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Abstract

The need for suitable replacement policies are essential to minimize down
time, maintenance cost and maximize the availability and reliability of
equipment. On this premise, this work models the failure rate of Photo-
copy machines and obtain its optimal preventive maintenance policy that
would prevent damage and its attendant losses to both users and end-product
consumers. The failure distribution of the machine was shown to follow
the Log-Logistic distribution with shape parameter, α̂ = 1.723339368 and
scale parameter, β̂ = 763.9219635. Optimal probabilities of the distri-
bution were obtained and utilized in both the cumulative failure function
and cumulative hazard function-based replacement models to formulate a
replacement maintenance policy for the machine. The failure cumulative
function-based replacement model was found to be a better model which
yields optimal replacement maintenance time of 166 hours at a minimum
cost of 113 Naira for maintaining the machine per cycle time with 96%
availability, 94% reliability and 0.07% chance of failure occurrence in the
machine.
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1 Introduction

All equipment fail, degrade or age during operation. Equipment failure is
economically harmful to both users and end-product consumers, hence, the
need to determine a suitable replacement maintenance policy in this work that
would minimize down time, maintenance cost and maximize the availability
and reliability of equipment. Failure models have been applied successfully
in reliability theory of both repairable and non-repairable systems to model
the failure data of equipment. Various distributions are exhibited by different
systems based on their failure mode. Examples of these models are the Nor-
mal, Log-Normal, Log-Logistic, Weibull, Birnbaum-Saunders (fatigue life),
Gamma, Gumbel models, etc. Consequently, the choice of a life distribution
model can either depends on the failure mode or the goodness-of-fit test of
sample data.

The Log-Logistic distribution is the probability distribution of a random
variable whose logarithm has a logistic distribution. It is a very popu-
lar distribution pioneered to model population growth; Verhulst (1838). It
has attracted a wide applicability in survival and reliability analysis over
the last few decades, particularly for events whose rate increases initially
and decrease later; Mahmoud and Mohammed (2013). For instance, it
has been used in modeling mortality from cancer following diagnosis or
treatment; Gupta et al. (1999). Anderson, McClure, Baird-Parker and Cole
(1996) used this model to describe the thermal inactivation of clostrid-
ium botulinum 213B at different temperature levels. In income inequality
literature, the Log-Logistic model is well-known as the Fisk distribution
due to Fisk (1961). It has also been widely used in many areas such as
survival analysis, actuarial science, economics, engineering and hydrology.
In hydrology, it has been used to model stream flow and precipitation;
see, Shoukri et al (1988) and Ashkar and Mahdi (2006), and for model-
ing flood frequency; Ahmad et al. (1988). Furthermore, it is also used to
model censored data usually common in reliability and life-testing experi-
ments; Tahir et al. (2014). The log-logistic distribution is a derivation from
the logistic distribution as stated in Clark and El-Taha (2015) and can
be alternatively used in place of lognormal distribution; Akhter and Khan
(2014).
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Tahara and Nishida (1975) introduced the maintenance policy, “replace
the unit at the first failure after t0 hours of operation or when the total
operating time reaches T0(0 ≤ t0 ≤ T0) whichever occurs first. If t0 = 0,
it becomes the basic age replacement policy. Nakagawa (1984) extended the
age replacement policy (T-policy) to replacing equipment at time, T or at
number of failures, N whichever occurs first, and undergoes minimal repair
at failure between replacements (T-N policy). While Segawa et al. (1992)
investigated the optimal age replacement problem with minimal repairs under
the average cost criterion, and showed that among all allowable policies, an
optimal policy is a T-policy. Wang and Pham (1996) made another extension
of age replacement policy, called “mixed age preventive maintenance policy.”
Bahrami et al. (2000) proposed a new perspective of block and age replace-
ment models based on the failure cumulative function, which were both
applied on a hydraulic jack in the crankshaft line in a car engine manufactur-
ing company. Also, Cassady and Pohl (2003) proposed an age replacement
model based on cumulative hazard function, which was applied on a drilling
machine to optimize the time to failure and the cost of replacement of any
component of the machine.

