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Abstract

In this paper, we have studied a repairable parallel-series multi-state system.
The proposed system consists of m components in series and n compo-
nents in parallel in which each component has three possible states. The
interval universal generating function (IUGF) is presented, and the corre-
sponding composition operators are defined. The reliability assessment of
the considered system is done with the help of the IUGF approach. It is
worth mentioning that IUGF got attention from various researchers due to
its straightforwardness, less complexity, and universal applications. In the
present model, probabilities of different components, reliability, sensitivity,
and mean time to failure are evaluated with the help of the Markov process;
Laplace-Steiltjes transform method applying IUGF. A numerical example has
also been taken to illustrate the proposed technique.
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1 Introduction

If any equipment is found reliable based on the quality of its components and
experiences of users, it means their performance is free from disturbances
to a great extent, though its failure may not be completely ruled out. In
other words, we can say that a certain degree of uncertainty in components
performance may be involved. Kozin and Utkin (2002) introduced the con-
cept of interval-valued coherent previsions to generalize the discrete-Markov
chains to the interval-valued probabilities. Xiaoping (2007) investigated the
reliability characteristics corresponding to the random and intervals inputs
for black-box function and nonlinear optimization. An engineering example
has also been illustrated. Zon et al. (2008) considered a discrete stress-
strength interference model with the application of the universal generating
function (UGF). Gupta et al. (2009) evaluated the reliability of the series
system under restricted redundancy allocation. Authors illustrated their work
by considering some series of redundancy allocation problems and exam-
ining the sensitivity of the systems with respect to different parameters. Li
et al. (2011) analyzed the interval universal generating function (IUGF) and
corresponding operators multi-state systems (MSSs) of having insufficient
available data. In this study, they discussed the reliability of the system and
affine arithmetic to improve interval-valued reliability using the imprecise
Dirichlet model and Bayesian approach. Lisnianski et al. (2009) considered
redundancy in two interconnected repairable MSSs and developed a method
to compute the reliability based on UGF and random process. Yong, et al.
(2012) extended the effects of uncertainty in system reliability and load
demand on the system reliability. Subsequently, these two sets of uncertainty
factors are estimated through UGF in repeated form. They applied this to
MSSs of a multi-state series-parallel system. Ram and Singh (2012) presented
a system having two independent repairable subunits and considered the
Head-of-Line repair scheme. The Laplace transformation (LT) and Gumbel-
Hougaard (G-H) family of copula were used by the authors to analyze the
state transition probabilities and reliability of the system. Kumar and Singh
(2013) considered a complex system, in which the subsystems A and B are
joined in series while subsystem A is of k-out-of-n: G configuration and B
is of circular consecutive 2-out-of 3: F configuration. With the LT and G-H
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family of the copula, the researchers analyzed the reliability, state transition
probabilities, availability, cost analysis, and MTTF of the system. Xing et al.
(2013) proposed the binary decision diagrams-based method for the reliabil-
ity evaluation of non-repairable binary-state phased mission with common
cause failure. Here, authors designed a combinatorial algorithm based on a
binary decision diagram. Wang et al. (2013) studied the repairable system
to examine the reliability characteristics incorporating imperfect coverage
and service pressure condition. Here, authors also discussed the effects of
different parameters on system reliability and MTTF. Jain and Gupta (2013)
developed a mathematical model for a repairable structure incorporating
a single repairman with multiple vacations. They evaluated the reliability
characteristics with the use of supplementary variable technique, exponential
distribution, and Laplace transformation. Guilani et al. (2014) computed
the reliability of the three-state non-repairable system through the Markov
process and compared the results with the UGF method. Pokoradi (2014)
investigated the adaption of mathematical diagnostic of aircraft systems and
gas turbine engines to compute the sensitivity of the reliability of finite system
having complex interconnections. Wu et al. (2014) examined a repairable
system with k-out of-n: G configuration having one repairman with only
one vacation which follows an exponential distribution. Each component’s
working time is exponentially distributed, and the repair time of each failed
component is arbitrarily distributed. They evaluated the various reliability
characteristics, namely, MTTF, availability, and rate of occurrence of a
failure with LT and supplementary variable technique (SVT). Levitin et al.
(2014) presented the non-repairable system with l-out-of-N configuration,
with sufficient choice of the load which affected the lifetime acceleration
factor, operational and replacement costs. The authors focused on the standby
system’s optimal load distribution problem and minimized the mission cost
under reliability restrictions. Cekyay and Ozekici (2015) studied the coherent
system in which the series connection of u-out-of-v standby subsystem with
exponentially distributed component and evaluated the reliability character-
istics. Negi and Singh (2015) computed reliability, MTTF, and sensitivity of
a complex system having non-repairable weighted u-out-of-v: G connected
in series with linear-(k, f, e): G and circular-(k, f, e): G configuration based
on UGF. Wang et al. (2016) analyzed the reliability optimization of a het-
erogeneous cold-standby system having uncertainty in parameter, compared
interval numbers and provided an algorithm to evaluate the system reliability
and expected mission cost using IUGF. Pan et al. (2016) formed a distribution
scheme using an interval parameter for the estimation of system reliability
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with the help of improved UGF and IUGF methods. Xu et al. (2016) investi-
gated the dynamic diagnosis method, which is based on interval-valued belief
structures. Here, the authors also analyzed the reliability characteristics of
the considered system. They also compared the performance of the proposed
updating strategy with traditional strategies. Kumar et al. (2016) studied
the reliability of a 2-out-of-4 system using IUGF. To illustrate the model,
a numerical problem has also been discussed. Meenakshi and Singh (2016)
discussed the reliability of non-repairable MSSs with imprecise probabilities
and performance rates having interval-valued probabilities with the use of
hybrid UGF.

