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Abstract

The article focuses on the inference of stress-strength reliability in gener-
alized Pareto model using the generalized variable approach and bootstrap
percentile method. Simulation studies are conducted to obtain expected
lengths and coverage probabilities of confidence intervals constructed using
the generalized variable and the bootstrap percentile methods. An exam-
ple consisting of real stress-strength data is also presented for illustrative
purposes.

Keywords: Generalized Pareto model, stress-strength reliability, general-
ized pivotal quantity, percentile bootstrap, coverage probability.

1 Introduction

If the stress applied to a system is higher than its strength naturally it breaks.
Let a random stress (Y) is applied to a certain appliance having a random
strength (X). Then the stress-strength reliability, defined by R = P(Y < X),
has practical use in a variety of fields, especially in the field of engineering.
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If X and Y have the joint probability density f(x, y) then R is the following:

R =

∫ ∞
−∞

∫ x

−∞
f(x, y)dydx. (1)

Of course, f(x, y) is the product of individual densities whenX and Y are
independent. Naturally, the probability defined in (1) has a nonempty overlap-
ping range and the lower tail of the strength distribution strongly influences
the probability of failure. The reliability R in any situation ultimately turns
out to be a parametric function of the parameters of probability distributions
of stress and strength. The estimation of R has been considered for well-
known distributions by many researchers, see for example, Jana et al. (2019),
Nguimkeu et al. (2015), Cortese and Ventura (2013), Baklizi (2013), Kundu
and Gupta (2005), Guo and Krishnamoorthy (2004), to mention a few. Most
of them relied on the method of maximum likelihood and Monte Carlo simu-
lations to estimate R. Rezaei et al. (2015) estimated R using progressively
type II censored samples when X and Y follow independent generalized
Pareto models.

In certain situations where conventional confidence intervals are impos-
sible Weerahandi (1993, 1994, 2004) proposed a parallel approach using
Generalized Pivotal Quantity (GPQ). The GPQ approach has been used by
several authors in different contexts, Roy and Mathew (2003), Krishnamoor-
thy and Lin (2010), Jose et al. (2019), to name a few. The present study
explores the use of GPQ for the interval estimation and the test of hypotheses
on R when X and Y follow independent generalized Pareto models. The per-
formance of GPQ method is compared with the bootstrap percentile method
by computing expected lengths and coverage probabilities of the constructed
confidence intervals.

The generalized Pareto distribution is an extreme value distribution intro-
duced by Pikands (1975). It has been quite popular in the modelling of
extreme natural events and in reliability studies as a failure time distribution.
A generalized Pareto model specified by location µ, scale σ and shape ξ
parameters can accommodate a wide range of possible shapes has the density
function::

f(x) =
1

σ

(
1 + ξ

x− µ
σ

)−(1+ 1
ξ

)
(2)

for x > µ,−∞ < µ < ∞,−∞ < ξ < ∞, σ > 0. For ξ > 0 and µ = σ
ξ the

generalized Pareto reduces to the Pareto distribution with a scale parameter
equal to σ/ξ and a shape parameter equal to 1/ξ. If µ = 0 and ξ = 0 then (2)
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reduces to the exponential distribution. After re-parameterization, the density
of generalized Pareto distribution having the shape parameter α and the scale
parameter λ takes the form:

f(x) = αλ(1 + λx)−(1+α); x > 0, α > 0, λ > 0, (3)

and 0, elsewhere.
The outline of the rest of the article is as follows: the GPQ of R is

constructed for both the one-parameter and the two-parameter generalized
Pareto models and the corresponding generalized confidence intervals are
obtained in Section 2. The hypothesis test concerning R and the computation
of its p-value are also mentioned in this section. In Section 3, the bootstrap
percentile confidence intervals are constructed for R. Simulation studies to
compare the GPQ and the bootstrap percentile methods are also given in this
section. Finally, an illustrative example and a brief conclusion are given in
Section 4.

2 Generalized Confidence Interval for R

The confidence intervals using GPQ will be useful when classical pivotal
quantities do not exist. Let X = (X1, . . . , Xn) be a random sample of size n
from a population having pdf f(x;ν). Let x = (x1, . . . , xn) be the realization
of X and ν = (θ, δ), where θ is the parameter under investigation and δ is the
vector of remaining (nuisance) parameters. A statistic of the form T (X; x;ν)
is a generalized test variable if it satisfies the following properties: (i) the
observed value of T, namely, t(x; x;ν) is free of nuisance parameters; (ii)
when θ is specified, the probability distribution T must be free of δ and (iii)
P (T ≤ t; θ) is a monotonic function for any given x, δ and t. Now T is said to
be a GPQ if t provides the parameter of interest. Note that GPQ is a function
of the random sample, realized value of random sample, the parameter of
interest and the remaining parameters. The confidence interval derived by
inverting the GPQ is called generalized confidence interval (GCI).