Huynh et al. (2012) dealt with age replacement policies with minimal
repairs for single-unit repairable systems which are subject to competing and
dependent failures due to degradation and traumatic shocks, while Mahdavi
and Mahdavi (2009) proposed a new optimal age policy to maximize system
reliability. Chouhan et al. (2013) summarizes, classifies, and compares varied
existing maintenance policies for each single and multiple-unit systems.
Other works on the application of replacement models in the literature
include; Jibril and Ekundayo (2015, Lamberson (2013) and Staye (2014).

1.1 Assumptions of the Study

i. Observed failures at each time, t are continuously and independently
distributed.

ii. The failure of a life distribution of the machine, f(t) is assumed to occur
at the end of time, t.

iii. The failures that occur at each time, t are independently and continu-
ously distributed.

iv. Failures occur at random in the machine.
v. Failure of a component implies failure of the Machine.
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2 Methodology

2.1 The Failure Distribution Function

The inter-failure times of Photocopy Machine was shown to follow the Log-
Logistic distribution using chi-square goodness-of-fit test with the aid of
Easyfit (5.6) version software having the rank of 1. This implies that it is the
best fit model for the sample data in the family of life distribution functions.

2.2 The Log-Logistic Probability Density Function

Let a random variable Y follows a logistic distribution with parameter µ and
σ2; Y∼L(µ, σ2) where −∞ < µ <∞ and σ2 > 0 with pdf;
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To obtain the probability density function (pdf) of a Log-Logistic distri-
bution, it is useful to make the following substitutions; see, Clark and El-Taha
(2015);

Let β = eµ; (β > 0)
and α = π

σ
√
3
; (α > 0)

g(y) = α
e−αyeαµ

(1 + e−αyeαµ)2
= α

e−αyβα

(e−αyβα)2
[

1
e−αyβα + 1

]2
∴ g(y) =

αeαyβ−α

(1 + eαyβ−α)2
(2)

Also, we let Y be the logarithm of another random variable T {i.e. T =
eY ; ⇒ y = ln(t)}. Then the pdf of T can be obtained using the following
transformation technique;

f(t) =

∣∣∣∣dydt
∣∣∣∣ g(y), where y = ln(t)
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Where f(t) is the Log-Logistic pdf with Continuous scale parameter β
and continuous shape parameter α.

2.3 Log-Logistic Cumulative Density Function

From the pdf of T , we can also obtain its cumulative density function (cdf) as;
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2.4 Estimation of the Log-Logistic Distribution Parameters

The method of moments was used to estimate the mean, µ and variance, σ2 of
the log-logistic distribution. The use of data for this purpose, without personal
identifiers, was proposed to the Institutional Review Board, which ruled
it exempt from further review; Clark and El-Taha (2015). As an example,
theoretical log-logistic distribution was fitted in this way to data from 333
cases of Coronary Artery Bypass Grafting (CABG) performed at the Maine
Medical Center in 2013. Therefore, the following substitutions were made;

β̂ = eµ̂ (5)

α̂ =
π

σ̂
√
3

(6)

where

µ̂ =
1

n

n∑
i=1

ln(t) (7)

and

σ̂ =

√√√√ 1
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[
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[ln(t)]2 − nµ̂2
]

(8)

2.5 Mean and Variance of a Log-logistic Distribution with
Parameters α,β (LL(α,β))

The rth moment of T exist for r < β, and is expressed as;
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If α > 1, (9) becomes;
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2.6 Log-Logistic Survival (or Reliability) Function

This is the probability that a variate takes on a value greater than t which
denotes the probability that a unit survives beyond time, t:

S(t) = P (T > t) = 1− F (t) = 1− 1
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2.7 The Hazard Function, h(t) of the Log-Logistic Distribution

The hazard function is used in reliability applications to describe the instanta-
neous failure rate at any point in time. It varies with time for this distribution
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and is given as;

h(t) =
f(t)

S(t)
=

{(
t
β

)α−1(
α
β

)
(
1+
(
t
β

)α)2
}

{
(βt )

