(ȳ1, ȳ2, u1, u2)

∂ȳ1

)
T

=
1

Ȳ2
,

g2 =

(
∂g(ȳ1, ȳ2, u1, u2)

∂ȳ2

)
T

= − Ȳ1

Ȳ 2
2

g3 =

(
∂g(ȳ1, ȳ2, u1, u2)

∂u1

)
T

and g4 =

(
∂g(ȳ1, ȳ2, u1, u2)

∂u2

)
T

(3)

(iii) Also, the second order partial derivatives are

g11 =

(
∂2g(ȳ1, ȳ2, u1, u2)

∂ȳ2
1

)
T

= 0, g22 =

(
∂2g(ȳ1, ȳ2, u1, u2)

∂ȳ2
2

)
T

=
2Ȳ1

Ȳ 3
2

, g12 =

(
∂2g(ȳ1, ȳ2, u1, u2)

∂ȳ1∂ȳ2

)
T

= − 1

Ȳ 2
2

,

g33 =

(
∂2g(ȳ1, ȳ2, u1, u2)

∂u2
1

)
T

, g44 =

(
∂2g(ȳ1, ȳ2, u1, u2)

∂u2
2

)
T

,

g13 =

(
∂2g(ȳ1, ȳ2, u1, u2)

∂ȳ1∂u1

)
T

, g14 =

(
∂2g(ȳ1, ȳ2, u1, u2)

∂ȳ1∂u2

)
T

,

g23 =

(
∂2g(ȳ1, ȳ2, u1, u2)

∂ȳ2∂u1

)
T

, g24 =

(
∂2g(ȳ1, ȳ2, u1, u2)

∂ȳ2∂u2

)
T

,

g34 =

(
∂2g(ȳ1, ȳ2, u1, u2)

∂u1∂u2

)
T

. (4)

3 The Expression for Bias and Mean Squared Error

For analyzing distinct properties relating to suggested estimator, we define

ȳ1 = Y1(1 + e1) ȳ2 = Y2(1 + e2)

x̄ = X(1 + e3) x̄′ = X(1 + e′3)

θ̄x = θ̄X(1 + e4) θ̄′x = θ̄X(1 + e′4) (5)
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Since population under consideration is large enough relative to sample,
for simplicity we ignore finite population correction terms. So that

E(ei) = 0 (i = 1, 2, 3, 4) and E(e′j) = 0 (j = 3, 4) (6)

E(e2
1) =

1

n
C2
Y1 E(e2

2) =
1

n
C2
Y2

E(e2
3) =

1

n
C2
X E(e′23 ) =

1

n′
C2
X

E(e2
4) =

1

nθ̄2
X

(µ004 + 4X̄µ003 + 4X̄2µ002 − µ2
002)

E(e′24 ) =
1

n′θ̄2
X

(µ004 + 4X̄µ003 + 4X̄2µ002 − µ2
002)

E(e1e2) =
1

n
ρCY1CY2 =

1

nȲ1Ȳ2
µ110

E(e1e3) =
1

n
ρ1CY1CX =

1

nȲ1X̄
µ101

E(e1e
′
3) =

1

n′
ρ1CY1CX , E(e2e3) =

1

n
ρ2CY2CX =

1

nȲ2X̄
µ011

E(e2e
′
3) =

1

n′
ρ2CY2CX , E(e1e4) =

1

nȲ1θ̄X
(µ102 + 2X̄µ101)

E(e1e
′
4) =

1

n′Ȳ1θ̄X
(µ102 + 2X̄µ101),

E(e2e4) =
1

nȲ2θ̄X
(µ012 + 2X̄µ011)

E(e2e
′
4) =

1

n′Ȳ2θ̄X
(µ012 + 2X̄µ011), E(e3e

′
3) =

1

n′
C2
X =

1

n′X̄2
µ002

E(e3e4) =
1

nX̄θ̄X
(µ003 + 2X̄µ002),

E(e3e
′
4) =

1

n′X̄θ̄X
(µ003 + 2X̄µ002)

E(e′3e4) =
1

n′X̄θ̄X
(µ003 + 2X̄µ002),
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E(e′3e
′
4) =