The substitution method, suggested by Weerahandi (2004), is used to
construct GPQ. The first step is to express the parameters in terms of their
sufficient statistics. Next, define appropriate T and replace the sufficient
statistics with their observed values. Finally, rewrite the random variables
appearing in T in terms of the aforesaid sufficient statistics and the nuisance
parameters. More details of the generalized inference procedure and the
construction of GPQs can be seen from Weerahandi (2004).
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2.1 One-parameter Case

Let us consider the interval estimation of R when both the strength and the
stress have generalized Pareto models with parameters (α, 1) and (β, 1)
respectively. The expression for stress-strength reliability R obtained using
(1) is given below:

R = P (Y < X) =
β

α+ β
=

1(
α
β

)
+ 1

(4)

Let X1, . . . , Xn1 and Y1, . . . , Y n2 be two independent sets of random
samples from the strength and the stress populations respectively. Now let us
define the following statistics:

U1 = 2α

n1∑
j=1

ln(1 +Xj) ∼ χ2(2n1)

and

U2 = 2β

n2∑
j=1

ln(1 + Yj) ∼ χ2(2n2).

As U1 and U2 are independent

U1/2n1
U2/2n2

∼ F (2n1, 2n2).

Thus an unbiased estimator of the ratio α
β
α
β , denoted by T(α

β

), is the

following:

T(α
β

) =

(
n1 − 1

n2

) ∑n2
j=1 ln(1 + Yj)∑n1
j=1 ln(1 +Xj)

. (5)

To derive the GPQs of R given in (4) we have to derive the GPQ of
the parameters α and β. The GPQs of α and β, denoted by Tα and Tβ
respectively, are the following:

Tα =
U1

2
∑n1

j=1 ln(1 + xj)
(6)

and

Tβ =
U2

2
∑n2

j=1 ln(1 + yj)
(7)
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A GPQ of R, denoted TR, can be obtained by replacing α and β in (4) by
(6) and (7) respectively. It is easy to check that (5) to (7) satisfy the properties
of a GPQ. Now the 100(γ2 )

th and 100(1− γ
2 )

th percentiles of TR provide the
100(1− γ)% generalized confidence limits of R.

The GPQ is the counterpart of a generalized test variable as in the classical
inference. If one wants to test the hypothesis:

H0: R = R0 Vs H1: R > R0

then the proportion of the TR’s that are less than the specified value,R0, gives
the generalized p-value of the test.

2.2 Two-parameter Case

If the value of λ in (3) is other than 1 then the two-parameter generalized
Pareto distribution is obtained. In this case also the expression of R remains
the same as in (4). Let two independent random samples (X1, . . . , Xn1)
and (Y1, . . . , Y n2) be taken from the strength and the stress populations
which follow generalized Pareto models with parameters (α, λ) and (β, λ)
respectively. Let us define the following statistics:

V1 = 2α

n1∑
j=1

ln(1 + λXj) ∼ χ2
(2n1)

and

V2 = 2β

n2∑
j=1

ln(1 + λYj)∼ χ2
(2n2)

.

Now
V1/2n1
V2/2n2

∼ F (2n1, 2n2).

as V1 and V2 are independent. Further, an unbiased estimator of the ratio α
β ,

denoted by W(α
β
), can be given as follows:

W(α
β
) =

(
n1 − 1

n2

) ∑n2
j=1 ln(1 + λYj)∑n1
j=1 ln(1 + λXj)

. (8)

Let Wα and Wβ respectively denote the GPQs of α and β. Then we have
the following:

Wα =
U1

2
∑n1

j=1 ln(1 + λxj)
(9)
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and

Wβ =
U2

2
∑n2

j=1 ln(1 + λyj)
. (10)

A GPQ of R, say WR, is obtained by substituting (9) and (10) for α and
β respectively in (4). The 100(γ2 )

th and 100(1 − γ
2 )

th percentiles of WR

provide 100(1 − γ)% generalized confidence limits of R. As in the previous
case, testing of hypotheses concerning R is to be done using WR and the
corresponding p-value may be calculated as explained before.