α

1+(βt )
α

} =

(
t
β

)α−1 (
α
β

)
1 +

(
t
β

)α (13)

2.8 The Cumulative Hazard Function of the Log-Logistic
Distribution

Recall: f(t) =
d

dt
F (t) =

d
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(1− S(t)) = −S′(t)

Then, h(t) = −S
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2.9 Replacement Models for DC-6240L Triumph-Adler
Photocopy Machine

In developing a replacement model, the decision criterion is defined by
E[C(t)], which is the expected cost per cycle of replacing a part of the system
in cycle period (0, t]. The expected number of failure occurring in the cycle
period (0, t] is equal to the probability of occurrence of a failure before time,
t. Bahrami (2000) denoted the number of failures occurring during the period
(0, t] by N(t), which is a discrete random variable with probability distribution
function defined as;

P [N(t) = n] = G(n);n = 1, 2, 3, . . .

The mean number of failure during the cycle period (0, t] is;

E[N(t)] =

N(t)=n∑
N(t)=0

N(t) ∗G(N(t))
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G(N(t)) is the probability distribution function of N(t) failures occurring
in the period (0, t] with the assumption that each interval is made as short as
possible so that the probability of having more than one failure is negligible.
That is;

P [N(t) = 2] < P [N(t) = 1];P [N(t) = 3] < P [N(t) = 2];

P [N(t) = 4] < P [N(t) = 3], etc.

Therefore, P [N(t) = 1] > P [N(t) = 2] > P [N(t) = 3] > P [N(t) = 4] > · · ·
In the case of preventive replacement at time, τ the expected number of

failures in the period (0, τ ) can be estimated from the following;

G(1) = P [N(τ) = 1] ∼= F (τ)

G(0) = P [N(τ) = 0] ∼= 1− F (τ)

E(N(τ)) =

{ ∞∑
n=0

n ∗G(n)

}
= {0 ∗ [1− F (τ)]}+ [1 ∗ F (τ)] = F (τ)

∴ E(N(τ)) = F (τ)

Therefore, the mean number of failures occurring during the cycle period
(0, τ ] is equal to the probability of occurrence of a failure before time, τ .

Let Cp be the total cost of planned (or preventive) replacement; Cu be
the total cost of unplanned (or failure) replacement; and τ be the replace-
ment time with optimal value, τ∗. The total expected cost per unit time for
preventive replacement at replacement time, τ is defined as;

E[C(τ)] =
total expected cost

replacement time
=
Cp + CuE(N(τ))

τ
(15)

The expected number of failure occurring during the cycle (0, τ ] is
equal to the probability of occurrence of a failure before time, τ . Hence, the
expected cost per unit time for preventive replacement is given by;

E[C(τ)] =
Cp + CuF (τ)

τ
(16)

Also, Cassady and Pohl (2003), stated that the mean number of failures
occurring during the cycle (0, τ ] is equal to the cumulative hazard rate at
time, τ using the concept of non-homogeneous Poisson process. Hence the
expected cost per unit time for preventive replacement was given by;

E[C(τ)] =
Cp + CuH(τ)

τ
(17)
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2.9.1 Minimization of the expected cost function
Minimizing (15);

d

dτ
E[C(τ)] =

τCu
d
dτE(N(τ))− {Cp + CuE(N(τ))}{1}

τ2
= 0

∴ τ∗ =

Cp
Cu

+ E(N(τ))
d
dτE(N(τ))

(18)

2.9.2 Optimal Replacement Time, τ ∗ for the Cumulative Failure
Function-based Replacement Model

Recall; E[N(τ)] = F (τ)⇒ d
dτ F (τ) = f(τ)

∴ τ∗ =

Cp
Cu

+ F (τ)

f(τ)
(19)

2.9.3 Optimal Replacement Time, τ ∗ for the Cumulative Hazard
Function-based Replacement Model

E[N(τ)] = H(τ); ⇒ d

dτ
H(τ) = h(τ)

∴ τ∗ =

Cp
Cu

+H(τ)

h(τ)
(20)

2.10 Availability of the System

Availability is the probability that a system will work as required during
a particular period of time. Let A(τ∗) denotes the availability of a system
at optimal time, (τ∗); E(↑) denotes the expected uptime at optimal time,
(τ∗); E(↓) denotes the expected downtime at optimal time, (τ∗); Dp denotes
the average downtime for planned (preventive) replacement; Du denotes
the average uptime for unplanned (failure) replacement; R(τ∗) denotes the
reliability at optimal time (τ∗) and F (τ∗) the cumulative failure at optimal
time, (τ∗).

