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Abstract

Variations in the population can be estimated by variance estimation. In
this study, we consider variance estimation procedure using scrambled ran-
domized response for sensitive variable using multi-auxiliary variables in
multi-phase sampling. Under Noor-ul-Amin et al. (2018) RRT model, gener-
alized exponential regression type estimator for case-1and case-2 are derived.
A simulation study is presented to illustrate the application and computational
details. It is observed that proposed model showed better results under both
cases.

Keywords: Variance estimation, multi-auxiliary variables, scrambled ran-
domized response.

1 Introduction

The problems encountered in behavioral and social sciences surveys are
expecting the refusal or biasness for sensitive questions such as related to
drug addiction, HIV/AIDS disease, gambling, sexual behavior etc. In such
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situations, participants of the surveys may refuse to respond or give false
answers. So, refusal to answers or misleading answers comprise the bias and
non-sampling errors. Warner (1965) introduced RRT (Randomized Response
Technique) to reduce response error problems for sensitive questions. Eich-
horn and Hayre (1983) proposed multiplicative RRT for quantitative data.
Furthermore, scrambled response models suggested by different authors such
as: additive scrambling model (Himmelfarb and Edgel, 1980), subtractive
scrambling model (Hussain, 2012), or mixture of additive and multiplicative
scrambling models (Huang, 2010).

Variations are occurring in many practical situations such as environ-
mental, genetical, economic studies etc. Variations in the populations can
be estimated by variance estimation of population about the existence of
variability in it and used for future surveys, predictions, or sample size deter-
minations etc. For estimating variance by using of auxiliary was considered
by authors: Das and Tripathi (1978), Isaki (1983), Singh and Joarder (1998),
Shabbir and Gupta (2010), Asghar et al. (2014), Yadav et al. (2015) Yasmeen
et al. (2018). Neyman (1938) introduced the concept of two-phase, where
sample selection can be done in two-phases, in the first phase information
can be collected for the auxiliary variable for large sample and in second
phase information can be observed for study variable for relatively small
sample.

As in multipurpose surveys we need to estimate population parameters
for several variables such as in socio-economic surveys multiple variables
may be size of houses, monthly incomes, number of unemployed persons
etc. The objective of this paper is to present variance estimation pro-
cedure using scrambled randomized response for sensitive study variable
using multi-auxiliary variables in multi-phase sampling. From available
literature, we have noticed that no contribution on variance estimation
for sensitive variable using multi-auxiliary variables in multi-phase sam-
pling. In computational procedure we discuss some special cases of the
estimators.

2 Variance Estimation Procedure in RRT

Let Y be the sensitive study variable Xi(i = 1, 2, 3, . . . , n) be n non-
sensitive auxiliary variables which are correlated with Y in population. Let
S be the scrambling variables independent of Y and Xi(i = 1, 2, 3, . . . , n).
We are interested to estimate population variance of sensitive variables using
multi-auxiliary variables under following cases.
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The sampling strategy of the cases given as below:

Case 1: The information on all auxiliary variables are known (we use
single phase sampling).
Case 2: The information on all auxiliary variables are unknown. As
on the first phase large sample n1(n1 ⊂ U) is drawn to observe only
auxiliary variables. The second phase sample n2(n2 ⊂ n1) is drawn to
observe sensitive variable of interest Y and all non-sensitive auxiliary
variables (n2 < n1).

Let S2
xi

be the variance of the population and s2xi(l)
be the sample

variances of the auxiliary variable xi(i = 1, 2, . . . , n), at the l-th phases
(l = 1, 2, . . . , q). The reported optional scrambled response for Y is given
by Z = Y + kS, following Noor-ul-Amin et al. (2018).

Let s2z = 1
n(l)−1

∑n(l)

j=1 (zj − z̄(l))
2, s2xi(l)

= 1
n(l)−1

∑n(l)

i=1 (xi − x̄(l))
2 are

the sample variances of the reported response and the auxiliary variables
xi(i = 1, 2, . . . , n) respectively for the l-th phases (l = 1, 2, . . . , q) having
sample means z̄(l) = 1

n(l)

∑n(l)

j=1 zj and x̄i(l) = 1
n(l)

∑n(l)

j=1 xij .