The present paper is arranged as follows. Section 1 includes definitions of
the proposed model and estimation of state probabilities of MSSs component
based on the Markov process. In Sections 2 and 3, we calculate the interval-
valued system reliability of the considered MSSs. After that, a numerical
example is taken, which illustrates the proposed method in Section 4. In
Section 5, the numerical results of the supposed system were discussed.
Finally, the conclusion is given in Section 6. The proposed system is shown
in Figure 1. The notations used in the study have been listed in Table 1.

Table 1 Notations
Ci Component of a system, where i = 1, 2, 3, . . .N

N Total number of components in the system

gi Performance level of the component for the state i

p
i
, p̄i Lower and upper bound of the probability of ith component state

ui(z) IUGF of component i

u(z) IUGF of system

⊗
ser

Composition operator to be used in series combination

⊗
par

Composition operator to be used in parallel combination

W The required performance level of the system

λij ,λij Lower and upper bound of the failure rate of the component for the transition
from ith component state to jth component state

µ
ij

Upper bound of repair rate of the component for the transition from ith
component state to jth component state

[R] Reliability of the system
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2 Definitions

2.1 Universal Generating Function (UGF)

UGF is a widely used approach to estimate the reliability of the various
systems. This method is firstly introduced by Ushakov in 1986.

2.2 Probability Intervals

In the face of uncertainties of different kinds, probability intervals are used
for making qualitative and quantitative estimates. It is used, through math-
ematical expressions, to find partial information about random variables
and other quantities. Probability intervals are limited to input distributions,
without requiring more precise parameter value knowledge. Let Ci be any
component in repairable parallel-series MSSs consisting of m components in
series and n components in parallel and pj be the probability of state j, where
j = 1, 2, 3 denotes the number of states of the components in the system. Let
λjk and µjk be the degradation rate and repair rate respectively, where j is
the upper state and k is any lower state that lies in the interval [λjk, λjk] and
[µ
jk
, µjk] respectively. The following set of differential equations governing

the behavior of the system based on a stochastic process using interval-valued
parameters can be obtained:

fj(p, λ, µ, t) =
dpj(t)

dt
=

j∑
k=j+1

λkjpk(t)

+

j−1∑
k=1

µkjpk(t)− pj(t)

j−1∑
k=1

λjk +

j∑
k=j+1

µjk

 (1)

Lower and upper probability bounds of the system are calculated as:

∂fj(p, λ, µ, t)

∂Pj(t)
≥ 0, ∀j, k,

∀λjk ∈ [λjk, λjk], λkj ∈ [λkj , λkj ], ∀µjk ∈ [µ
jk
, µjk],

µkj ∈ [µ
kj
, µkj ], k 6= i, t 6= t0 (2)
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If
∂fj(p, λ, µ, t)

∂λj(t)
≥ 0,∀t > 0, then µkj = µ

kj
, λkj = λkj (3)

If
∂fj(p, λ, µ, t)

∂λj(t)
≤ 0,∀t > 0, then µkj = µkj , λkj = λkj (4)

Using Equations (3)–(4) in Equation (1) one can compute lower bound of
probability as:

dp
j
(t)

dt
=

j∑
k=j+1

λkjpk(t) +

j−1∑
k=1

µ
kj
p
k
(t)− p

j
(t)

×

j−1∑
k=1

λjk +

j∑
k=j+1

µjk

, (5)

Similarly, the upper bound of the probability of the system can be
computed by using Equations (6)–(7).

If
∂fj(p, λ, µ, t)

∂λj(t)
≥ 0,∀t > 0, then µkj = µkj , λkj = λkj (6)

If
∂fj(p, λ, µ, t)

∂λj(t)
≤ 0,∀t > 0, then µkj = µ

kj
, λkj = λkj (7)

Applying Equations (6)–(7) in Equation (2), upper bound probability can
be computed as

dpj(t)

dt
=

j∑
k=j+1

λkjpk(t) +

j−1∑
k=1

µkjpk(t)− pj(t)

×

j−1∑
k=1

λjk +

j∑
k=j+1

µ
jk

, (8)

Lower and upper bound probabilities can be evaluated by using Equa-
tions (5)–(8), with the help of Laplace-Steiltjes transform.

2.3 Interval Universal Generating Function

In the system reliability assessment, one of the factors is to deal with uncer-
tainty that occurs in the system modeling, data etc. There are difficulties
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that may be due to the lack of information that results in data uncertainty.
For uncertainty representation and utilization in availability assessment, the
IUGF approach can be used. Foundation of IUGF is laid by UGF and
probability intervals.

The IUGF of a component Gj with Mj states is expressed as:

Uj =

Mj∑
i=1

[pji ]z
gji (9)

2.4 Composition Operator

An interval valued number I is an uncertain number and defined as:

I = [iL, iR] = {iL ≤ i ≤ iR, i ∈ R} (10)

If iL = i = iR then I is said to be a point interval and expressed as

i = [i, i]. (11)

If we have two interval numbers S = [sL, sR] and T = [SL, TR], where
sL ≥ 0, and tL ≥ 0 then basic arithmetical operations of interval variables
are defined as:

(i) Addition
S + T = [sL + tL, sR + tR] (12)

(ii) Subtraction
S − T = [sL − tR, sR − tL] (13)

(iii) Multiplication
ST = [sLtL, sRtR] (14)

(iv) Division

S/T =

[
sL
tR
,
sR
tL

]
(15)

With the help of Equation (9), IUGF of considered model having m states
is defined as:

