Statistical Inferences on Odd Fréchet Power Function Distribution
DOI:
https://doi.org/10.13052/jrss0974-8024.1417Keywords:
OFr-G family, power function distribution, entropy, estimation methods, data analysisAbstract
This article introduces a new unit distribution namely odd Fréchet power (OFrPF) distribution. Numerous properties of the proposed model including reliability analysis, moments, and Rényi Entropy for the proposed distribution. The parameters of the OFrPF distribution are obtained using different approaches such as maximum likelihood, least squares, weighted least squares, percentile, Cramer-von Mises, Anderson-Darling. Furthermore, a simulation was performed to study the performance of the suggested model. We also perform a simulation study to analyze the performances of estimation methods derived. The applications are used to show the practicality of OFrPF distribution using two real data sets. OFrPF distribution performed better than other competitive models.
Downloads
References
Aarset, M.V., How to identify a bathtub hazard rate. IEEE Transactions on Reliability, 1987. 36(1): p. 106–108.
Bourguignon, M., Silva, R. B., and Cordeiro, G. M. (2014). The Weibull-G Family of Probability Distributions. 12, 53–68.
Cook, D. O., Kieschnick, R., and McCullough, B. D. (2008). Regression analysis of proportions in finance with self selection. Journal of Empirical Finance, 15(5), 860–867.
Cordeiro, G. M., Alizadeh, M., Ozel, G., Hosseini, B., Moises, E., Ortega, M., and Altun, E. (2016). The generalized odd log-logistic family of distributions: properties, regression models and applications. Journal of Statistical Computation and Simulation, 0(0), 1–25. https://doi.org/10.1080/00949655.2016.1238088
Cordeiro, G. M., and dos Santos Brito, R. (2012). The beta power distribution. Brazilian Journal of Probability and Statistics, 26(1), 88–112. https://doi.org/10.1214/10-BJPS124
Cribari-Neto, F., and Souza, T. C. (2013). Religious belief and intelligence: Worldwide evidence. Intelligence, 41(5), 482–489.
Dallas, A. C. (1976). Characterizing the Pareto and power distributions. Annals of the Institute of Statistical Mathematics, 28(1), 491–497.
Gupta, A. K., and Nadarajah, S. (2004). Handbook of beta distribution and its applications. CRC press.
Haq, M. A., and Elgarhy, M. (2018). The odd Fréchet-G family of probability distributions. Journal of Statistics Applications & Probability, 7(1), 189–203.
Haq, M. A., Hashmi, S., Aidi, K., Ramos, P. L., and Louzada, F. (2020). Unit Modified Burr-III Distribution: Estimation, Characterizations and Validation Test. Annals of Data Science. https://doi.org/10.1007/s40745-020-00298-6
Haq, M. A. ul, Elgarhy, M., and Hashmi, S. (2019). The generalized odd Burr III family of distributions: properties, applications and characterizations. Journal of Taibah University for Science, 13(1), 961–971. https://doi.org/10.1080/16583655.2019.1666785
Haq, M. A., Butt, N. S., Usman, R. M., and Fattah, A. A. (2016). Transmuted power function distribution. Gazi University Journal of Science, 29(1), 177–185.
Haq, M. A., Usman, R. M., Bursa, N., and Özel, G. (2018). McDonald power function distribution with theory and applications.
Hassan, A. S., and Assar, S. M. (2017). The exponentiated Weibull power function distribution. Journal of Data Science, 16(2), 589–614.
Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36(1/2), 149–176.
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1–2), 79–88.
Lehmann, E. L., and Casella, G. (2006). Theory of point estimation. Springer Science & Business Media.
Mazucheli, J, Menezes, A. F. B., and Ghitany, M. E. (2018). The unit-Weibull distribution and associated inference. J. Appl. Probab. Stat, 13, 1–22.
Mazucheli, Josmar, Menezes, A. F. B., and Chakraborty, S. (2018). On the one parameter unit-Lindley distribution and its associated regression model for proportion data. Journal of Applied Statistics, 4763. https://doi.org/10.1080/02664763.2018.1511774
Quesenberry, C. P., and Hales, C. (1980). Concentration bands for uniformity plots. Journal of Statistical Computation and Simulation, 11(1), 41–53.
Tahir, M. H., Alizadeh, M., Mansoor, M., and Cordeiro, G. M. (2016). The Weibull-power function distribution with applications. 45(1), 245–265.
Topp, C. W., and Leone, F. C. (1955). A family of J-shaped frequency functions. Journal of the American Statistical Association, 50(269), 209–219.
Usman, R. M., Haq, M. A., Bursa, N., Özel, G., & Info, A. (2018). Exponentiated Transmuted Power Function Distribution: Theory & Applications. June. http://dergipark.gov.tr/gujs