For l-th phases (l = 1, 2, . . . , q), we define the following notations:
Let s2z(l) = S2

z (1 + ez(l)), s2xi(l)
= S2

xi
(1 + exi(l)

)

Such that

θ(l) =
1

n(l)
, (l = 1, 2, . . . , q)

Λz(1×1) = [ez(l) ], Λx(1×n) = [ex1(l)
, ex2(l)

, . . . , exn(l)
]

E(Λ′zΛz) = θl
∑

z(1×1)

, E(Λ′xΛx) = θl
∑

x(n×n)

,

E(Λ′xΛz) = θl
∑

xz(n×1)

.

Where ∑
x(2×2)

=

[
var(x1) cov(x1x2)
cov(x2x1) var(x2)

]
Let S2

z be the population variance and its unbiased variance given as:

to = S2
z and var(to) = θlS

′S
∑

z(1×1)

. (1)
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2.1 Proposed Generalized Exponential Regression Type
Estimator Using Randomized Response Technique (RRT) in
Case 1

For estimating the variance of the population for sensitive variable using
multi-auxiliary non-sensitive variables under case 1 given as:

tz = [tz](1×1); (2)

where

tz = s2z(l) +

n∑
i=1

βi(S
2
xi
− s2xi(l)

)exp

n∑
i=1

(
S2
xi
− s2xi(l)

S2
xi

+ s2xi(l)

)
; (3)

By solving (2), we have following expressions given below:

tz =

[
S2
z (1 + ez(l)) +

n∑
i=1

βi(S
2
xi
− S2

xi
(1 + exi(l)

))

]

× exp

n∑
i=1

(
S2
xi
− S2

xi
(1 + exi(l)

)

S2
xi
− S2

xi
(1 + exi(l)

)

)

tz =

[
S2
z + S2

zez(l) −
n∑

i=1

βiS
2
xi
exi(l)

]

× exp
n∑

i=1

−exi(l)

2

(
1 +

−exi(l)

2

)−1
,

tz =

[
S2
z + S2

zez(l) −
n∑

i=1

βiS
2
xi
exi(l)

]

×

[
1 +

n∑
i=1

{
−exi(l)

2

(
1 −

exi(l)

2
+
e2xi(l)

4
± · · ·

)}]

tz =

(
S2
z + S2

zez(l) −
n∑

i=1

βiS
2
xi
exi(l)

)(
1 −

n∑
i=1

exi(l)

2

)

tz =

(
S2
z + S2

zez(l) −
n∑

i=1

βiS
2
xi
exi(l)

− S2
zj

n∑
i=1

exi(l)

2

)
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tz =

(
S2
z + S2

zez(l) −
1

2

n∑
i=1

(
2βi

S2
xi

S2
z

+ 1

)
exi(l)

)

tz − S2
z = S2

z

(
ez(l) −

1

2

n∑
i=1

(2βiΨi + 1) exi(l)

)

Where Ψi =
S2
xi
S2
z

tz = [tz](1×1) =

[
S2
z

(
ez(l) −

1

2

n∑
i=1

(2βijΨi + 1)exi(l)

)]
(1×1)

(4)

For expectations, we proceed as,∑
tz(1×1)

= E(tz(1×1)
− S(1×1))

′(tz(1×1)
− S(1×1))

∑
tz(1×1)

= S4
zE

(
ez(l)(1×1)

− 1

2
ex(l)(1×m)

Φ(n×1)

)′
(
ez(l)(1×1)

− 1

2
ex(l)(1×n)

Φ(n×1)

)
(5)

Where,
Φ(n×1) = (2βiΨi + 1)(n×1)

By applying expectations, we have the following results

∑
tz(1×1)

= S′Sθl

 ∑
z(1×1)

−1

2

∑
zx(1×n)

Φ(n×1) −
1

2
Φ′(1×n)

∑
zx(n×1)

+
1

4
Φ′(1×n)

∑
x(n×n)

Φ(n×1)

 (6)

We differentiate the (5) w.r.t Φ and get the optimum value of Φ as,

Φopt(n×1) = 2

∑
zx(n×1)∑
x(n×n)

