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Abstract

This study offers a newly proposed distribution called alpha power Lomax
(APL) distribution as a new extension of the Lomax distribution using the
alpha power transformation (APT) method. Some distributional properties of
newly defined distribution such as density function, moments, hazard and sur-
vival functions, orders statistics etc. are investigated. Parameters of the APL
distribution are estimated with the help of the maximum likelihood (ML)
estimation method. The applicability of the APL distribution is conducted
through a simulation study and a real data example.

Keywords: Lomax distribution, alpha power transformation, maximum
likelihood estimation.

1 Introduction

Lomax [1] proposed Lomax (or Pareto distribution of the second kind)
distribution. The proposed distribution aims to model the business failure
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data set. Also, Hassan and Al-Ghamdi [2] used this distribution to model
reliability data set and life testing. To model income and wealth data sets,
Harris [3, 4] used this distribution. Lomax distribution is used to model data
set from receiver operating characteristic (ROC) curves analysis in the work
of Campbell and Ratnaparkhi [5]. Balakrishnan and Ahsanullah [6] investi-
gate recurrence relations between the moments of record values. Bryson [7]
proposed that the Lomax distribution is a heavy-tailed alternative to the
exponential distribution. The reader can be found more detail about Lomax
distribution in the book of Johnson et al. [8].

In recent years, applications in various fields of sciences indicate that
classical distribution is not enough to model data sets. So, it is necessary
to expand some popular distributions to model real-life data sets. Many
authors extend classical distributions to apply in many fields. For example,
El-Bassiouny et al. [9] proposed exponential Lomax distribution. Gamma-
Lomax distribution is proposed by Cordeiro et al. [10]. Ghitany et al. [11]
extended the Lomax distribution using the Marshall-Olkin distribution. Tahir
et al. [12] proposed the Weibull-Lomax distribution. McDonald Lomax dis-
tribution includes several distributions as sub-models such as beta Lomax,
Kumaraswamy Lomax, exponentiated Lomax, and exponentiated standart
Lomax distributions, was introduced by Lemonte and Cordeiro [13]. Discrete
Poisson-Lomax distribution is introduced by Al-Awadhi and Ghitany [14].
Rady et al. [15] proposed the power Lomax distribution using the power
transformation method. Al-Marzouki [16] introduced exponentiated power
Lomax distribution as an alternative lifetime distribution.

To obtain more flexible distribution than the usual ones, adding extra
parameters to a well-established distribution family is a useful tool. In lit-
erature, there are a lot of methods to obtain a more flexible distribution than
usual. One of them is proposed by Mahdavi and Kundu [17]. This method is
the alpha power transformation (APT) method.

In this work, a new distribution using the APT method based on the
Lomax distribution is proposed. Alpha power Weibull distribution using the
APT method is defined by Nassar et al. [18]. Dey et al. [19] extended the
generalized exponential distribution using the APT method to model ozone
data. Dey et al. [20] introduced a α Logarithmic family of distribution using
the APT method. Also, alpha power transformed inverse Lindley distribu-
tion using the APT method is established by Dey et al. [21]. After work
of Mahdavi and Kundu [17], Nassar et al. [22] extend APT class to the
Marshall-Olkin alpha power family of distributions.
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The rest of the paper is designed as follows. Section 2 defines a newly
proposed distribution called APL distribution and investigates some distri-
butional properties of this distribution. Section 3 estimates parameters of
the APL distribution via the MLE method. Section 4 provides a simulation
study and a real data example to demonstrate the applicability of the APL
distribution. Section 5 is devoted to conclusions.

2 APL Distribution: Definition and Properties

2.1 Probability Density Function (pdf) and Cumulative
Distribution Function (cdf)

Let the random variable Y is said to have alpha power Lomax (APL) distri-
bution with the parameters α > 0, β > 0 and λ > 0 (Y ∼ APL(α, β, λ)),
the (pdf) of Y is

fAPL (y;α, β, λ) =


logα
α−1

β
λ

[
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λ
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λ ]
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and corresponding cumulative distribution function (cdf) is

FAPL (y;α, β, λ) =
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2.2 Moment and Moment Generating Function

In this subsection, moments and moment generating function (mgf) of the
APL distribution are obtained. The rth moments of Y can be obtained as
follows

E(Y r) =
logα

α− 1
αβλr
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s=0

(− logα)s

s!
B(β(s+ 1)− r, r + 1). (3)

