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Abstract

This article addresses the problem of estimating the population mean using
information on two auxiliary variables in presence of non-response on study
variable only under stratified random sampling. A class of estimators has been
defined. We have derived the bias and mean squared error up to first order
of approximation. Optimum conditions are obtained in which the suggested
class of estimators has minimum mean squared error. In addition to Chaud-
hury et al. (2009) estimator, many estimators can be identified as a member
of the suggested class of estimators. It has been shown that the suggested
class of estimators is better than the Chaudhury et al. (2009) estimator and
other estimators. Results of the present study are supported through numerical
illustration.
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1 Introduction

In many surveys, auxiliary information is usually used to improve the
precision or accuracy of the estimator of the population mean under the
supposition that all the observations in the sample are available. However
in many surveys covering human population, information is in most cases
not obtained from all the units in the surveys even after call-backs. For
example, the selected families may not be at home at the first attempt and
some may refuse to cooperate with the interviewer even if contacted. This
is true in mail surveys in which questionnaire are mailed to the sampled
respondents who are requested to send back their returns by some dead
line. As many respondents do not reply, available sample of returns is
incomplete. The resulting incompleteness, called non response [Sukhatme
et al. (1984, pp. 484–485)]. Incompleteness or non-response in the form
of absence, censoring, or grouping is a troubling issue of several data sets.
Statisticians have identified for some time that failure to account for the
stochastic nature of incompleteness or non-response can spoil the nature of
data. An estimate derived from incomplete data may be misleading especially
when the respondents differ from the non-respondents because the estimate
can be biased. Hansen and Hurwitz (1946) suggested a method for adjusting
for non-response to address the bias problem. Their idea is to select a sub-
sample from the non-respondents to obtain an estimate for the sub-population
represented by the non-respondents [Okafor and Lee (2000, p. 183)].

When the population mean of the auxiliary variable is known; Cochran
(1977), using Hansen and Hurwitz (1946) technique, envisaged the ratio and
regression estimators of the population mean of the study variable in which
information on the auxiliary variable is obtained from all the sample units,
while some sample units failed to supply information on the study. Later
various authors including Rao (1986), Khare and Srivastava (1993, 1997),
Tripathi and Khare (1997), Okafor and Lee (2000), Tabasum and Khan (2004,
2006), Singh and Kumar (2008, 2009), Singh et al. (2010), Khare et al. (2013)
have paid their attention towards the estimation of the population mean of the
study variable using information on auxiliary variable in presence of non-
response. Singh and Khalid (2015) suggested exponential chain dual to ratio
and regression type estimators of the population mean in two-phase sampling.
Further Chaudhary et al. (2011), Haq and Shabbir (2013), Sanaullah et al.
(2015) and Saleem et al. (2018) envisaged some improved estimators of
the population mean of the study variable using auxiliary information for
stratified random sampling under non-response.

Let a finite population U = (U1, U2, . . . , UN ) of size N be strati-
fied into L strata (homogeneous). Let Nh be the size of the hth stratum
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(h = 1, 2, . . . , L):
∑L

h=1Nh = N . Let (yhi, xhi, zhi) be the values on the
ith unit of the hth stratum of the study variable y and auxiliary variables
(x, z) respectively. Corresponding to the population means (Ȳh, X̄h, Z̄h), let
(ȳh, x̄h, z̄h) be the sample means of the hth stratum respectively. In practice it
is usually not possible to gather information on all the variables/units selected
in the sample nh(

∑L
h=1 nh = n). In this paper we have studied the situation

when non-response occurs only on the study variable y whereas the two
auxiliary variables (x, z) are observed with complete response.