(7)
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Using (6) in (5), we get the minimum value of MSE of as:

min
∑

tz(1×1)

= S′Sθl

 ∑
z(1×1)

−
∑

zx(1×n)

−1∑
x(n×n)

∑
zx(n×1)

 (8)

Remarks 1:

1. If we replace l = 1 in (2), so it is single phase sampling using q auxiliary
variables given as:

tz1 = s2z +

n∑
i=1

βi(S
2
xi
− s2xi

)exp

n∑
i=1

(
S2
xi
− s2xi

S2
xi

+ s2xi

)
(9)

2. For single auxiliary variables we replace i = 1 and l = 1 in (2), we have
single phase sampling as:

tz2 = s2z + β(S2
x − s2x)exp

(
S2
x − s2x
S2
x + s2x

)
(10)

3. If we replace l = 1 in (2), and for two auxiliary variables in single phase
sampling given following expressions:

tz3 = s2z +
2∑

i=1

βi(S
2
xi
− s2xi

)exp
2∑

i=1

(
S2
xi
− s2xi

S2
xi

+ s2xi

)
(11)

2.2 Generalized Exponential Regression Type Estimator Using
RRT in Case 2

Let s2y(l+1)
be the sample variance of the sensitive study variables is selected

at the (l + 1)th phases. Also s2xi(l)
and s2xi(l+1)

be the sample variances of
the auxiliary variable xi(i = 1, 2, . . . , n), at the l-th and (l + 1)-th phases
of size n(l) and n(l+1) respectively. The population variance S2

xi
of all multi-

auxiliary variables is unknown.

ts = [ts](1×1); (12)

Where

ts = s2z(l+1) +

n∑
i=1

βi(s
2
xi(l)

− s2xi(l+1))exp
n∑

i=1

(
s2xi(l)

− s2xi(l+1)

s2xi(l)
+ s2xi(l+1)

)
; (13)
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By solving (12), we have the following expressions:

ts =

[
S2
z (1 + ez(l+1)

) +
n∑

i=1

βi(S
2
xi

(exi(l)
− exi(l+1)

))

]

× exp
n∑

i=1

(
S2
xi

(exi(l)
− exi(l+1)

)

2S2
xi

+ S2
xi

(exi(l)
+ exi(l+1)

)

)

ts =

[
S2
z + S2

zez(l+1)
−

n∑
i=1

βiS
2
xi

(exi(l)
− exi(l+1)

)

]

× exp
n∑

i=1

(exi(l)
− exi(l+1)

)

2

(
1 +

(exi(l)
− exi(l+1)

)

2

)−1
,

ts =

[
S2
z + S2

zez(l+1)
−

n∑
i=1

βiS
2
xi

(exi(l)
− exi(l+1)

)

]

×

[
1 +

n∑
i=1

{
(exi(l)

− exi(l+1)
)

2

(
1 −

(exi(l)
− exi(l+1)

)

2
± · · ·

)}]

ts =

(
S2
z + S2

zez(l+1)
−

n∑
i=1

βiS
2
xi

(exi(l)
− exi(l+1)

)

)

×

(
1 −

n∑
i=1

(exi(l)
− exi(l+1)

)

2

)

ts =

(
S2
z + S2

zez(l+1)
−

n∑
i=1

βiS
2
xi

(exi(l)
− exi(l+1)

)

−S2
zj

n∑
i=1

(exi(l)
− exi(l+1)

)

2

)

ts =

(
S2
z + S2

zez(l+1)
− 1

2

n∑
i=1

(
2βi

S2
xi

S2
z

+ 1

)
(exi(l)

− exi(l+1)
)

)

ts − S2
z = S2

z

(
ez(l+1)

− 1

2

n∑
i=1

(2βiΨij + 1) (exi(l)
− exi(l+1)

)

)



216 N. Mushtaq

Where Ψi =
S2
xi
S2
z

ts = [ts](1×1) =

[
S2
z

(
ez(l+1)

− 1

2

n∑
i=1

(2βiΨi + 1)(exi(l)
− exi(l+1)

)

)]
(1×1)
(14)

For expectations, we proceed as:∑
ts(1×1)

= E(ts(1×1)
− S(1×1))