1

n′X̄θ̄X
(µ003 + 2X̄µ002)

E(e4e
′
4) =

1

n′θ̄2
X

(µ004 + 4X̄µ003 + 4X̄2µ002 − µ2
002) (7)

For further simplifications, we now use Taylor’s series to expand
g(ȳ1, ȳ2, u1, u2) about the point (Ȳ1, Ȳ2, 1, 1), we have

R̂g = g(Ȳ1, Ȳ2, 1, 1) + (ȳ1 − Ȳ1)g1 + (ȳ2 − Ȳ2)g2 + (u1 − 1)g3

+ (u2 − 1)g4 +
1

2!
{(ȳ1 − Ȳ1)2g11 + (ȳ2 − Ȳ2)2g22 + (u1 − 1)2g33

+ (u2 − 1)2g44 + 2(ȳ1 − Ȳ1)(ȳ2 − Ȳ2)g12 + 2(ȳ1 − Ȳ1)(u1 − 1)g13

+ 2(ȳ1 − Ȳ1)(u2 − 1)g14 + 2(ȳ2 − Ȳ2)(u1 − 1)g23 + 2(ȳ2

− Ȳ2)(u2 − 1)g24 + 2(u1 − 1)(u2 − 1)g34}

+
1

3!

{
(ȳ1 − Ȳ1)

∂

∂ȳ1
+ (ȳ2 − Ȳ2)

∂

∂ȳ2
+ (u1 − 1)

∂

∂u1

+ (u2 − 1)
∂

∂u2

}3

g(ȳ1∗, ȳ2∗, u1∗, u∗2) (8)

where ȳ1∗ = Ȳ1 + h(ȳ1− Ȳ1), ȳ2∗ = Ȳ2 + h(ȳ2− Ȳ2), u∗1 = 1 + h(u1− 1),
u∗2 = 1 + h(u2 − 1) for 0 < h < 1.

Retaining only second order terms and rewriting above equation (8) in
terms of ei’s, the result obtained to the approximation of order one is

R̂g −R = (Re1 − Re2 + e3g3 − e′3g3 + e4g4 − e′4g4)− e3e
′
3g3

+ e′23 g3 − e4e
′
4g4 + e′24 g4 +

1

2!
{Ȳ 2

1 e
2
1g11 + Ȳ 2

2 e
2
2g22

+ 2Ȳ1Ȳ2e1e2g12 + (e2
3 + e′23 − 2e3e

′
3)g33

+ (e2
4 + e′24 − 2e4e

′
4)g44 + 2Ȳ1(e1e3 − e1e

′
3)g13

+ 2Ȳ1(e1e4 − e1e
′
4)g14 + 2Ȳ2(e2e3 − e2e

′
3)g23

+ 2Ȳ2(e2e4 − e2e
′
4)g24 + 2(e3e4 − e3e

′
4 − e′3e4 + e′3e

′
4)g34}

(9)

Further we take expectation on both the sides of Equation (9), the bias
of the formulated generalized double sampling estimator R̂g up to terms of
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order O(1/n) is expressed as

Bias(R̂g) =
1

2

{
Ȳ 2

1

n
C2
Y1g11 +

Ȳ 2
2

n
C2
Y2g22 + 2

Ȳ1Ȳ2

n
ρCY1CY2g12

}
+ 2Ȳ1ρ1CY1CXg13 +

1

2

(
1

n
− 1

n′

)
×
{
C2
Xg33 +

1

θ̄2
X

(µ004 + 4X̄µ003 + 4X̄2µ002 − µ2
002)g44

+
2

θ̄X
(µ102 + 2X̄µ101)g14 + 2Ȳ2ρ2CY2CXg23

+
2

θ̄X
(µ012 + 2X̄µ011)g24 +

2

X̄θ̄X
(µ003 + 2X̄µ002)g34

}
(10)

We now square Equation (9), the obtained MSE(R̂g) after taking
expectation, is given by

MSE(R̂g) = E{(R̂g)−R}2

= R2E(e2
1) +R2E(e2

2)− 2R2E(e1e2)