Uc(z) =

m∑
i=1

[p
i
, pi]z

gi (16)
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Corresponding to the component’s configuration in the MSSs, the IUGF
is defined as:

(i) If n components of the system are in series combination, then the IUGF
of the system is given by:

(U1(z)⊗
ser
, . . . , ⊗

ser
Un(z))

=

k1∑
l1=1

. . .

kn∑
ln=1

[
n∏
i=1

pi
li
,
n∏
i=1

pili

]
z
(min(g1l1

,...,gnln )) (17)

(ii) If n components of the system are in parallel combination, then the IUGF
of the system is expressed as:

(U1(z)⊗
par
, . . . , ⊗

par
Un(z))

=

k1∑
l1=1

. . .

kn∑
ln=1

[
n∏
i=1

pi
li
,

n∏
i=1

pili

]
z
(max(g1l1

,...,gnln ) (18)

Consider a parallel-series system consisting of m components in series
and n components in parallel combination. Suppose there are three different
states for each component of the considered system. It is assumed that the fail-
ure and repair rates are having equal values for the same components states
for each component in the proposed system. The IUGF of each component is
expressed as:

uc1(z) = [p
3
, p3]z

g13 + [p
2
, p2]z

g12 + [p1
1
, p1]z

g11 (19)

uc2(z) = [p
3
, p3]z

g23 + [p
2
, p2]z

g22 + [p1
1
, p1]z

g21 (20)

...

ucmn(z) = [p
3
, p3]z

gmn3 + [p
2
, p2]z

gmn2 + [p1
1
, p1]z

gmn1 (21)

Let C1, C2, . . . and Cm be arranged in series combination in the system,
then IUGF of C1, C2, . . . and Cm is given by:

uc1,c2...cm(z) = uc1(z)⊗
ser
uc2(z) . . . ⊗

ser
ucm(z)

= [(p
3
)m, (p3)

m]zmin(g13 ,g
2
3 ...g

m
3 )
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+ [(p
2
)m, (p2)

m]zmin(g12 ,g
2
2 ...g

m
2 ) . . . [(p

1
)m, (p1)

m]

zmin(g11 ,g
2
1 ...g

m
1 ) (22)

Since n components are in parallel combination, therefore IUGF of the
considered system is articulated as:

usys(z) =
i=1
⊗
par
{uc1(z)⊗

ser
uc2(z)⊗

ser
. . . ⊗

ser
ucm(z)}

= [(p
3
)m(1+n), (p3)

m(1+n)]zmin(g13 ,g
2
3 ....g

m
3 )

+ (p
2
)m, (p

3
)mn, (p2)

m, (p
3
)mn]

zmax{min(g12 ,g
2
2 ....g

m
2 )min(g13 ,g

2
3 ....g

m
3 )}

+ (p
1
)m, (p

3
)mn, (p1)

m, (p
3
)mn]

zmax{min(g11 ,g
2
1 ....g

m
1 )min(g13 ,g

2
3 ....g

m
3 )} (23)

2.5 Interval Valued System Reliability of Repairable MSS

In the considered parallel-series multi state system, there are m and n
components in series and parallel combination respectively. Let the interval-
valued state performance levels and state probabilities of the MSSs be
gj , gj , gj , . . . , gj and Pj , Pj , Pj , . . . , Pj respectively, where j = 1, 2, 3.

If demand level is w, then the system interval valued reliability [R] of
MSSs is computed as:

[R] =

R∑
i=1

[pi|ri ≥ w] (24)

3 Algorithm for Computing the System Interval Valued
Reliability

Step-1: Determine IUGF of each element with the help of equation (16).
Step-2: Assign R = 0, U1(z) = u1(z).
Step-3: For j = 2, 3. . ., n

Uj(z) = Uj−1(z)⊗Uj(z).
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Figure 1 Repairable parallel-series system.

Step-4: Evaluate probability intervals from Equations (5) and (8) using
Laplace-Steiltjes transform for each component state of each system
component.

Step-5: Set demand level w and compute the system interval valued reliability
[R] of MSSs using Equation (24)

[R] =
R∑
i=1

[pi|ri ≥ w]

4 Numerical Example

Consider a repairable parallel-series multi-state system having three com-
ponents c1, c2, and c3 Let each component has three possible states cor-
responding to their performance rates. Figure 1 represents the considered
system.

Let us presume that the failure and repair rates of all three system compo-
nents have the same values for the same component states, respectively, for
the system considered. Let the failure and repair rates of the repairable multi-
state parallel-series system be λ32 = 0.09, λ32 = 0.1, λ21 = 0.02, λ21 =
0.025 and µ

12
= 0.025, µ12 = 0.03 respectively.

By applying Equation (5), we get following differential equations for
lower bound probabilities of components of the system at time t:

dp1(t)

dt
= −µ12p1(t) + λ21p2(t) (25)

dp2(t)

dt
= −λ21p2(t) + µ12p1(t) + λ32p3(t) (26)

dp3(t)

dt
= −λ32p3(t) (27)

Initial condition: p3(t) = 1 at t = 0 and all other probabilities are zero
initially.
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Solving Equations (25)–(27), we get lower bound probabilities as:

p1(t) = −
λ21λ32

(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12

[
e−(λ32t)+ e−

(µ12+λ21)
2

t

 µ12 + λ21√
(µ12 − λ21)2 + λ21µ12

sinh

(
t

2

√
(µ12 − λ21)2 + λ21µ12

)

− cosh

(
t

2

√
(µ12 − λ21)2 + λ21µ12

)}]

+ e−
(µ12+λ21)

2
t
sinh

(
t
2

√
(µ12 − λ21)2 + λ21µ12

)
√
(µ12 − λ21)2 + λ21µ12

×

[
λ21λ32

(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12
(µ12 + λ21 − λ32)