′(ts(1×1)
− S(1×1))

∑
ts(1×1)

= S4
zE

(
ez(l+1)(1×1)

− 1

2
(ex(l)(1×n)

− ex(l+1)(1×n)
)Φ(n×1)

)′

×
(
ez(l+1)(1×1)

− 1

2
(ex(l)(1×n)

− ex(l+1)(1×n)
)Φ(n×1)

)
(15)

Where,
Φ(n×1) = (2βiΨi + 1)(n×1)

By applying expectations on (14), we have the following results

∑
ts(1×1)

= S′S



θ(l+1)

∑
z(1×1)

−(θ(l) − θ(l+1))
1

2

∑
zx(1×n)

Φ(n×1)

−(θ(l) − θ(l+1))
1

2
Φ′(1×n)

∑
zx(1×n)

+(θ(l) − θ(l+1))
1

4
Φ′(1×n)

∑
x(n×n)

Φ(n×1)


(16)

We differentiate (15) w.r.t Φ and get the optimum value of Φ as,

Φopt(n×1) = 2

∑
zx(n×1)∑
x(n×n)

(17)

Using (16) in (15), we get the minimum value of MSE ofas:

min
∑

ts(1×1)

= S′S

θ(l+1)

∑
z(1×1)

−(θ(l) − θ(l+1))
∑

zx(1×n)

−1∑
x(n×n)

∑
zx(n×1)


(18)
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Remarks 2:

1. If we replace l = 1 in (12), so it is two-phase sampling using q multi-
auxiliary variables:

ts1 = s2z(2) +

n∑
i=1

βi(s
2
xi(1)

− s2xi(2)
)exp

n∑
i=1

(
s2xi(1)

− s2xi(2)

s2xi(1)
+ s2xi(2)

)
(19)

2. We replace i = 1 and l = 1 in (12) so it is two-phase sampling for single
auxiliary variable:

ts2 = s2z(2) + β(s2x(1)
− s2x(2))exp

(
s2x(1)

− s2x(2)

s2x(1)
+ s2x(2)

)
(20)

3. If we replace l = 1 in (12), it is two auxiliary variables two-phase
sampling given following expressions:

ts3 = s2z(2) +

2∑
i=1

βi(s
2
xi(1)

− s2xi(2)
)exp

2∑
i=1

(
s2xi(1)

− s2xi(2)

s2xi(1)
+ s2xi(2)

)
(21)

3 Computational Procedure

We consider computational and application of proposed estimators by using
two type of simulation studies given below:

3.1 We use the simulation studies for efficiency comparison by empirically
and theoretically. Two populations for simulation studies of size 1000
each from bivariate normal populations for (Y,X), with different covari-
ance matrices are used. The Scrambling variable S ∼ N(0, 0.1σx) and
Z = Y + kS, k = −1,−0.5, 0.5, 1.

Mean of [Y,X] given as µ = [2, 2]

Population 1: ∑
=

[
9 1.9

1.9 4

]
, ρXY = 0.3209

Population 2: ∑
=

[
10 3
3 2

]
, ρXY = 0.6746;
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Population 3: ∑
=

[
6 3
3 2

]
, ρXY = 0.8684;

For each population we considered three sample sizes for first phase: n =
250,500 and for second phase given as: n1 = 100,200 respectively.

3.2 In this computational procedure, we consider single and two auxiliary
variables for both cases given as:

Yi = RXi + ei, where ei ∼ N(0, 1) and
R = 1.5.

(Sensitive Study Variable)

Xi ∼ G(a, b), where a = 2 and b = 3. (Auxiliary Variable)
wi ∼ G(a, b), where a = 2 and b = 10. (Another auxiliary variable)
S ∼ B(α, β), where α = 6.5 and
β = 0.5.

(Scrambling Variable)

Zi = Yi + kSi, i = 1, 2, 3, . . . , n,
k = −1,−0.5, 0.5, 1.

(Randomized reported response)

N = 3000,

We computed percent relative efficiencies of the proposed variance
estimators regarding to t0 for case-I and case-2 given as:

PRE =

∑5000
t=1 (t0 − S2

z )
2∑5000

t=1 (tm − S2
z )2

× 100, m = z2, z3, s2, s3.