Let nh(1) units from a sample of size nh respond and nh(2) units do
not. Employing Hansen and Hurwitz (1946) method of sub-sampling the
non-respondents, a sub-sample of size rh(rh =

nh(2)

fh
, fh > 1) from nh(2)

non-respondent group is selected at random and 1
fh

denotes the sampling

fraction among the non-respondent group in the hth stratum. In practice, rh
is generally not integer and has to be rounded. In accordance with most of
the current literature on this research topic, we suppose that the followed-
up rh(⊂ nh(2)) units respond on the second call. Further, let d denotes a
dummy variable taking value dhi on the ith population unit of stratum h and
has hth stratum population mean D̄h. Hereafter, d may stand for if, x or for a
second auxiliary variable z (i.e. dh may stand for yh, xh and zh in stratified
sampling). Let

d̄nh(1)
=

1

nh(1)

nh(1)∑
i=1

dhi(1), d̄rh(2) =
1

rh

rh∑
i=1

dhi(2)

and
d̄∗h =

nh(1)

nh
d̄nh(2) +

nh(2)

nh
d̄rh(2), (1)

where d̄nh(2) is the mean of nh(1) respondents on first call and drh(2) is the
mean of rh units respond on the second call and d̄∗h denotes the unbiased
Hansen and Hurwitz (1946) estimator of D̄h for stratum h.

Thus we define an unbiased estimator of the population mean D̄ =∑L
h=1WhD̄h as

d̄∗st =
L∑

h=1

Whd̄
∗
h (2)

and the variance/MSE of d̄∗st is given by

V (d̄∗st) =

L∑
h=1

δhW
2
hS

2
dh +

L∑
h=1

δ∗hW
2
hS

2
dh(2), (3)
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where S2
dh =

∑Nh
i=1(dhi−D̄h)2

(Nh−1) and S2
dh(2) =

∑Nh(2)
i=1 (dhi−D̄h(2))

2

(Nh(2)−1) are respec-

tively mean square of entire group and non-response group of variable d in the

population for the hth stratum,Wh = Nh
N , δh = ( 1

nh
− 1

Nh
), δ∗h =

(fh−1)Wh(2)

nh
,

Wh(2) =
Nh(2)

Nh
, fh =

nh(2)

rh
and Nh(2) being the size of the non-response

group of the population in the hth stratum.
For obtaining the bias and mean squared errors (MSEs) of the proposed

estimators we below give the values of the required expectations:
We write

ȳ∗st = Ȳ (1 + e∗0), x̄st = X̄(1 + e1), z̄st = Z̄(1 + e2)

such that
E(e∗0) = E(e1) = E(e2) = 0

and

E(e∗2
0 ) =

1

Ȳ 2

L∑
h=1

W 2
h (δhS

2
yh + δ∗hS

2
yh(2)) = V ∗

020,

E(e2
1) =

1

X̄2

L∑
h=1

W 2
hδhS

2
xh = V200,

E(e2
2) =

1

Z̄2

L∑
h=1

W 2
hδhS

2
zh = V002,

E(e∗0e1) =
1

X̄Ȳ

L∑
h=1

W 2
hδhSyxh = V110,

E(e∗0e2) =
1

Ȳ Z̄

L∑
h=1

W 2
hδhSyzh = V011,

E(e1e2) =
1

X̄Z̄

L∑
h=1

W 2
hδhSxzh = V101,

where

Syxh =
1

(Nh − 1)

Nh∑
i=1

(xhi − X̄h)(yhi − Ȳh) = ρyxhSxhSyh,
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Syzh =
1

(Nh − 1)

Nh∑
i=1

(yhi − Ȳh)(zhi − Z̄h) = ρyzhSyhSzh,

Sxzh =
1

(Nh − 1)

Nh∑
i=1

(xhi − X̄h)(zhi − Z̄h) = ρxzhSxhSzh,

Ȳh =
1

Nh

Nh∑
i=1

yhi, X̄h =
1

Nh

Nh∑
i=1

xhi, Z̄h =
1

Nh

Nh∑
i=1

zhi,

Ȳh(2) =
1

Nh(2)

Nh(2)∑
i=1

yhi, X̄h(2) =
1

Nh(2)

Nh(2)∑
i=1

xhi, Z̄h(2) =
1

Nh(2)

Nh(2)∑
i=1

zhi,

(ρyxh, ρxzh, ρyzh) are the correlation coefficients between the subscripted
variables of entire population.