3 Bootstrap Percentile Method

Let us consider the bootstrap percentile method as it performs better among
other bootstrap methods for the present problem. The bootstrap percentile
method involves the following steps:

1. Take independent random samples, say, X = (X1, . . . , Xn1) and Y =
(Y1, . . . , Y n2), from X and Y respectively.

2. Now generate B bootstrap samples from X and Y respectively.
3. Compute the estimate of the ratio r = α

β
α
β , says r̂, using the result:

U1/n1
U2/n2

(one-parameter case) or

V1/n1
V2/n2

(two-parameter case) ∼ F (2n1, 2n2)

and the expression given in (5) or (8) as the case may be.
4. Next, generate bootstrap estimates of the ratio r say r̂∗ using the

expression

n2
n1
r̂

∑n1
j=1 ln(1 +Xj)

∗

n2
∑n1

j=1 ln(1 + Yj)
∗ ∼ F (2n1, 2n2) (one-parameter case)

or

n2
n1
r̂

∑n1
j=1

ln(1 + λXj)
∗∑n1

j=1
ln(1 + λY j)

∗ ∼ F (2n1, 2n2) (two-parameter case).

Then the bootstrap estimate of R say T ∗R is obtained as

TR̂∗ =
1

r̂∗ + 1
. (11)
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5. For all B bootstrap samples compute TR̂∗ for each sample. Then B(γ2 )
th

and B(1− γ
2 )

th percentiles of TR̂∗ provides the 100(1− γ)% bootstrap
confidence limits for R.

A detailed description of bootstrap methods can be seen from Efron and
Tibshirani (1993).

4 Simulation Study

Table 1 displays the estimated coverage probabilities of the confidence inter-
vals of R constructed using the GPQ and the percentile bootstrap methods
for generalized Pareto distributions with one-parameter and two-parameter
cases. The confidence intervals are constructed for the 95% nominal level.
Numerical computations are done using R codes and the results are based on
10,000 simulated samples. The generalized confidence limits are obtained in
such a way that for each simulated sample, 10,000 values of the GPQ are
generated. Similarly, for the bootstrap method, 10,000 parametric bootstrap
samples are generated.

We observe from Table 1 that the coverage probabilities of GCIs are
close to the nominal level 0.95 in the one-parameter case. On considering
the expected lengths of intervals, both the GPQ and the bootstrap percentile
methods provide intervals having almost equal lengths. But in two-parameter
case, the coverage probabilities of the GCIs is either more close to or slightly
more than the nominal level though the expected lengths are slightly larger
than the bootstrap percentile intervals.

Table 1 Coverage probabilities and expected lengths of confidence intervals for stress-
strength reliability in generalized Pareto distribution

One-parameter Case Two-parameter Case

GPQ Method Bootstrap Method GPQ Method Bootstrap Method

(n1, n2) Coverage Length Coverage Length Coverage Length Coverage Length

(20,20) 0.9497 0.2689 0.9408 0.2603 0.9667 0.2779 0.9406 0.2604

(20,30) 0.9493 0.2454 0.9423 0.2402 0.9697 0.2541 0.946 0.2407

(50,40) 0.9473 0.1829 0.9438 0.1802 0.9548 0.1890 0.9405 0.1798

(50,50) 0.9512 0.1724 0.9471 0.1703 0.9532 0.1782 0.9489 0.1703

(100,100) 0.9513 0.1224 0.9482 0.1217 0.9187 0.1267 0.9443 0.1217

(200,150) 0.9506 0.0937 0.9448 0.0933 0.9272 0.1419 0.9075 0.1354
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5 An Example

Let us consider the analysis of a real stress-strength data which was originally
reported by Badar and Priest (1982). The data gives the strength of single
carbon fibers and impregnated 1000-carbon fiber tows. Single fibers were
tested under tension at gauge lengths of 20 mm (Set I) and 10 mm (Set II).
The strength data (Set I) consists of 67 observations and the stress data (Set II)
consists of 63 observations. The one-parameter generalized Pareto model is
fitted to both the data sets and tested their goodness of fit using Kolmogorov-
Smirnov test. The estimated value of parameters α and β are 1.1386 and
1.2847 respectively. The estimated value of stress-strength reliability R is
0.4687. The 95% generalized confidence interval obtained is (0.3311, 0.5349)
and the bootstrap confidence interval is (0.4456, 0.6210).

We recommend GPQ method for both the one and two-parameter cases
with regard to the coverage probabilities though expected length of GCIs are
slightly larger than the corresponding bootstrap intervals. The GPQ method
consistently performs well for all sample sizes. Further, GPQ method pro-
vides a tool for testing hypotheses concerning the value of R and evaluation
of its p-value.
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