]
(28)

p2(t) = −
(λ32)

2 − µ21λ32
(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12

[
e−(λ32t)+ e−

(µ12+λ21)
2

t

×

 µ12 + λ21√
(µ12 − λ21)2 + λ21µ12

sinh

(
t

2

√
(µ12 − λ21)2 + λ21µ12

)

− cosh

(
t

2

√
(µ12 − λ21)2 + λ21µ12

)}]

+ e−
(µ12+λ21)

2
t
sinh

(
t
2

√
(µ12 − λ21)2 + λ21µ12

)
√
(µ12 − λ21)2 + λ21µ12

×

[ (
λ32
)2 − µ21λ32

(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12
(µ12 + λ21 − λ32)

]
(29)

p3(t) = e−(λ32t) (30)
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Now using Equation (8), upper bound probabilities of the considered
system can be obtained as

dp1(t)

dt
= −µ12p1(t) + λ21p2(t) (31)

dp2(t)

dt
= −λ21p2(t) + µ12p1(t) + λ32p3(t) (32)

dp3(t)

dt
= −λ32p3(t) (33)

Solving Equations (31)–(33), we have the upper bound probabilities
are as:

p1(t) =
−λ21λ32

(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12

[
e−(λ32t) + e−

(µ12+λ21)

2
t

×

 µ12 + λ21√
(µ12 − λ21)2 + 4λ21µ12

sinh

(
t

2

√
(µ12 − λ21)2 + 4λi21µ

i
12

)

− cosh

(
t

2

√
(µ12 − λ21)2 + 4λi21µ

i
12

)}]

+ e−
(µ12+λ21)

2
t
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
2
√

(µ12 − λ21)2 + 4λ21µ12

×

[
λ21λ32

(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12
(µ12 + λ21 − λ32)

]
(34)

p2(t) =
(λ32)

2 − µ12λ32
(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12

[
e−(λ32t)+ e−

(µ12+λ21)

2
t

×

 (µ12 + λ21)√
(µ12 − λ21)2 + 4λ21µ12

sinh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)
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− cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)}]

+ e−
(µ12+λ21)

2
t
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
√

(µ12+λ21)
2

4 − λ21µ12 + λ21µ12

×
[
λ32 −

(λ32)
2 − µ12λ32

(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12

(µ12 + λ21 − λ32)
]

(35)

p3(t) = e−(λ32t) (36)

From Equation (16), IUGF of each component can be expressed as:

uc1(z) = [p
3
, p3]z

2 + [p
2
, p2]z

1 + [p
1
, p1]z

0 (37)

uc2(z) = [p
3
, p3]z

3 + [p
2
, p2]z

2 + [p
1
, p1]z

0 (38)

uc3(z) = [p
3
, p3]z

3 + [p
2
, p2]z

2 + [p
1
, p1]z

0 (39)

We can now see that in Figure 1 is the components 1 and 2 in series and
component 3 is in parallel with component 1 and component 2. Now, using
Equations (17)–(18), IUGF of the considered system can be obtained as:

uc1c2(z) = uc1(z)⊗
ser
uc2(z) = [p

3
p
3
, p3p3]z

min(2,3) + [p
2
p
3
, p2p3]z

min(1,3)

+ [p
1
p
3
, p1p3]z

min(0,3) + [p
3
p
2
, p3p2]z

min(2,2)

+ [p
2
p
2
, p2p2]z

min(1,2) + [p
1
p
2
, p1p2]z

min(0,2)

+ [p
3
p
1
, p3p1]z

min(2,0) + [p
2
p
1
, p2p1]z

min(1,0)

+ [p
1
p
1
, p1p1]z

min(0,0) (40)

usys(z) = (uc1(z)⊗
ser
uc2(z))⊗

par
uc3(z)

= [p
3
p
3
p
3
, p3p3p3]z

max(2,3) + [p
2
p
3
p
3
, p2p3p3]z

max(1,3)

+ [p
1
p
3
p
3
, p1p3p3]z

max(0,3) + [p
3
p
2
p
3
, p3p2p3]z

max(2,3)
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+ [p
2
p
2
p
3
, p2p2p3]z

max(1,3) + [p
1
p
2
p
3
, p1p2p3]z

max(0,3)

+ [p
3
p
3
p
3
, p3p1p3]z

max(0,3) + [p
2
p
3
p
3
, p2p1p3]z

max(0,3)

+ [p
1
p
3
p
3
, p1p1p3]z

max(0,3) + [p
3
p
3
p
2
, p3p3p2]z

max(2,2)

+ [p
2
p
3
p
2
, p2p3p2]z

max(1,2) + [p
1
p
3
p
2
, p1p3p2]z

max(0,2)

+ [p
3
p
2
p
2
, p3p2p2]z

max(2,2) + [p
2
p
2
p
2
, p2p2p2]z

max(1,2)

+ [p
1
p
2
p
2
, p1p2p2]z

max(0,2) + [p
3
p
3
p
2
, p3p1p2]z

max(0,2)

+ [p
2
p
3
p
2
, p2p1p2]z

max(0,2) + [p
1
p
3
p
2
, p1p1p2]z

max(0,2)

+ [p
3
p
3
p
1
, p3p3p1]z

max(2,0) + [p
2
p
3
p
1
, p2p3p1]z

max(1,0)

+ [p
1
p
3
p
1
, p1p3p1]z

max(0,0) + [p
3
p
2
p
1
, p3p2p1]z

max(2,0)

+ [p
2
p
2
p
1
, p2p2p1]z

max(1,0) + [p
1
p
2
p
1
, p1p2p2p1]z

max(0,0)