2 Suggested Class of Estimators for Estimating
Population Mean in Stratified Sampling in Presence of
Non-Response

When non-response occurs only on the study variable y (i.e. incomplete
information is available on the study variable y in the hth stratum while
complete information on the sample of size nh is available for the auxiliary
variables (x,z)), we define the following class of estimators for population
mean Ȳ as

t(M1,M2) = ȳ∗st



M1

{
axX̄ + bx

αx(axx̄st + bx) + (1 − αx)(axX̄ + bx)

}gx

{
azZ̄ + bz

αz(az z̄st + bz) + (1 − αz)(azZ̄ + bz)

}gz

+M2 exp

{
−αxhxax(x̄st − X̄)

(2 − αx)(axX̄ + bx) + αx(axx̄st + bx)

}
exp

{
−αzhzaz(z̄st − Z̄)

(2 − αz)(azZ̄ + bz) + αz(az z̄st + bz)

}


,

(4)

where (gx, gz, hx, hz, αx, αz, ax, az, bx, bz) are suitably chosen scalars and
(M1,M2) are constants to be determined such that MSE of t(M1,M2) is
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minimum. For (M1, gz,M2) = (1, 0, 0) the class of estimators t(M1,M2)

reduces to the family of estimators due to Chaudhary et al. (2009).
Using the standard procedure we obtained the bias and MSE of t(M1,M2)

to the first degree of approximation, respectively given by

B(tM1,M2) = Ȳ



M1



1 − (gxαxυx)V110 − (gzαzυz)V011

+ (gxαxυx)(gzαzυz)V101

+
gx(gx + 1)

2
(αxυx)2V200

+
gz(gz + 1)

2
(αzυz)

2V002



+M2



1 − (hxαxυx)

2
V110

−(hzαzυz)

2
V011

+
(hxαxυx)(hzαzυz)

4
V101

+
hx(hx + 2)(αxυx)2

8
V200

+
hz(hz + 2)(αzυz)

2

8
V002



− 1


= Ȳ [M1E4 +M2E5 − 1], (5)

MSE(t(M1,M2)) = Ȳ 2[1 +M2
1E1

+M2
2E2 + 2M1M2E3 − 2M1E4 − 2M2E5], (6)

where

E1 =

1 + V ∗
020 + (αxυx)2gx(2gx + 1)V200 + (αzυz)

2gz(2gz + 1)V002

− 4(gxαxυx)V110

− 4(gzαzυz)V011 + 4(gxαxυx)(gzαzυz)V101

 ,

E2 =


1 + V ∗

020 +
(αxυx)2hx(hx + 1)

2
V200 +

(αzυz)
2hz(hz + 1)

2
V002

− 2(hxαxυx)V110 − 2(hzαzυz)V011

+ (hxαxυx)(hzαzυz)V101

 ,
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E3 =



1 + V ∗
020 +

(2gx + hx)(2gx + hx + 2)(αxυx)2

8
V200

+
(2gz + hz)(2gz + hz + 2)(αzυz)

2

8
V002

−(2gx + hx)(αxυx)

2
V110 −

(2gz + hz)(αzυz)

2
V011

+
(2gx + hx)(2gz + hz)(αxυx)(αzυz)

4
V101


,

E4 =

1 − (gxαxυx)V110 − (gzαzυz)V011 + (gxαxυx)(gzαzυz)V101

+
gx(gx + 1)

2
(αxυx)2V200 +

gz(gz + 1)

2
(αzυz)

2V002

 ,

E5 =


1 − (hxαxυx)

2
V110 −

(hzαzυz)

2
V011 +

(hxαxυx)(hzαzυz)

4
V101

+
hx(hx + 2)(αxυx)2

8
V200 +

hz(hz + 1)(αzυz)
2

8
V002

.

υx =
axX̄

axX̄ + bx
and υz =

azZ̄

azZ̄ + bz
.