To obtain moments, we use the following series representation
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(− logα)kzk

k!
. (4)
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Also, the mgf of APL distribution is

MY (t) =
logα
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where B(·, ·) is the Beta function.
pth quantile function of APL distribution can be obtained as
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Hereby, the median of APL distribution can be obtained as
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2.3 Order Statistics

Let Yj:n be the jth order statistics, then the pdf of Yj:n is given as
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2.4 Hazard Rate and Survival Functions

In this subsection, we give hazard rate and survival functions of APL
distribution as follows
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3 Parameter Estimation

This section gives the parameter estimation of the APL distribution via the
ML estimation method. Suppose that Y1, Y2, . . . , Yn be a random sample
taken from the APL distribution with the pdf given in (1). We can write the
likelihood function as

l(α, β, λ;y) =
n∏
s=1
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(logα)n

(α− 1)n
βn
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Then, the log-likelihood (`) function corresponding to (11) can be
obtained as
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Taking the first derivative of ` relating to the parameters α, β and λ, then
setting these equations to zero, the following estimating equations can be
obtained
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To obtain the ML estimators of parameters, we have to solve equation
systems given in (13)–(15), simultaneously.
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4 Simulation and Real Data

4.1 Simulation

In this subsection a small simulation study to illustrate the efficiency of
the APL distribution’s ML estimators is given. We generate data from the
APL distribution using the quantile function given in Eq. (6). Estimates,
bias and MSE (mean squared error) values are computed. We use following
formulations to calculate bias and MSE values

bias(α̂) = ᾱ− α, bias(β̂) = β̄ − β, bias(λ̂) = λ̄− λ (16)

where
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1
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In the simulation design, we get the parameter values as (α, β, λ) =
(3, 1, 2), (10, 5, 1), (5, 10, 1), (2, 1, 1), and also we set sample sizes as N =
25, 50, 75 and 100. Tables 1–4 include the simulation results. In the tables, we

Table 1 Estimates of parameters, bias and MSE for n = 25
MLE

α̂ β̂ λ̂
α = 3, β = 1, λ = 2

Estimate 3.0165 1.0876 1.9901
Bias 0.0165 0.0876 −0.0099
MSE 0.1976 0.2867 0.0845

α = 10, β = 5, λ = 1
Estimate 9.9991 5.0000 1.0252

Bias −0.0009 0.0000 0.0252
MSE 0.0055 0.0549 0.1892

α = 5, β = 10, λ = 1
Estimate 4.9944 10.0068 1.0149

Bias −0.0056 0.0068 0.0149
MSE 0.0243 0.0427 0.1921

α = 2, β = 1, λ = 1
Estimate 2.4980 1.0841 1.0546

Bias 0.0934 0.0841 0.0546
MSE 0.3515 0.2992 0.1554
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Table 2 Estimates of parameters, bias and MSE for n = 50
MLE

α̂ β̂ λ̂

α = 3, β = 1, λ = 2
Estimate 2.9970 1.0648 1.9853

Bias −0.0030 0.0648 −0.0147

MSE 0.0068 0.1653 0.0393
α = 10, β = 5, λ = 1

Estimate 9.9997 4.9994 1.0140

Bias −0.0003 −0.0006 0.0140

MSE 0.0030 0.0318 0.1163
α = 5, β = 10, λ = 1

Estimate 4.9975 10.0042 0.9836

Bias −0.0025 0.0042 −0.0164

MSE 0.0079 0.0178 0.1265
α = 2, β = 1, λ = 1

Estimate 2.0934 1.0841 1.0546

Bias 0.0934 0.0841 0.0546

MSE 0.3515 0.2992 0.1554

Table 3 Estimates of parameters, bias and MSE for n = 75
MLE

α̂ β̂ λ̂

α = 3, β = 1, λ = 2
Estimate 2.9976 1.0530 1.9879

Bias −0.0024 0.0530 −0.0121

MSE 0.0059 0.1426 0.0338
α = 10, β = 5, λ = 1

Estimate 9.9992 5.0054 0.9909

Bias −0.0008 0.0054 −0.0091

MSE 0.0028 0.0288 0.0988
α = 5, β = 10, λ = 1

Estimate 4.9997 9.9991 1.0229

Bias −0.0003 −0.0009 0.0229

MSE 0.0068 0.0161 0.1208
α = 2, β = 1, λ = 1

Estimate 2.0542 1.0668 1.0379

Bias 0.0542 0.0668 0.0379

MSE 0.2148 0.2553 0.1121
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Table 4 Estimates of parameters, bias and MSE for n = 100

