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Abstract

In this paper, we introduce a new probability distribution with application
in reliability called the beta reduced modified Weibull distribution. The
proposed distribution presents a more flexible model and has the capability
to capture decreasing, increasing, bathtub, unimodal (upside-down bathtub)
and modified unimodal shaped hazard rates. Also, this distribution has a
bathtub-shaped hazard rate function with a long useful life period, which
is desirable property in reliability analysis. We obtain the expansions for
the moments, quantile function, stress-strength reliability, density function
of the order statistics and their moments. We use the method of maximum
likelihood to estimate the model parameters for complete and right-censored
data. We evaluate the performance of the maximum likelihood estimators
in a simulation study. We analyze three reliability data sets, complete and
censored, to examine the flexibility of the proposed model.
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1 Introduction

Among the parametric probability distributions, the Weibull distribution is
the most widely applied model in reliability analysis such as reliability
engineering, decision-making reliability and firmware reliability. Since the
Weibull distribution is only applicable for modeling the data with increasing,
decreasing or constant hazard rate, its applicability may be restricted to the
data that have non-monotone hazard rate shapes such as the bathtub shape,
unimodal (upside-down bathtub) or modified unimodal shape. For this rea-
son, several authors have proposed various modifications and generalizations
of the Weibull distribution in the last few decades. For example, Lai et al. [1]
proposed a three-parameter modified Weibull with a bathtub-shaped hazard
rate function. Bebbington et al. [2] proposed a two-parameter flexible Weibull
extension with monotone and bathtub-shaped hazard rate functions. Sarhan
and Apaloo [3] proposed the four-parameter exponentiated modified Weibull
extension distribution which exhibits a bathtub-shaped hazard rate function.
Famoye et al. [4] proposed the four-parameter beta Weibull distribution with
unimodal, increasing, decreasing and bathtub-shaped hazard rate functions.
Benkhelifa [5] introduced the Weibull Birnbaum-Saunders distribution with
four parameters.

According to Nelson [6], the distributions which provide more flexible
distributions usually require at least five parameters. Among the five param-
eters modified Weibull distributions we mention, the beta modified Weibull
distribution [7], the McDonald Weibull distribution [8], the beta generalized
Weibull distribution [9], the beta Sarhan-Zaindin modified Weibull distribu-
tion [10], the additive modified Weibull distribution [11], the new generalized
odd log-logistic flexible Weibull distribution [12] and the exponentiated
additive Weibull distribution [13]. All theses distributions have monotone,
bathtub-shaped and unimodal hazard rate functions. Almalki and Yuan [14]
introduced a new modified Weibull with five parameters and its hazard rate
function can be increasing, decreasing or bathtub-shaped. The cumulative
distribution function (cdf) of this distribution is

GMW (x) = 1− e−αxθ−βxγeλx , (1)

where α, β > 0 are scale parameters, θ, γ > 0 are shape parameters and
λ > 0 is an acceleration parameter. In order to avoid some estimation
problems, Almalki [15] proposed a reduced version, with three parameters,
of the Almalki-Yuan modified Weibull distribution. The cdf of the reduced
modified Weibull (RMW) distribution is obtained by setting γ = θ = 1/2 in
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(1) as follows

G(x) = 1− e−α
√
x−β
√
xeλx , (2)

The probability density function (pdf) of the RMW distribution is

g(x) =
1

2
√
x

[α+ βeλx(1 + 2λx)]e−α
√
x−β
√
xeλx .

The RMW distribution can exhibit bathtub-shaped hazard rate function.
Some real data, particularly in reliability engineering, have a bathtub-shaped
hazard rate functions with a long useful life period with constant hazard rate
in the middle. For example, electric machine life cycles and electronic devices
(see [16]). The RMW distribution has this property. The beta-G family of
distributions introduced by Eugene et al. [17] is one of the methods that make
the distributions richer and flexible to model the real life data by adding
two shapes parameters. The hazard rate function of the RMW distribution
can exhibit bathtub shapes but not more other complicated shapes. For this
reason, in this paper, we introduce a new five-parameter that generalizes the
RMW distribution by using the beta-G family of distributions. The proposed
distribution will be called the beta reduced modified Weibull (BRMW) dis-
tribution. The BRMW model provides a better fit than the RMW distribution
and its hazard rate can be monotone, bathtub-shaped and unimodal failure
rate. It can also have a bathtub-shaped hazard rate function with a long flat
useful life period. The rest of the paper is organized as follows. In Section 2,
we define the BRMW model. In Sections 3, 4, 5 and 6 we give the expansions
for the rth moment of the BRMW distribution, the quantile function, the
stress-strength reliability and the order statistics, respectively. In Section
7, we discuss maximum likelihood estimation of the model parameters for
complete and right-censored data. In Section 8, we conduct a simulation
study to check the performance of the maximum likelihood estimates. In
Section 9, we analyze three reliability data sets, complete and right-censored,
to demonstrate the usefulness of the new model. In Section 10, we give some
concluding remarks.