The MSE(t(M1,M2)) at (6) is minimized for

M1 =
(E2E4 − E3E5)

(E1E2 − E2
3)

= M10 (say)

M2 =
(E1E5 − E3E4)

(E1E2 − E2
3)

= M20 (say)

 . (7)

Substitution of (7) in (6) yields the minimum MSE of t(M1,M2) as

MSEmin(t(M1,M2)) = Ȳ 2

[
1 − (E2E

2
4 − 2E3E4E5 + E1E

2
5)

(E1E2 − E2
3)

]
. (8)

Thus we arrived at the following theorem.

Theorem 2.1. The MSE of the suggested class of estimators t(M1,M2) is
greater than equal to the minimum MSE of t(M1,M2) i.e.

MSE(t(M1,M2)) ≥ Ȳ 2

[
1 − (E2E

2
4 − 2E3E4E5 + E1E

2
5)

(E1E2 − E2
3)

]
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with equality holding if

M1 = M10 and M2 = M20.

A large number of estimators can be generated from the proposed class
of estimators t(M1,M2) for suitable values of scalars involved in it. Some
members of the proposed class of estimators t(M1,M2) are discussed below.

2.1 Some Members of the Proposed Class of Estimators

Case I. Putting M1 = M and M2 = (1 − M) in (4) we get a class of
estimators for population mean Ȳ as

tM = ȳ∗st



M

{
axX̄ + bx

αx(axx̄st + bx) + (1 − αx)(axX̄ + bx)

}gx

{
azZ̄ + bz

αz(az z̄st + bz) + (1 − αz)(azZ̄ + bz)

}gz

+(1 −M) exp

{
−αxhxax(x̄st − X̄)

(2 − αx)(axX̄ + bx) + αx(axx̄st + bx)

}
exp

{
−αzhzaz(z̄st − Z̄)

(2 − αz)(azZ̄ + bz) + αz(az z̄st + bz)

}


.

(9)
Inserting M1 = M and M2 = (1−M) in (5) and (6) we get the bias and

MSE of tM to the first degree of approximation as

B(tM ) = Ȳ



M



(Hx −Gx)V110 + (Hz −Gz)V011

+(GxGz −HxHz)V101

+

(
gx(gx + 1)

2
− hz(hz + 2)

8

)
(αxυx)2V200

+

(
gz(gz + 1)

2
− hz(hz + 2)

8

)
(αzυz)

2V002


hx(hx + 2)(αxυx)2

8
V200 +

hz(hz + 2)(αzυz)
2

8
V002

−HxV110 −HzV011 +HxHzV101


,

(10)
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MSE(tM ) = Ȳ 2[1 + E2 − 2E5 +M2(E1 + E2 − 2E3)

− 2M(E2 − E3 + E4 − E5)], (11)

where

Hx =
(hxαxυx)

2
, Hz =

(hzαzυz)

2
,

Gx = (gxαxυx) and Gz = (gzαzυz).

The MSE(tM ) at (11) is minimum when

M =
(E2 − E3 + E4 − E5)

(E1 + E2 − 2E3)
= M0 (say). (12)

Thus the resulting minimum MSE of tM is given by

MSEmin(tM ) = Ȳ 2

[
1 + E2 − 2E5 −

(E2 − E3 + E4 − E5)2

(E1 + E2 − 2E3)

]
. (13)

Now we arrived at the following theorem.

Theorem 2.2. To the first degree if approximation,

MSE(tM ) ≥ Ȳ 2

[
1 + E2 − 2E5 −

(E2 − E3 + E4 − E5)2

(E1 + E2 − 2E3)

]
with equality holding if

M =
(E2 − E3 + E4 − E5)

(E1 + E2 − 2E3)
.