The results of the simulation study are as in Tables 1 and 2.

4 Main Findings

The results of the estimators for case-1 and case-2 are presented in Tables 1–2
for PRE. Major findings of the estimators are:

i. PREs are higher than usual variance estimator, which are shown in
Tables 1 and2 respectively, which show the efficiency of the proposed
estimator estimators.

ii. From Table 1, it is observed that proposed estimators have the highest
efficiency when the value of correlation coefficient is highest.

iii. It is observed that the value of k varies from −1 to +1, the value of PRE
is increase of the proposed estimators in both cases.
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Table 1 Percent relative efficiencies of the proposed estimators for Section 3.1

Case-I, PRE Case-2, PRE

N =1000 k n to tz2 n1 to ts2

Pop. 1 ρXY = 0.3209 −1 500 100 100.88 200 100 100.35

250 100 101.35 100 100 100.96

−0.5 500 100 100.64 200 100 100.67

250 100 101.94 100 100 100.49

0.5 500 100 100.98 200 100 100.32

250 100 100.25 100 100 100.29

1 500 100 100.51 200 100 100.11

250 100 100.58 100 100 100.01

Pop. 2 ρXY = 0.6746 −1 500 100 118.59 200 100 111.86

250 100 119.72 100 100 109.94

−0.5 500 100 121.78 200 100 110.25

250 100 128.28 100 100 115.20

0.5 500 100 122.51 200 100 126.78

250 100 124.03 100 100 116.63

1 500 100 127.95 200 100 112.84

250 100 123.67 100 100 128.88

Pop. 3 ρXY = 0.8684 −1 500 100 228.51 200 100 150.35

250 100 211.63 100 100 145.95

−0.5 500 100 212.78 200 100 147.56

250 100 214.83 100 100 148.37

0.5 500 100 236.52 200 100 151.06

250 100 216.48 100 100 144.06

1 500 100 213.12 200 100 146.64

250 100 202.28 100 100 144.47

iv. In Table 1, we consider single and two-phase sampling using single
auxiliary variable. So, we also noticed that the value of sample size
increases efficiency of the estimators also increases.

v. In Table 2, we consider Section 3.2 and compute results for single
and two auxiliary variables for single and two-phase sampling. So, by
increasing sample size efficiency of the estimators also increases.
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Table 2 PRE of the proposed estimators in case-1 and case-2 with respect to to for Sec-
tion 3.2

PRE for case-1 PRE for case-2

k n to tz2 tz3 n1 to ts2 ts3

−1 250 100 127.43 114.77 100 100 115.59 120.09

500 100 124.51 152.49 200 100 115.20 103.37

−0.5 250 100 128.69 117.27 100 100 114.97 111.31

500 100 128.01 117.56 200 100 116.19 110.84

0.5 250 100 139.96 146.93 100 100 121.81 135.71

500 100 123.28 133.87 200 100 112.52 104.30

1 250 100 113.89 131.99 100 100 113.66 115.00

500 100 137.66 148.05 200 100 119.49 116.98

vi. From Remark 1, it is shown that tz2 and tz3 are the special cases of
tz that are for single and two-auxiliary variables respectively. From
Table 2, case-1 the efficiency for proposed two-auxiliary variables
estimator increased.

vii. From Table 2, we noticed that when the value of k increases the
efficiency of the proposed estimators is increased.

From above discussions, we can conclude that the proposed estimators
performed better as compared to population variance. So computational pro-
cedure supports the theoretical findings in both cases in randomized response
technique.

5 Concluding Remarks

The objective of the survey sampling techniques is to estimate popula-
tion characteristics with precision, and it can be increased by using proper
methodology. In this study, we have suggested variance estimation proce-
dure using scrambled randomized response and multi-auxiliary variables for
multi-phase sampling. The proposed estimators are more efficient than usual
variance estimator which is shown in Tables 1 and 2 for case-1 and case-
II. We use different sample sizes and value of k lie between (−1,1) for
different scramble responses for estimating MSEs of the proposed estimators.
From computational procedure, it can be shown that proposed estimators are
more efficient and helpful in estimation of variance for sensitive variable
using RRT.
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