2 Beta Reduced Modified Weibull Distribution

In order to obtain greater flexibility in modeling real data sets, Eugene
et al. [17] introduced the beta-generated family of distributions by using the
beta random variable. For an arbitrary parent or baseline cdf G(x), the cdf of
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the beta generalized family is given by

F (x) = IG(x)(a, b) =
1

B(a, b)

∫ G(x)

0
ta−1(1− t)b−1dt, (3)

where a > 0 and b > 0 are two shape parameters, Iy(a, b) = By(a, b)/
B(a, b) is the incomplete beta function ratio,By(a, b) =

∫ y
0 t

a−1(1− t)b−1dt
is the incomplete beta function,B(a, b) = Γ(a)Γ(b)/Γ(a+b) is the complete
beta function and Γ(.) is the gamma function. The pdf corresponding to (3) is

f(x) =
g(x)

B(a, b)
[G(x)]a−1[1−G(x)]b−1,

where g(x) = dG(x)/dx is the baseline pdf. By substituting (2) in (3), the
cdf of the BRMW distribution with five parameters (α, β > 0, λ > 0, a > 0
and b > 0) can be defined by

F (x) = I
1−e−α

√
x−β
√
xeλx (a, b)

=
1

B(a, b)

∫ 1−e−α
√
x−β
√
xeλx

0
ta−1(1− t)b−1dt.

The pdf of the BRMW distribution is given by

f(x) =
[α+ βeλx(1 + 2λx)](1− e−α

√
x−β
√
xeλx)a−1e−αb

√
x−βb

√
xeλx

2
√
xB(a, b)

.

(4)
The BRMW distribution includes as special cases the RMW distribution

and the exponentiated RMW (ERMW) distribution. For a = b = 1, we obtain
the RMW distribution. When b = 1, the BRMW distribution is reduced to
ERMW distribution.

Figure 1 shows some possible shapes of the pdf (4) for some parameter
values of α, β > 0, λ > 0, a > 0 and b > 0. Then, we observe that the pdf
(4) can take various forms depending on the parameter values. It is evident
that the BRMW distribution is much more flexible than the RMW and the
ERMW distributions.

The hazard function of the BRMW distribution is given by

h(x) =
[α+ βeλx(1 + 2λx)](1− e−α

√
x−β
√
xeλx)a−1e−αb

√
x−βb

√
xeλx

2
√
xB(a, b)(1− I

1−e−α
√
x−β
√
xeλx (a, b))

.
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Figure 1 Plots of the pdf of the BRMW distribution for some parameter values.

Figure 2 (a) Bathtub-shaped hazard rate functions. (b) Bathtub-shaped hazard rate functions
with long useful life period.

In Figures 2 and 3, we plot the hazard rate function of the BRMW
distribution for selected values of α, β > 0, λ > 0, a > 0 and b > 0. We
observe, in Figure 3, that the hazard rate function of the BRMW distribution
can be decreasing, increasing, bathtub, unimodal (upside-down bathtub) and
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Figure 3 Plots of the hazard rate function of the BRMW distribution for some parameter
values. (a) Upside-down bathtub hazard rate functions. (b) Modified unimodal shaped hazard
rate functions. (c) Increasing hazard rate functions. (d) Decreasing hazard rate functions.

modified unimodal shaped hazard rates. The BRMW distribution can also
have a bathtub-shaped hazard rate function with a long useful life period
(Figure 2). Therefore, the BRMW distribution is quite flexible and can be
used to fit various kinds of data sets in reliability analysis.