Case II. If we set M2 = 0 in (4) we get the class of estimators for Ȳ as

tM1 = M1ȳ
∗
st

{
axX̄ + bx

αx(axx̄st + bx) + (1 − αx)(axX̄ + bx)

}gx

{
azZ̄ + bz

αz(az z̄st + bz) + (1 − αz)(azZ̄ + bz)

}gz

. (14)

Putting M2 = 0 in (5) and (6) we get the bias and MSE of tM1 to the first
degree of approximation as

B(tM1) = Ȳ (M1E4 − 1), (15)

MSE(tM1) = Ȳ 2(1 +M2
1E1 − 2M1E4). (16)
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The MSE(tM1) at (16) is minimum when

M1 =
E4

E1
= M1(opt). (17)

Thus the resulting minimum MSE of tM1 is given by

MSEmin(tM1) = Ȳ 2

(
1 − E2

4

E1

)
. (18)

Now we arrived at the following theorem.

Theorem 2.3. The MSE of tM1 is greater than equal to the minimum MSE of
tM1 i.e.

MSE(tM1) ≥ Ȳ 2

(
1 − E2

4

E1

)
with equality holding if

M1 =
E4

E1
.

Case III. If we put gz = 0 in (14) we get an improved version of Chaudhary
et al. (2009) class of estimators as

tM1(1)
= M1ȳ

∗
st

{
axX̄ + bx

αx(axx̄st + bx) + (1 − αx)(axX̄ + bx)

}gx

. (19)

Inserting gz = 0 in (15) and (16) we get the bias and MSE of tM1(1)
to the

first degree of approximation as

B(tM1(1)
) = Ȳ (M1E

∗
4 − 1), (20)

MSE(tM1(1)
) = Ȳ 2(1 +M2

1E
∗
1 − 2M1E

∗
4), (21)

where

E∗
1 = [1 + V ∗

020 + (αxυx)2gx(gx + 1)V200 − 4(gxαxυx)V110],

E∗
4 = [1 − (gxαxυx)V110 +

gx(gx + 1)

2
(αxυx)2V200].

The MSE(tM1(1)
) at (21) is minimum when

M1 =
E∗

4

E∗
1

.
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Thus the resulting minimum MSE of tM1(1)
is given by

MSEmin(tM1(1)
) = Ȳ 2

(
1 − E∗2

4

E∗
1

)
(22)

We now established the following theorem.

Theorem 2.4. The MSE of tM1(1)
is greater than equal to the minimum MSE

of tM1(1)
i.e.

MSE(tM1(1)
) ≥ Ȳ 2

(
1 − E∗2

4

E∗
1

)
with equality holding if

M1 =
E∗

4

E∗
1

.

2.2 Efficiency Comparison

• From (8) and (13) we have that

MSEmin(t(M1,M2)) < MSEmin(tM ) if

(E2E
2
4 − 2E3E4E5 + E1E

2
5)

(E1E2 − E2
3)

> 2E5 − E2 +
(E2 − E3 + E4 − E5)2

(E1 + E2 − 2E3)
.

(23)
This always met in survey situations. Thus the proposed class of estima-

tors t(M1,M2) is more efficient than the class of estimators tM .

• From (8) and (18) we note that

MSEmin(tM1) −MSEmin(t(M1,M2)) =
Ȳ 2(E1E5 − E3E4)2

E1(E1E2 − E2
3)

> 0, (24)

which follows that the proposed class of estimators t(M1,M2) is better than
tM1-family of estimators and hence it is more efficient than tM1(1)

-family of
estimators.

If we set M1 = 1 in (19) we get a class of estimators due to Chaudhury
et al. (2009):

tC = ȳ∗st

{
axX̄ + bx

αx(axx̄st + bx) + (1 − αx)(axX̄ + bx)

}gx

(25)
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To the first degree of approximation the bias and MSE of tC are
respectively given as

B(tC) = Ȳ (E∗
4 − 1), (26)

MSE(tC) = Ȳ 2(1 + E∗
1 − 2E∗

4). (27)

We have from (22) and (27) we have

MSE(tC) −MSEmin(tM1(1)
) =

Ȳ 2(E∗
1 − E∗

4)2

E∗
1

> 0 (28)

which follows that the proposed tM1(1)
-family of estimators is more efficient

than Chaudhury et al. (2009) class of estimators tC .
Finally it follows from (24) and (28) that the proposed t(M1,M2)-family of

estimators is better than tM1(1)
and tC-families of estimators.