Then, A(τ) = E(↑)
E(↑)+E(↓)

According to Cassady and pohl (2003);

E[↑] =
∫ τ∗

0
xf(x)dx+ τ∗S(τ∗)
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= τ∗F (τ∗) + τ∗[1− F (τ∗)] = τ∗F (τ∗) + τ∗ − τ∗F (τ∗) = τ∗

∴ E[↑] = τ∗

And,

E[↓] = DpF (τ
∗) +DuS(τ

∗) = F (τ∗)[Dp −Du] +Du

∴ E[↓] = F (τ∗)[Dp −Du] +Du

Where,

Dp =
1

n1

n1∑
j=1

Dj (21)

And,

Du =
1

n2

n2∑
i=1

Di (22)

Therefore,

A(τ∗) =
E(↑)

E(↑) + E(↓)
=

τ∗

τ∗ + [F (τ∗)[Dp −Du] +Du]

=
τ∗

τ∗ +

[
Dp−Du
1+( βτ∗ )

α

]
+Du

(23)

3 Analysis and Results

3.1 Estimation of the Log-Logistic Parameters of the DC-6240L
Triumph-Adler Photocopy Machine

We use the inter-failure times, t (in hours) to estimate the parameters of the
Log-Logistic distribution as follows;

Recall (7), (8), (9) and (11) for n = 29;

µ̂ =
1

n

n∑
i=1

ln(t) = 6.638465642

σ̂ =

√√√√ 1

n− 1

{[
n∑
i=1

(ln(t))2
]
− nµ̂2

}
= 1.052914737

Hence, β̂ = 763.9219635 and α̂ = 1.723339368.
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The Easyfit (5.6) version software was used to validate the parameters
estimates.

3.2 Evaluation of Probability Functions of the Photocopy
Machine Using Log-Logistic Distribution

The estimated shape parameter, α̂ = 1.723339368 and scale parameter,
β̂ = 763.9219635 were used to obtain the optimal probabilities for the
failure function, f(t); failure cumulative function, F (t); survival (reliability)
function, S(t); hazard function, h(t); and the cumulative hazard function,
H(t) shown in Table 1.

3.3 Evaluation of Optimal Replacement Time and Minimum
Expected Preventive Replacement Maintenance Cost of
Photocopy Machine

3.3.1 Replacement model based on cumulative failure function
The cost values were obtained as Cu =

∑23
i=1Ci = 157550 and Cp =∑6

j=1Cj = 8150 and the data on Table 2 were applied to (16) and (19) at
tp = 100 and (17) and (20) at tp = 110 respectively to obtain values for
minimum expected cost and optimal replacement time of the machine for
the cumulative failure and cumulative hazard-based replacement models. The
results are also shown in Table 1.

3.4 Discussion of Results

i. Estimated parameters of the Log-Logistic distribution: The estimates
α̂ = 1.723339368 and β̂ = 763.9219635 are the shape and scale parameters
of the Log-Logistic distribution respectively. The scale parameter is also
known as the median of the distribution.