+ [p
3
p
3
p
1
, p3p1p1]z

max(0,0) + [p
2
p
3
p
1
, p2p1p1]z

max(0,0)

+ [p
1
p
3
p
1
, p1p1p1]z

max(0,0) (41)

Using Equation (26), interval valued system reliability of the repairable
parallel-series system for w ≥ 5 is obtained as:

R = [
(
p3
)3

+ p2
(
p3
)2
, (p3)

3 + p2 (p3)
2] (42)

Table 2 Reliability w.r.t. time
Time (T) Reliability (R)

0.0 1

0.5 [0.90021,0.97140]

1 [0.81018, 0.93817]

1.5 [0.72898,0.90156]

2 [0.65578,0.862639]

2.5 [0.589807,0.82226]

3 [0.53036,0.781161]

3.5 [0.476813,0.73990]

4 [0.428594,0.69895]

4.5 [0.385183,0.65869]

5 [0.346111,0.61940]
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Figure 2 Reliability vs. time.

5 Mean Time to Failure of the Repairable Multi-state
Parallel-series System

MTTF is a measurement of the average failure time and applicable to non-
maintained units which are working under specified conditions. Generally,
MTTF is evaluated from data taken over a period of time in which all the
system units are not failed. In other words, the expectation of a random
variable T is called MTTF.

Mathematically, MTTF is defined as

MTTF = lim
s→0

R(s) (43)

where R(s) is the Laplace transform of R(t).
By Equation (43), the MTTF of considered system can be evaluated as

follows:

MTTF =

(λ21 − λ32)λ32 + λ32
2

3λ32
2
(λ21 − λ32)

−
(
4λ32 + λ21

)
λ32

2

2(λ21 − λ32)λ32(2λ32 + 0.491λ21)2

+

{
2λ32(λ21 − λ32)λ32 − λ322(λ21 − 2λ32)

}
2(λ21 − λ32)λ32(2λ32 + 0.491λ21)2
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·
(λ21 − λ32)λ32 + λ32

2

3λ32
2(λ21 − λ32)

−
(4λ32 + λ21)λ32

2

2(λ21 − λ32)λ32(2λ32 + 0.491λ21)2

+

{
2λ32(λ21 − λ32)λ32 − λ32

2
(λ21 − 2λ32)

}
2(λ21 − λ32)λ32(2λ32 + 0.491λ21)2

 (44)

From Equation (44), one can get variations on MTTF of the repairable
multi-state parallel-series system with respect to λ32, λ32, λ21 and λ21 as
listed in the Tables 3 to 6, and the same are shown in the Figures 3 to 6
respectively.

Table 3 MTTF w.r.t. λ32

λ32 MTTF

0.09 [4.815692,6.529393]

0.091 [4.848816,6.398053]

0.092 [4.882306,6.2714]

0.093 [4.916163,6.149211]

0.094 [4.950385,6.031272]

0.095 [4.984973,5.917385]

0.096 [5.019928,5.807362]

0.097 [5.055248,5.701024]

0.098 [5.090934,5.598205]

0.099 [5.126987,5.498746]

Figure 3 MTTF v/s λ32.
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Table 4 MTTF w.r.t. λ32

λ32 MTTF

0.1 [4.8156,6.5293]

0.2 [1.8419,13.1816]

0.3 [1.1623,23.4763]

0.4 [0.85479,37.4110]

0.5 [0.67761,54.9853]

0.6 [0.56187,76.199]

0.7 [0.48016,101.05]

0.8 [0.41932,129.544]

0.9 [0.37223,161.676]

0.91 [0.36810,165.089]

Figure 4 MTTF v/s λ32.

Table 5 MTTF w.r.t. λ21

λ21 MTTF

0.02 [4.8156,6.5293]

0.021 [4.8156,6.5639]

0.023 [4.81569,6.6359]

0.024 [4.81569,6.6734]

0.0241 [4.81569,6.6772]

0.0242 [4.81569,6.6810]

0.0243 [4.81569,6.6849]

0.0245 [4.81569,6.6926]

0.0246 [4.81569,6.6965]

0.0247 [4.81569,6.7003]
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Figure 5 MTTF v/s λ21.

Table 6 MTTF w.r.t. λ21

λ21 MTTF

0.025 [4.81569, 6.52939]

0.026 [4.82363, 6.52939]

0.027 [4.83184, 6.52939]

0.028 [4.8403, 6.529393]

0.029 [4.84914, 6.52939]

0.03 [4.85825, 6.52939]

0.031 [4.86769, 6.52939]

0.032 [4.8774, 6.529393]

0.034 [4.8980, 6.529393]

0.035 [4.90894, 6.52939]

Figure 6 MTTF v/s λ21.
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6 Sensitivity of the Repairable Multi-state Parallel-series
System

Sensitivity analysis is a measure of the rate of change in the output of a system
due to a change in the input of the system. It is like the Birnbaum importance.
Parameters that affect modeling error, optimization of system and evaluation
of reliability is possible with the help of sensitivity. Here, R is the reliability
and µ is parameter of the model of the system is given by the sensitivity S
corresponding to µ is given by:

S =
∂R

∂µ
(45)

Using Equation (45) sensitivity of the considered model w.r.t. different
parameters can be evaluated as:

(i) Lower bound sensitivity w.r.t. λ32is given by

Sλ32 =
∂R

∂λ32
=

e
−t

(
4λ32+µ12+λ21

2

)
sinh

(
t

√
(µ12−λ21)2

4 + λ21µ12

)
√

(µ12−λ21)2
4 + λ21µ12

+
e−t2λ32(1− µ12)