3 Numerical Illustration

For numerical illustration we consider a data set [Source: Koyuncu and
Kadilar (2009)], in which y: Number of teachers; x: number of students and
z: number of classes in primary and secondary schools for 923 districts and 6
regions in Turkey in 2007.

Stratum (h) 1 2 3 4 5 6

Stratified mean, Nh 127 117 103 170 205 201

Standard deviations nh 31 21 29 38 22 39

and Correlation n′
h 70 50 75 95 70 90

coefficients Syh 883.84 644.92 1033.40 810.58 403.65 711.72

Sxh 30486.70 15180.77 27549.69 18218.93 8497.77 23094.14

Szh 555.58 365.46 612.95 458.03 260.85 397.05

Ȳh 703.74 413.00 573.17 424.66 267.03 393.84

X̄h 20804.59 9211.79 14309.30 9478.85 5569.95 12997.59

Z̄h 498.28 318.33 431.36 311.32 227.20 313.71

ρyxh 0.94 1.00 0.99 0.98 0.99 0.97

ρxzh 0.94 0.97 0.98 0.96 0.97 1.00

ρyzh 0.98 0.98 0.98 0.98 0.96 0.98

Wh=10% Syh(2) 510.57 386.77 1872.88 1603.30 264.19 497.84

Non-response Sxh(2) 9446.93 9198.29 52429.99 34794.90 4972.56 12485.10
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Stratum (h) 1 2 3 4 5 6

Szh(2) 303.92 278.51 960.71 821.29 190.85 287.99

ρyxh(2) 1.00 1.00 1.00 0.97 1.00 0.93

ρxzh(2) 0.99 0.99 1.00 0.96 0.99 0.98

ρyzh(2) 0.99 0.99 1.00 0.99 0.99 0.96

Wh=20% Syh(2) 396.77 406.15 1654.40 1333.35 335.83 903.91

Non-response Sxh(2) 7439.16 8880.46 45784.78 29219.30 6540.43 28411.44

Szh(2) 244.56 274.42 965.42 680.28 214.49 469.86

ρyxh(2) 1.00 0.99 1.00 0.98 1.00 0.99

ρxzh(2) 0.99 0.99 0.98 0.96 0.98 0.98

ρyzh(2) 0.99 0.98 0.98 0.99 0.98 0.99

Wh=30% Syh(2) 500.26 356.95 1383.70 1193.47 289.41 825.24

Non-response Sxh(2) 14017.99 7812.00 38379.77 26090.60 5611.32 24571.95

Szh(2) 284.44 247.63 811.21 631.28 188.30 437.90

ρyxh(2) 0.96 0.99 1.00 0.98 1.00 0.97

ρxzh(2) 0.91 0.98 0.98 0.97 0.98 0.96

ρyzh(2) 0.97 0.98 0.98 0.99 0.98 0.98

Table 1 PRE of tC when Wh = 10%, 20% and 30% non-response for different values of
the constants (gx, αx, hx, ax, bx)

gx αx hx ax bx 10% 20% 30%

−0.5 −0.20 0.75 1 1 118.84 115.69 113.44

−0.5 −0.25 0.75 1 1 124.26 145.26 166.26

−0.5 −0.30 0.75 1 1 130.01 151.98 173.95

−0.5 −0.40 0.75 1 1 142.56 166.65 190.73

−0.5 −0.50 0.75 1 1 156.64 183.11 209.58

−0.5 −0.60 0.75 1 1 172.43 201.56 230.7

Table 1 gives the PRE of the Chaudhury et al. (2009) class of estimators
tC when Wh = 10%, 20% and 30% non-response respectively for different
values of the constants (gx, αx, hx, ax, bx).