Table 1 Optimal probabilities and expected costs for the replacement maintenance models

Probability Cumulative Failure-Based Cumulative Hazard-Based
Function Replacement Model with τ∗ = 166 Replacement Model with τ∗ = 161

F (τ∗) 0.067192365 Not applicable

H(τ∗) Not applicable 0.066100607

h(τ∗) 0.000697562 0.000684661

R(τ∗) 0.935807635 0.936036688

A(τ∗) 0.959651769 0.958355733

E[C(τ∗)] 113 115
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ii. The failure density function: Figure 1 shows the failure function of the
DC-6240L Triumph-Adler Photocopy Machine. It is skewed to the right and
is unimodal. Also the failure function increases from the point: 0.00039507
to 0.00080629 within the time interval of 72 hours to 336 hours, and then
there is a gradual decrease from 0. 00080629 to 0.0000090519 within the
time interval of 336 hours to 5664 hours. The shape of the curve typifies a
density function of Log-Logistic distribution.

iii. The failure cumulative function: Figure 2 shows the failure cumulative
function of the machine as an increasing function. There is an increase from
0.01678764 to 0.57574533 within the time interval of 72 hours to 912 hours,
and then a continual rapid increase from the point: 0.57574533 to 0.96930777
within the time interval of 912 hours to 5664 hours.

iv. The survival (reliability) function: Figure 3 shows the reliability func-
tion of the machine reducing gradually from the point: 0.98321236 to
0.40282036 within the time interval of 72 hours to 960 hours, and then
continues to reduce rapidly from the point: 0.40282036 to 0.03069223 within
the time interval of 960 hours to 5664 hours.

v. The hazard function or failure rate: Figure 4 shows the hazard rate of
the machine which increases slowly from 0.00040182 to 0.00114147 within
the time interval: 72 hours to 600 hours. Then, there is a gentle decrease from
0.00114147 to 0.00029492 within the time interval: 600 hours to 5664 hours.

vi. The cumulative hazard function: This is a strictly increasing function
of the machine as shown in Figure 5. It shows a rapid increase from point:
0.01693015 to 3.48374565 within the time interval: 72 hours to 5664 hours.

vii. Replacement model based on failure cumulative function: Figure 6 is
the plot of the replacement time, τ against equal interval of failure time, tp
for the replacement model based on the failure cumulative function. It has
a minimum preventive maintenance replacement time of 166 hours. Table 1
shows that preventive replacement maintenance at this optimum time is at
a minimum cost of 113 Naira per cycle time. Also, the availability of the
Machine at the optimum replacement maintenance time is 96% and 94%
reliability with 0.07% chance of failure occurrence.

viii. Replacement model based on cumulative hazard function: Figure 7
is the plot of replacement time, τ against equal interval of failure time, tp for
the cumulative hazard–based replacement model with a minimum preventive
maintenance replacement time of 161 hours. Table 1 shows that the associated
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cost of preventive maintenance per cycle time at the optimum time is 115
Naira for this model. Also, the availability of the Machine at the optimum
replacement maintenance time is 96% and is 94% reliable with 0.07% chance
of failure occurrence.

ix. Model comparison: The two preventive replacement maintenance models
have same values of maximum availability, reliability and percentage chance
of failure occurrence in the machine as summarized in Table 1. However, the
replacement model based on failure cumulative function is a better model
because it allows for a longer optimal time of 166 hours before replacement
maintenance at a lower expected cost per cycle time of 113 naira, while
the model based on the cumulative hazard function yields a shorter optimal
replacement maintenance time of 161hours at a higher minimum cost of 115
naira. It is clear that the model based on the failure cumulative function gives
a longer time before replacement maintenance and at a lower minimum cost
than the one obtained from the cumulative hazard-based model.

3.5 Maintenance policy for the DC-6240L Triumph-Adler
Photocopy Machine

The DC-6240L Triumph-Adler Photocopy Machine with 96% availability
level, 94% reliability and 0.07% chance of failure occurrence should be
optimally operated for T ≤ 166 hours with a minimum maintenance cost of
113 Naira, and failure replacement should be performed at any time, t < T.

4 Conclusion

A proposed preventive replacement maintenance policy that maximizes
availability and reliability of photocopy machines and similar equipment at
minimum cost has been formulated in this work. The Log-logistic distribution
following from a chi-squared goodness-of-fit test with rank one was used
to modeled the inter-failure distribution of the machine to obtain optimal
failure and reliability probabilities for the machine. Also, the cumulative
failure function-based replacement model by Bahrami (2000) was found to
be better than the hazard-based replacement model by Cassady and Phol
(2003) because it allows for a longer optimal operational time of 166 hours
before replacement maintenance at a lower expected cost per cycle time
of 113 naira. Hence, it was used to formulate the maintenance policy for
Photocopy Machines and similar equipment to guarantee seamless operation,
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reduce downtime, save cost of maintenance and increase profit turnover in a
competitive business environment.