+ g2
3{E(e2

3) + E(e′23 )− 2E(e3e
′
3)}+ g2

4{E(e2
4) + E(e′24 )

− 2E(e4e
′
4)}+ 2Rg3{E(e1e3)− E(e1e

′
3)} − 2Rg3{E(e2e3)

− E(e2e
′
3)}+ 2Rg4{E(e1e4)− E(e1e

′
4)} − 2Rg4{E(e2e4)

− E(e2e
′
4)}+ 2g3g4{E(e3e4)− E(e3e

′
4)

− E(e′3e4) + E(e′3e
′
4)}

The above expression is simplified further by substituting expected values
given in Equations (6) and (7) as

MSE(R̂g) =
R2

n
(C2

Y1 + C2
Y2 − 2ρCY1CY2) +

(
1

n
− 1

n′

)
[
C2
Xg

2
3 + g2

4

1

θ̄2
X

(µ004 + 4X̄µ003 + 4X̄2µ002 − µ2
002)

+ 2Rg3CX(ρ1CY1 − ρ2CY2)
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+ 2Rg4
1

θ̄X

{
(µ102 + 2X̄µ101)

Ȳ1
− (µ012 + 2X̄µ011)

Ȳ2

}
+ 2g3g4

1

X̄θ̄X
(µ003 + 2X̄µ002)

]
(11)

The value of MSE(R̂g) given in Equation (11) depends on the values of
g3 and g4, Hence we differentiate the above Equation (11) with respect to g3

and g4. The obtained optimum result of g3 and g4 for which MSE(R̂g) in
Equation (11) attains the minimum value are

g3 = − R

CC3
X

{
C2C2

X +
δ2(δ2 − δ1)

∆

}
(12)

g4 =
RX̄θ̄X(δ2 − δ1)

∆
(13)

where

∆ = C2
XX̄

2(µ004 + 4X̄µ003 + 4X̄2µ002 − µ2
002)− (µ003 + 2X̄µ002)2 ≥ 0

δ1 = C2
XX̄

{
(µ102 + 2X̄µ101)

Ȳ1
− (µ012 + 2X̄µ011)

Ȳ2

}
δ2 = (ρ1CY1 − ρ2CY2)CX(µ003 + 2X̄µ002)

C = (ρ1CY1 − ρ2CY2)

Additionally, the resultant value for minimum mean squared error of
R̂g represented by MSE(R̂g)min can be acquired by substituting results
obtained in Equations (12) and (13) in Equation (11) as

MSE(R̂g)min =
R2

n
(C2

Y1 + C2
Y2 − 2ρCY1CY2)

−
(

1

n
− 1

n′

){
R2C2 +

R2 (δ2 − δ1)2

∆C2
X

}
Or

MSE(R̂g)min = MSE(R̂)−
(

1

n
− 1

n′

){
R2C2 +

R2(δ2 − δ1)2

∆C2
X

}
(14)
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4 Efficiency Comparison

(i) The usual estimator of ratio of two population means and its particular
cases with their respective mean squared error are given as follows

Table 1 Some particular estimators with relative MSE
Estimators MSE

R̂ =
ȳ1
ȳ2

R2

n
(C2

Y1
+ C2

Y2
− 2ρCY1CY2)

R̂1 =
ȳ1
ȳ2

+ k(x̄− X̄) = R̂+ k(x̄− X̄) MSE(R̂)−
(

1

n
− 1

N

)
C2

XR
2D2

R̂2 =
ȳ1 + k(x̄− X̄)

ȳ2
MSE(R̂)−

(
1

n
− 1

N

)
C2

XR
2D2

R̂3 =
ȳ1
ȳ2
.
x̄

X̄
MSE(R̂) +

(
1

n
− 1

N

)
C2

XR
2(1 + 2D)

R̂4 =
ȳ1
ȳ2
.
X̄

x̄
MSE(R̂) +

(
1

n
− 1

N

)
C2

XR
2(1 − 2D)

R̂5 =
ȳ1 + k(x̄− X̄)

ȳ2 + (x̄− X̄)
MSE(R̂)−

(
1

n
− 1

N

)
C2

XR
2D2

R̂6 =
ȳ1 + k(x̄− X̄)