Table 2 gives the PRE of estimator tM when Wh = 10%, 20%
and 30% non-response respectively for various values of the constants
(gx, gz, αx, αz, hx, hz, ax, az, bx, bz).
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Table 2 PRE of tM when Wh = 10%, 20% and 30% non-response for different values of
the constants (gx, gz, αx, αz, hx, hz, ax, az, bx, bz)

gx gz αx αz hx hz ax az bx bz 10% 20% 30%

−0.5 −0.5 −0.2 −0.2 0.75 1.25 1 1 1 1 841 406.07 292.87

−0.5 −0.5 −0.3 −0.3 0.75 1.25 1 1 1 1 652.71 764.80 875.35

−0.5 −0.5 −0.25 −0.25 0.75 1.25 1 1 1 1 715.58 838.56 959.76

−0.5 −0.5 −0.4 −0.3 0.75 1.25 1 1 1 1 841.53 986.46 1129.05

−0.5 −0.5 −0.3 −0.25 0.75 1.25 1 1 1 1 928.01 1088.16 1245.45

−0.5 −0.5 −0.5 −0.3 0.75 1.25 1 1 1 1 936.55 1097.88 1256.58

−0.5 −0.5 −0.4 −0.25 0.75 1.25 1 1 1 1 1304.33 1530.74 1751.99

−0.5 −0.5 −0.5 −0.25 0.75 1.25 1 1 1 1 1409.92 1654.48 1893.63

−0.5 −0.5 −0.25 −0.2 0.75 1.25 1 1 1 1 1515.89 1780.35 2037.68

−0.5 −0.5 −0.6 −0.2 0.75 1.25 1 1 1 1 2619.87 3079.66 3524.80

−0.5 −0.5 −0.3 −0.2 0.75 1.25 1 1 1 1 2854.18 3364.82 3851.19

−0.5 −0.5 −0.5 −0.2 0.75 1.25 1 1 1 1 4795.72 5670.80 6490.48

Table 3 PRE of tM1 when Wh = 10%, 20% and 30% non-response for different values of
the constants (gx, gz, αx, αz, hx, hz, ax, az, bx, bz)

gx gz αx αz hx hz ax az bx bz 10% 20% 30%

−0.5 −0.5 −0.2 −0.2 0.75 1.25 1 1 1 1 137.09 130.58 126.19

−0.5 −0.5 −0.25 −0.2 0.75 1.25 1 1 1 1 143.51 167.78 192.03

−0.5 −0.5 −0.25 −0.25 0.75 1.25 1 1 1 1 148.61 173.73 198.85

−0.5 −0.5 −0.3 −0.2 0.75 1.25 1 1 1 1 150.33 175.75 201.15

−0.5 −0.5 −0.3 −0.25 0.75 1.25 1 1 1 1 155.75 182.09 208.41

−0.5 −0.5 −0.3 −0.3 0.75 1.25 1 1 1 1 161.42 188.73 216.01

−0.5 −0.5 −0.4 −0.25 0.75 1.25 1 1 1 1 171.36 200.35 229.31

−0.5 −0.5 −0.4 −0.3 0.75 1.25 1 1 1 1 177.79 207.87 237.92

−0.5 −0.5 −0.5 −0.2 0.75 1.25 1 1 1 1 181.97 212.74 243.49

−0.5 −0.5 −0.5 −0.25 0.75 1.25 1 1 1 1 188.91 220.86 252.79

−0.5 −0.5 −0.5 −0.3 0.75 1.25 1 1 1 1 196.17 229.37 262.52

−0.5 −0.5 −0.6 −0.2 0.75 1.25 1 1 1 1 200.74 234.69 268.61

Table 3 gives the PRE of estimator tM1 when Wh = 10%, 20%
and 30% non-response respectively for multiple values of the constants
(gx, gz, αx, αz, hx, hz, ax, az, bx, bz).