MLE

α̂ β̂ λ̂

α = 3, β = 1, λ = 2
Estimate 2.9982 1.0402 1.9914

Bias −0.0018 0.0402 −0.0086

MSE 0.0046 0.1107 0.0251
α = 10, β = 5, λ = 1

Estimate 9.9997 4.9998 1.0102

Bias −0.0003 −0.0002 0.0102

MSE 0.0025 0.0266 0.0951
α = 5, β = 10, λ = 1

Estimate 4.9986 10.0026 0.9890

Bias −0.0014 0.0026 −0.0110

MSE 0.0054 0.0126 0.0937
α = 2, β = 1, λ = 1

Estimate 2.0228 1.0480 1.0107

Bias 0.0228 0.0480 0.0107

MSE 0.1116 0.1781 0.0726

give the true values and estimates of parameters, and the values of bias and
MSE. From the simulation results, we observe that the parameters of the APL
distribution can be calculated with accuracy. Also, when the sample sizes
are getting bigger, the values of MSE are getting smaller for the parameter
estimates.

4.2 Application

In this subsection, a real data example is given to show the superiority of
the newly defined distribution over the other Lomax distribution extensions.
Remission times data of bladder cancer patients, which have been used by Lee
and Wang [23], are used. Proposed distribution is fitted to the dataset by using
MLE method. Also, we compare newly proposed distribution with McLo-
max [13], Exponentiated Lomax [13], Beta Lomax [13], Kumaraswamy
Lomax [13], Transmuted Exponentiated Lomax [24], Gamma-Lomax [10],
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Table 5 MLEs and AIC and BIC values
Distributions Estimates −logL AIC BIC

Lomax α̂ = 13.9384 −413.832 831.67 837.37
λ̂ = 121.023

McLomax α̂ = 0.8085 −409.91 829.82 844.09
β̂ = 11.2929
â = 1.5060
η̂ = 4.1886
ĉ = 2.1046

BLomax α̂ = 3.9191 −411.743 831.486 842.89
β̂ = 23.9281
â = 1.5853
η̂ = 0.1572

KwLomax α̂ = 0.3911 −409.94 827.88 839.29
β̂ = 12.2973
â = 1.5162

η̂ = 11.0323

ExpLomax α̂ = 1.0644 −414.978 835.956 844.512
β̂ = 0.0800

λ̂ = 0.0060

G-Lomax α̂ = 4.7540 −410.081 826.162 834.718
β̂ = 20.5810
â = 1.5858

TE-Lomax α̂ = 1.7142 −410.434 828.868 840.276
γ̂ = 0.0546

λ̂ = 0.2440

θ̂ = 3.3391

WLomax α̂ = 0.2566 −410.811 829.622 841.03
β̂ = 1.5795
â = 2.4215

b̂ = 1.8639

Power Lomax α̂ = 2.0701 −409.74 825.48 834.036
β̂ = 1.4276

λ̂ = 34.8626

Alpha Power Lomax α̂ = 28.5396 −409.3853 824.7707 833.3268
β̂ = 2.8739

λ̂ = 8.2720
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Figure 1 Alpha Power Lomax distribution vs other extensions of Lomax distribution.
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Weighted Lomax [25], Exponential Lomax [9] and Power Lomax [15] dis-
tributions. The Akaike information criterion (AIC) and Bayesian information
criterion (BIC) are used to compare models. AIC and BIC indicate that the
best model is Alpha Power Lomax distribution to bladder cancer data set.
MLEs and the measures AIC and BIC are given in Table 5. AIC and BIC
values are computed as follows:

AIC = −2L(·) + 2m (19)

BIC = −2L(·) +m log n (20)

where m is the parameter number and n is the sample size. We use optim
package in R [26] to estimate parameters.

Until this time, Power Lomax distribution defined by Rady et al. [15] is
the best model to bladder cancer data. But, when we look at AIC and BIC
values, APL distribution modeled better than the other extensions of Lomax
distribution. The histogram and fitted distributions are given in Figure 1. As
a result of real data example, we can say that APL distribution is a very
competitive distribution to model lifetime data.

5 Conclusion

In this study, APL distribution has been defined and the statistical properties
of the APL have been studied. Also, real data and simulation studies are
conducted to show practicability of the distribution. The real data example
shows that APL distribution has less AIC and BIC values rather than the
other extensions of the Lomax distribution.
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