(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12

×

e−tλ32 − e−tµ12+λ212

 cosh

t
√

(µ12 − λ21)2
4

+ λ21µ12



+

(
µ12 + λ21 − 2λ32

2

) sinh

(
t

√
(µ12−λ21)2

4 + λ21µ12

)
√

(µ12−λ21)2
4 + λ21µ12


 (46)

(ii) Upper bound sensitivity w.r.t. λ32is obtained as

Sλ32 =
∂R

∂λ32
=

e
−t

(
4λ32+µ12+λ21

2

)
sinh

(
t

√
(µ12−λ21)2

4 + λ21µ12

)
√

(µ12−λ21)2
4 + λ21µ12
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+
e−t2λ32

(
1− µ12

)(
µ12 + λ21 − λ32

)
λ32 + λ21µ12 − λ21µ12

×

e−tλ32 − e−tµ12+λ212

 cosh

t
√

(µ12 − λ21)2

4
+ λ21µ12



+

(
µ12 + λ21 − 2λ32

2

) sinh

(
t

√
(µ12−λ21)2

4 + λ21µ12

)
√

(µ12−λ21)2
4 + λ21µ12


 (47)

(iii) Lower bound sensitivity w.r.t. λ32 is evaluated as:

Sλ32 =
∂R

∂λ32

= −3te−3λ32t −
2tλ32(λ32 − µ12)e−2λ32t

(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12e−tλ32 + e−
(µ12+λ21)

2
t

×


(
µ12 + λ21

)
sinh

(
t

√
(µ12−λ21)2

4 + λ21µ12

)
2

√
(µ12−λ21)2

4 + λ21µ12

− cosh

t
√

(µ12 − λ21)2
4

+ λ21µ12





−
2te−t

µ12+λ21+4λ32
2 sinh

(
t

√
(µ12−λ21)2

4 + λ21µ12

)
√

(µ12−λ21)2
4 + λ21µ12
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×

{
λ32 −

λ32
(
λ32 − µ12

)
(µ12 + λ21 − λ32)

(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12

}

+
λ32 (1− µ12)

(
µ12 + λ21 − 2λ32

)
e−t

µ12+λ21+2λ32
2(

(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12
)2cosh

t
√

(µ12 − λ21)2
4

+ λ21µ12



−

(
2λ32 − µ12 − λ21

)
sinh

(
t

√
(µ12−λ21)2

4 + λ21µ12

)
2

√
(µ12−λ21)2

4 + λ21µ12

(48)

(iv) Upper bound sensitivity w.r.t. λ32 is given by

Sλ32 =
∂R

∂λ32
= −3te−3λ32t − 2tλ32(λ32 − µ12)e−2λ32t

(µ12 + λ21 − λ32)λ32 + λ21µ12 − λ21µ12e−tλ32 + e−
(µ12+λ21)

2
t

×


(
µ12 + λ21

)
sinh

(
t

√
(µ12−λ21)2

4 + λ21µ12

)
2

√
(µ12−λ21)2

4 + λ21µ12

− cosh

t
√

(µ12 − λ21)2

4
+ λ21µ12





−
2te−t

µ12+λ21+4λ32
2 sinh

(
t

√
(µ12−λ21)2

4 + λ21µ12

)
√

(µ12−λ21)2
4 + λ21µ12



102 Renu et al.[
λ32 −

λ32
(
λ32 − µ12

)
(µ12 + λ21 − λ32)

(µ12 + λ21 − λ32)λ32 + λ21µ12 − λ21µ12

]

+ cosh

t
√

(µ12 − λ21)2

4
+ λ21µ12


+

(
(µ12 + λ21 − 2λ32)

)
sinh

(
t

√
(µ12−λ21)2

4 + λ21µ12

)
2

√
(µ12−λ21)2

4 + λ21µ12


×
λ32
(
1− µ12

)
(µ12 + λ21 − 2λ32)e

−t
µ12+λ21+2λ32

2{
(µ12 + λ21 − λ32)λ32 + λ21µ12 − λ21µ12

}2 (49)

(v) Lower bound sensitivity w.r.t. λ21 is computed as

Sλ21 =
∂R

∂λ21
= e−t

µ12+λ21+4λ32
2

 µ12λ32
(
λ32 − µ12

)(
(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12

)2
 cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)

−

(
2λ32 − µ12 − λ21

)
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
√
(µ12 − λ21)2 + 4λ21µ12


+

µ12√
(µ12 − λ21)2 + 4λ21µ12

−tλ32
(
λ32 − µ12

)
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12
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−

2λ32[2{λ21λ32 − λ32
2
+ λ21µ12}

+{λ32(µ12 − λ21) + µ12
2 − λ21µ12}]

{(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12}
{(µ12 − λ21)2 + 4λ21µ12}

×

 sinh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)

− t

2

√
(µ12 − λ21)2 + 4λ21µ12 cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)

 (50)

(vi) Upper bound sensitivity w.r.t. λ21 is evaluated as:

Sλ21 =
∂R

∂λ21

=

 µ12λ32
(
λ32 − µ12

)(
(µ12 + λ21 − λ32)λ32 + λ21µ12 − λ21µ12

)2
 cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)

−

(
2λ32 − µ12 − λ21

)
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
√
(µ12 − λ21)2 + 4λ21µ12


+

µ12√
(µ12 − λ21)2 + 4λ21µ12
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×


−tλ32

(
λ32 − µ12

)
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
(µ12 + λ21 − λ32)λ32 + λ21µ12 − λ21µ12

−

2λ32[2{λ21λ32 − λ322 + λ21µ12}
+{λ32(µ12 − λ21) + µ12

2 − λ21µ12}]
{(µ12 + λ21 − λ32)λ32 + λ21µ12 − λ21µ12}

{(µ12 − λ21)2 + 4λ21µ12}

×

 sinh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)