ȳ2

( x̄
X̄

)
MSE(R̂)−

(
1

n
− 1

N

)
C2

XR
2D2

(15)

where

D =

(
ρ1CY1 − ρ2CY2

CX

)
(ii) The generalized estimator of ratio of two population means by Singh

and Naqvi (2015) and its respective mean squared error is given as R̂7 =
g(ȳ1, ȳ2, x̄)

MSE(R̂7)min = MSE(R̂)−
(

1

n
− 1

N

)
C2
XR

2D2 (16)

The proposed generalized estimator for ratio of two populations mean R̂g has
minimum mean squared error as

MSE(R̂g)min = MSE(R̂)−
(

1

n
− 1

n′

){
R2C2 +

R2 (δ2 − δ1)2

∆C2
X

}
(17)
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From MSE given in Equations (15)–(17) and the section given below,
it can be clearly concluded that the suggested class of generalized double
sampling estimator utilizing known values of first and second moment about
zero has lesser MSE as compared to the usual estimator where in no such
information is used. Therefore, for obtaining precise results, the use of
proposed estimator under practical situation is recommended.

5 An Empirical Study

To support theoretical results, a numerical illustration has been carried out
using the data set given on page 177, Singh and Chaudhary (2009). The
summary of the population data set is as follows.

Ȳ1 = 856.4118, Ȳ2 = 208.8824, X̄ = 199.4412, CY1 = 0.8372,

CY2 = 0.7205, CX = 0.7532, ρY1Y2 = 0.2090, ρY1X = 0.2105,

ρY2X = 0.9801, n = 12, n′ = 34

Table 2 MSE and PRE comparison of traditional estimators with R̂g

Estimators MSE PRE

R̂ 1.555166 159

R̂1 1.103932 113

R̂2 1.103932 113

R̂3 1.184017 121

R̂4 3.749341 384

R̂5 1.103932 113

R̂6 1.103932 113

R̂7 1.103932 113

R̂g 0.974356 100

6 Conclusions and Discussion

(i) The minimum MSE for the estimator represented by R̂g is

MSE(R̂g)min = MSE(R̂)−
(

1

n
− 1

n′

){
R2C2 +

R2(δ2 − δ1)2

∆C2
X

}
(18)
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Any estimator belonging to the suggested generalized class of estimators
represented by R̂g cannot have mean squared error smaller than the
expression (18).

(ii) There exists a subset of estimators satisfying Equations (12) and (13) in
the class R̂g such that every member of this subset attains the similar
minimum mean squared error (MSE) as obtained in Equation (14). For
example, the estimators

R̂P1 =
1

y2

{
y1

(
x

x′

)(
θ̄x
θ̄′x

)}
(19)

R̂P2 =
1

y2

{
y1

(
x

x′
− 1

)(
θ̄x
θ̄′x
− 1

)}
(20)

R̂P3 =
1

y2

{
y1

(
x

x′

)k1 ( θ̄x
θ̄′x

)k2}
(21)

R̂P4 =
1

y2

{
y1 + k1

(
x

x′
− 1

)
+ k2

(
θ̄x
θ̄′x
− 1

)}
(22)

are some particular members of the proposed generalized class and
also attains the similar minimum mean squared error as given in
Equation (14).

(iii) The MSE (R̂g) of the formulated estimator R̂g is minimized for the
optimum values given in Equations (12) and (13), the obtained optimum
values of g3 and g4 are

g3 = − R

CC3
X

{
C2C2

X +
δ2(δ2 − δ1)

∆

}
(23)

g4 =
RX̄θ̄X(δ2 − δ1)

∆
(24)

Under many practical situations, the values of some unknown parame-
ters involved in optimum values may not be known a priori. Hence to
overcome such situations it is suggested to use unbiased estimators of
unknown parameters of the optimum values.

(iv) From theoretical and empirical efficiency comparison it can be reason-
ably concluded that the suggested estimator will yield valid and accurate
results and is also relatively efficacious than the traditional estimators.
Therefore, the application of proposed estimator for practical situations
is substantially advisable.
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