Appendix

Table 2 Table of probability functions evaluation

i t f(t) F (t) S(t) h(t) H(t)

1 72 0.00039507 0.01678764 0.98321236 0.00040182 0.01693015

2 96 0.00047615 0.02726764 0.97273236 0.00048949 0.0276463

3 120 0.00054551 0.03954924 0.96045076 0.00056797 0.04035256

4 312 0.0008013 0.17607264 0.82392736 0.00097254 0.19367291

5 336 0.00080629 0.19537233 0.80462767 0.00100206 0.21737563

6 384 0.00080464 0.23409115 0.76590885 0.00105057 0.26669211

7 408 0.00079898 0.25334031 0.74665969 0.00107008 0.29214577

8 480 0.00076776 0.3098543 0.6901457 0.00111247 0.37085255

9 480 0.00076776 0.3098543 0.6901457 0.00111247 0.37085255

10 480 0.00076776 0.3098543 0.6901457 0.00111247 0.37085255

11 504 0.00075381 0.32811599 0.67188401 0.00112193 0.39766956

12 504 0.00075381 0.32811599 0.67188401 0.00112193 0.39766956

13 600 0.00068783 0.3974148 0.6025852 0.00114147 0.50652622

14 672 0.00063336 0.44498744 0.55501256 0.00114117 0.58876453

15 768 0.00056097 0.50229379 0.49770621 0.00112711 0.69774531

16 912 0.00046157 0.57574533 0.42425467 0.00108794 0.85742137

17 960 0.00043183 0.59717964 0.40282036 0.00107202 0.90926458

18 984 0.00041765 0.60737252 0.39262748 0.00106373 0.934894

19 1152 0.00033078 0.66994343 0.33005657 0.0010022 1.10849121

20 1248 0.00029015 0.69970005 0.30029995 0.0009662 1.20297348

21 1392 0.00023956 0.73770175 0.26229825 0.0009133 1.33827306

22 1416 0.00023218 0.74336206 0.25663794 0.00090471 1.36008896

23 1872 0.00013343 0.8241359 0.1758641 0.00075869 1.73804376

24 2088 0.00010536 0.84977167 0.15022833 0.00070136 1.89559896

25 2112 0.00010274 0.85226872 0.14773128 0.00069543 1.9123603

26 2136 0.00010019 0.85470371 0.14529629 0.00068958 1.92898026

27 3216 3.8299E-05 0.92252622 0.07747378 0.00049435 2.55781572

28 4368 1.7747E-05 0.95279076 0.04720924 0.00037591 3.05316565

29 5664 9.0519E-06 0.96930777 0.03069223 0.00029492 3.48374565
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Figure 1 A graph of the Log-Logistic density function f(t) against time t for DC-6240L
Triumph-Adler Photocopy Machine.

 

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000

F(t)

t

Figure 2 A graph of the Log-Logistic cumulative density function F (t) against time t for
DC-6240L Triumph Adler Photocopy Machine.
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Figure 3 A graph of the Log-Logistic Survival (Reliability) function S(t) against time t for
DC-6240L Triumph-Adler Photocopy Machine.
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Figure 4 A graph of the Log-Logistic hazard function h(t) against time t for DC-6240L
Triumph-Adler photocopy Machine.
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Figure 5 A graph of the Log-Logistic cumulative hazard function H(t)against time t for
DC-6240L Triumph-Adler Photocopy Machine.
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Figure 6 A graph of the replacement time τ against equal interval of failure time tp for
replacement model based on the cumulative failure function.
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Figure 7 A graph of the replacement time τ against equal interval of failure time tp for
replacement model based on the cumulative hazard function.
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