− t

2

√
(µ12 − λ21)2 + 4λ21µ12 cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)

 (51)

(vii) Upper bound sensitivity w.r.t. λ21:

Sλ21 =
∂R

∂λ21

= e−2tλ32

 λ32
(
λ32 − µ12

)
(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12

×

 t

2
cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)

(
2λ32 − µ12 − λ21

) (
λ21 − µ12

)
2
{
(µ12 − λ21)2 + 4λ21µ12

} −e
−t(µ12+λ21)

2

2


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−

(2λ32−µ12−λ21)(λ21−µ12)
{(µ12−λ21)2+4λ21µ12} + te

−t(µ12+λ21)
2

(
λ21 − µ12

)
+ 1

2
√

(µ12 − λ21)2 + 4λ21µ12

×
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
2
√
(µ12 − λ21)2 + 4λ21µ12


×

e−tλ32 − e−t(µ12+λ21)
2 cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)

+

(
2λ32 − µ12 − λ21

)
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
2
√

(µ12 − λ21)2 + 4λ21µ12


+ λ32


(µ12 − λ21) sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
√
(µ12 − λ21)2 + 4λ21µ12

+
t
(
λ21 − µ12

)
2

cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)
 (52)

(viii) Lower bound sensitivity w.r.t. λ21:

Sλ21 =
∂R

∂λ21

= e−2tλ32

 λ32
(
λ32 − µ12

)
(µ12 + λ21 − λ32)λ32 + λ21µ12 − λ21µ12

×

t cosh
(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)
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(
2λ32 − µ12 − λ21

) (
λ21 − µ12

)
4
{
(µ12 − λ21)2 + 4λ21µ12

} −e
−t(µ12+λ21)

2

2


− sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
2
√
(µ12 − λ21)2 + 4λ21µ12

×

{
(2λ32−µ12−λ21)(λ21−µ12)

(µ12−λ21)2+4λ21µ12
+ te

−t(µ12+λ21)
2

(
λ21 − µ12

)
+ 1

}
2
√

(µ12 − λ21)2 + 4λ21µ12

−
λ32
(
λ32 − µ12

)2{
(µ12 + λ21 − λ32)λ32 + λ21µ12 − λ21µ12

}2
×

e−tλ32 − e
−t(µ12+λ21)

2 cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)

+

(
2λ32 − µ12 − λ21

)
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
2
√
(µ12 − λ21)2 + 4λ21µ12


+ λ32


(µ12 − λ21) sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
√
(µ12 − λ21)2 + 4λ21µ12

+
t
(
λ21 − µ12

)
2

cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)
 (53)

(ix) Lower bound sensitivity w.r.t. µ12:

Sµ12 =
∂R

∂µ12
= e−2tλ32

 λ32
(
λ32 − µ12

)
(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12
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×


−e

−t(µ12+λ21)
2 tλ21 sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
4
√

(µ12 − λ21)2 + 4λ21µ12

+

{
λ21
(
2λ32 − µ12 − λ21

)
8

}

×
t
√

(µ12 − λ21)2 + 4λ21µ12 cosh
(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
{
(µ12 − λ21)2 + 4λ21µ12

} 3
2

−
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
{
(µ12 − λ21)2 + 4λ21µ12

} 3
2


−

λ21λ32
(
λ32 − µ12

){
(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12

}2
×

e−tλ32 − e−t(µ12+λ21)
2 cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)

+

(
2λ32 − µ12 − λ21

)
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
2
√
(µ12 − λ21)2 + 4λ21µ12




(54)

(x) Upper bound sensitivity w.r.t. µ12:

Sµ12 =
∂R

∂µ12
= e−2tλ32

 λ32
(
λ32 − µ12

)
(µ12 + λ21 − λ32)λ32 + λ21µ12 − λ21µ12

×


−e

−t(µ12+λ21)
2 tλ21 sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
4
√
(µ12 − λ21)2 + 4λ21µ12
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+

{
λ21(2λ32 − µ12 − λ21)

8

}

×
t
√
(µ12 − λ21)2 + 4λ21µ12 cosh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
{
(µ12 − λ21)2 + 4λ21µ12

} 3
2

−
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
{
(µ12 − λ21)2 + 4λ21µ12

} 3
2


−

λ21λ32
(
λ32 − µ12

){
(µ12 + λ21 − λ32)λ32 + λ21µ12 − λ21µ12

}2
×

e−tλ32 − e
−t(µ12+λ21)

2 cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)

+

(
2λ32 − µ12 − λ21

)
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
2
√
(µ12 − λ21)2 + 4λ21µ12




(55)

(xi) Upper bound sensitivity w.r.t. µ12:

Sµ12 =
∂R

∂µ12

= e−2tλ32


λ32
(
λ32 − µ12

)
(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12
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×



{
e

−t(µ12+λ21)
2 tλ21(λ21 − µ12)− 1

}
sinh(

t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
2
√
(µ12 − λ21)2 + 4λ21µ12

+
t

2
e

−t(µ12+λ21)
2 cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)

+

{(
2λ32 − µ12 − λ21

)
(λ21 − µ12)

4

}

×
2 sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
{
(µ12 − λ21)2 + 4λ21µ12

} 3
2

−
t
√
(µ12 − λ21)2 + 4λ21µ12 cosh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
{
(µ12 − λ21)2 + 4λ21µ12

} 3
2


−
λ32

{
(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12 +

(
λ32 − µ12

)2}{
(µ12 + λ21 − λ32)λ32 − λ21µ12 + λ21µ12

}2
×
{
e−tλ32 − e

−t(µ12+λ21)
2 cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)