Table 4 shows the PRE of the proposed estimator t(M1,M2)

when Wh is 10%, 20% and 30% respectively at varying constants
(gx, gz, αx, αz, hx, hz, ax, az, bx, bz).
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Table 4 PRE of the proposed estimator t(M1,M2) when Wh = 10%, 20% and 30% non-
response for different values of the constants (gx, gz, αx, αz, hx, hz, ax, az, bx, bz)

gx gz αx αz hx hz ax az bx bz 10% 20% 30%

−0.5 −0.5 −0.2 −0.2 0.75 1.25 1 1 1 1 919.84 415.39 295.18

−0.5 −0.5 −0.3 −0.3 0.75 1.25 1 1 1 1 693.78 813.14 930.68

−0.5 −0.5 −0.25 −0.25 0.75 1.25 1 1 1 1 767.55 899.74 1029.80

−0.5 −0.5 −0.4 −0.3 0.75 1.25 1 1 1 1 931.43 1092.35 1250.25

−0.5 −0.5 −0.3 −0.25 0.75 1.25 1 1 1 1 1038.48 1218.37 1394.48

−0.5 −0.5 −0.5 −0.3 0.75 1.25 1 1 1 1 1065.42 1249.68 1430.31

−0.5 −0.5 −0.4 −0.25 0.75 1.25 1 1 1 1 1598.60 1878.31 2149.81

−0.5 −0.5 −0.5 −0.25 0.75 1.25 1 1 1 1 1802.76 2118.4 2424.60

−0.5 −0.5 −0.25 −0.2 0.75 1.25 1 1 1 1 1906.51 2242.58 2566.73

−0.5 −0.5 −0.3 −0.2 0.75 1.25 1 1 1 1 5238.85 6226.55 7126.56

−0.5 −0.5 −0.6 −0.2 0.75 1.25 1 1 1 1 5327.30 6303.86 7215.05

−0.5 −0.5 −0.5 −0.2 0.75 1.25 1 1 1 1 68342.8 96766.1 110753

It is observed from Tables 2–4 that for the constants (gx, gz, αx, αz, hx,
hz, ax, az , bx, bz) considered in these tables, the PREs of the estimators tC ,
tM , tM1 and t(M1,M2) are larger than 100%. So the estimators tC , tM , tM1 and
t(M1,M2) are more efficient than the usual unbiased estimator ȳ∗st which does
not utilize auxiliary information. It shows that the use of auxiliary variable(s)
at the estimation stage is advantageous. For all the choices of constants
(gx, gz, αx, αz, hx, hz, ax, az, bx, bz) the PREs increase for increasing values
of Wh expect for the values of constants given in first row of the Tables 2–4,
where the values of PREs decrease with increasing values ofWh. Larger gain
in efficiency is observed by using the proposed class of estimators t(M1,M2)

over ȳ∗st as compared to the estimators tC , tM and tM1 . From the results of
the Table 4 it is clear that there is enough scope of selecting the values of the
constants (gx, gz, αx, αz, hx, hz, ax, az, bx, bz) in obtaining estimators from
the suggested class of estimators t(M1,M2) better than the estimators ȳ∗st, tC ,
tM and tM1 . Thus the proposal of the class of estimators t(M1,M2) is justified.

4 Conclusion

In this article we have developed the generalized version of Chaudhury et al.
(2009) estimator using information on two auxiliary variables in presence
of non-response under stratified sampling. In addition to Chaudhury et al.
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(2009) estimator, a large number of estimators can be identified as a member
of the suggested class of estimators. We have obtained the bias and MSE of
the envisaged class of estimators t(M1,M2) up to first order of approximation.
The conditions are obtained at which the class of estimators t(M1,M2) has
the minimum MSE. Thus this study unifies several results at one place. So it
is advantageous to the researchers engaged in this area. It has been demon-
strated both theoretically and numerically that proposed class of estimators
t(M1,M2) is more efficient than the Chaudhury et al. (2009) estimator. Thus we
recommend the proposed class of estimators t(M1,M2) for its use in practice.
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