+

(
2λ32 − µ12 − λ21

)
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
2
√

(µ12 − λ21)2 + 4λ21µ12


+
λ322 sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
2
{
(µ12 − λ21)2 + 4λ21µ12

} 3
2
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−

λ32

{
t
√
(µ12 − λ21)2 + 4λ21µ12 cosh(

t
2

√
(µ12 − λ21)2 + 4λ21µ12

)}
2
{
(µ12 − λ21)2 + 4λ21µ12

} 3
2


(56)

(xii) Upper bound sensitivity w.r.t. µ12:

Sµ12 =
∂R

∂µ12
= e−2tλ32


λ32
(
λ32 − µ12

)
(µ12 + λ21 − λ32)λ32 + λ21µ12 − λ21µ12

×



{
e

−t(µ12+λ21)
2 t

(
λ21 − µ12

)
λ21 − 1

}
sinh(

t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
2
√
(µ12 − λ21)2 + 4λ21µ12

+
t

2
e

−t(µ12+λ21)
2 cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)

+

{
(2λ32 − µ12 − λ21)

(
µ12 − λ21

)
4

}
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2 sinh
(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
− t
√

(µ12 − λ21)2 + 4λ21µ12 cosh(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
{
(µ12 − λ21)2 + 4λ21µ12

} 3
2


−
λ32

{
(µ12 + λ21 − λ32)λ32 + λ21µ12 − λ21µ12 +

(
λ32 − µ12

)2}{
(µ12 + λ21 − λ32)λ32 + λ21µ12 − λ21µ12

}2
×

e−tλ32 − e
−t(µ12+λ21)

2 cosh

(
t

2

√
(µ12 − λ21)2 + 4λ21µ12

)

+

(
2λ32 − µ12 − λ21

)
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
2
√

(µ12 − λ21)2 + 4λ21µ12



+

λ32

{
sinh

(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)
−t
√
(µ12 − λ21)2 + 4λ21µ12

cosh
(
t
2

√
(µ12 − λ21)2 + 4λ21µ12

)}
2
{
(µ12 − λ21)2 + 4λ21µ12

} 3
2


(57)

Sensitivities are obtained with the help of Equations (46) to (57). Table 7
displays the sensitivities of the repairable multi-state parallel-series device
obtained with regard to time corresponding to different failure rates and repair
rates.

The action of the sensitivity of the device under consideration in relation
to various parameters was shown in the Figures 7 to 10.
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Table 7 Sensitivity in relation to time corresponding to various parameters
T 0 1 2 3 4 5

Sλ32 0 0.8102 0.6558 0.5304 0.4286 0.3461

Sλ32
0 −2.353 −3.6948 −4.3525 −4.559 −4.480

Sλ21 0 −0.012 −0.038 −0.0666 −0.0921 −0.1121

Sλ21
0 −0.0373 −0.1161 −0.2037 −0.2824 −0.3442

Sµ12 0 −0.0098 −0.0304 −0.0533 −0.0737 −0.0896

Sµ12 0 −0.00098 −0.0033 −0.0061 −0.009 −0.0117

Sλ32 0 4.1858 11.452 23.170 41.241 68.290

Sλ32
0 1.0505 2.1905 3.3948 4.6243 5.8223

Sλ21 0 −0.0686 −0.3121 −0.7991 −1.6168 −2.875

Sλ21
0 −0.0440 −0.1860 −0.4794 −0.9762 −1.747

Sµ12 0 −0.0067 −0.0289 −0.0692 −0.1302 −0.2139

Sµ12 0 −0.0339 −0.1550 −0.3995 −0.8135 −1.4565

 
Figure 7 Sensitivities corresponding to λ32 v/s time.
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Figure 8 Sensitivities corresponding to λ32 v/s time.

Figure 9 Sensitivities corresponding to µ
12

v/s time.
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Figure 10 Sensitivities corresponding to µ
12

v/s time.

7 Results

The present study reveals that both the lower and upper bound reliability is
decreasing with the increment in time t. One can easily conclude that as λ32
increases lower bound of MTTF increase and upper bond of MTTF decreases.
It is also revealed that as λ32 increases lower bound of MTTF decreases
and upper bond of MTTF increases rapidly. Also, one can observe that as
λ21 increases lower bound of MTTF remains constant and upper bond of
MTTF increases. We have also observed that as λ21 increases lower bound of
MTTF increases and upper bond of MTTF remains constant. It is clear that
sensitivity Sλ32 decreases slowly while sensitivity Sλ32 increases rapidly with
increment in time t. By observing the outcome of study, we easily conclude
that Sλ32 decreases with increase in time t, on the other hand Sλ32 increases

with the enhancement in time t. Further, results reveal that Sλ21 and Sλ21
found to be decreasing with increment in time t. Sλ21 decreases gradually

while Sλ21 decreases rapidly with increase in time t. Study also reveals that

the sensitivities Sµ12 and Sµ12 both decreasing rapidly with the increment in
time t. One can further observe that sensitivity Sµ12 decreases very slowly
whereas sensitivity Sµ12 decreases very fast with the increment in time t.
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8 Conclusion

One cannot rule out aleatory and epistemic uncertainties in industrial sys-
tem. Therefore, it is always a challenge to handle it properly. In the above
discussed work an effective approach, namely, IUGF is applied which is
fundamentally based on the traditional UGF. It is applicable when there is
an uncertainty in the state probabilities of system components. In the current
study the system reliability, MTTF and sensitivity of the discussed model
have been computed with the use of IUGF approach incorporating Markovian
process.
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