3 General Formula for the Moments

In this section, we derive the expression for rth order moment of BRMW
distribution. It allows us to determine the expected life time of a device,
dispersion, skewness and kurtosis in reliability data sets. The rth moment
of the BRMW distribution is defined by

E(Xr) =

∫ ∞
0

xrf(x)dx,

where f(x) is defined in (4). The moments can be obtained via an algebraic
expansion which is more efficient than computing those directly by numerical
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integration of its density function. Then, using the binomial series expansion,
for |z| < 1, η > 0,

(1− z)η−1 =

∞∑
k=0

(−1)kΓ(η)

Γ(η − k)
zk, (5)

we obtain

(1− e−α
√
x−β
√
xeλx)a−1 =

∞∑
k=0

(−1)kΓ(η)

Γ(η − k)
e−k(α

√
x−β
√
xeλx). (6)

Substituting (6) in (4), we get

f(x) =

∞∑
k=0

(−1)kΓ(a+ b)

(b+ k)Γ(a− k)Γ(b)
g(x; (b+ k)α, (b+ k)β, a, b), (7)

where g(x; (b+ k)α, (b+ k)β, a, b) is the pdf of the RMW distribution with
parameters (b+ k)α, (b+ k)β, a and b. Therefore,

E(Xr) =
Γ(a+ b)

Γ(b)

∞∑
k=0

(−1)k

(b+ k)Γ(a− k)
E(Y r), (8)

where E(Y r) is the rth moment of a random variable Y having the RMW
distribution with parameters (b+k)α, (b+k)β, a and b. Then, from Equation
(5) in Almalki [15], we can get

E(Y r) = 2r
∞∑

n,m=0

(−bβ − kβ)n(nλ)mΓ(n+ 2(m+ r))

n!m!(bα+ kα)n+2(m+r)
. (9)

Substituting (9) in (8), we obtain

E(Y r) = 2r

∞∑
k,n,m=0

(−1)k+n(bβ + kβ)n(nλ)mΓ(n+ 2(m+ r))Γ(a+ b)

(b+ k)Γ(a− k)n!m!(bα+ kα)n+2(m+r)Γ(b)
.

To describe any data, we can use the first four moments. The first moment
or the mean is a measure of the center of the distribution. The second moment
about the mean is equal to the variance which measures the spread of the
distribution about the mean. The skewness measures the symmetry of a
distribution whereas the kurtosis measures the peakedness of a distribution.
We give the values of the first four moments, variance, skewness and kurtosis
of the BRMW distribution for some selected values of the parameters in
Table 1. The R code to compute the moments is provided in Appendix. (R is
a free software environment for statistical computing and graphics).
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Table 1 First four moments, variance, skewness and kurtosisof the BRMW distribution for
some parameter values: α = 2.5 β = 1.25 and λ = 0.5

a = 0.5, a = 0.5, a = 1.5, a = 5.5, a=5.5, a = 5

b = 2 b = 4 b = 1.5 b = 2.5 b = 10 b = 3

E(X) 0.015695 0.003697 0.084153 0.135653 0.017375 0.097167

E(X2) 0.002356 0.00015 0.02481 0.032344 0.000538 0.017368

E(X3) 0.000795 1.6× 10−5 0.013273 0.011577 2.6× 10−5 0.004804

E(X4) 0.00042 3.0× 10−6 0.010101 0.005614 2× 10−6 0.001844

Variance 0.00211 0.000137 0.017729 0.013943 0.000236 0.007927

Skewness 7.133163 8.981911 3.474405 2.068941 2.307967 2.233645

Kurtosis 80.85056 146.0047 17.79799 6.708253 9.273554 8.024071

4 Quantile Function

The quantile function of the BRMW distribution can be obtained by inverting
the following equation:

I
1−e−α

√
x−β
√
xeλx (a, b) = u, 0 ≤ u ≤ 1,

i.e.,
1− e−α

√
x−β
√
xeλx = I−1u (a, b),

where I−1u (a, b) denotes the inverse of the incomplete beta function with
parameters a and b. Therefore, we obtain the quantile function of the BRMW
distribution by solving the following equation:

α
√
x− β

√
xeλx + log(1− I−1u (a, b)) = 0.

It is clear that this equation does not have a closed form solution in x,
and hence we use numerical methods to obtain the quantile function of the
BRMW distribution.

To generate random variables from BRMW distribution, we have the
following algorithm:

• Set the values of parameters: α, β > 0, λ > 0, a > 0 and b > 0.
• Generate Vi from beta distribution with parameters a and b, for i =

1, . . . , n.
• Solve the following equation for xi:

α
√
xi − β

√
xie

λxi + log(1− Vi) = 0.

In the Appendix, we give the R code to generate random variables from
BRMW distribution.
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5 Order Statistics

The order statistics play an important role in reliability analysis. In this
section, we give the pdf of the order statistic Xi,n, and its pth moment, for
the BRMW distribution. If X1, . . . , Xn is a random sample from the BRMW
distribution, and X1,n, . . . , Xn,n are the order statistics from this sample,
then, from Arnold et al. [18], the pdf of Xi,n is given by

fi,n(x) =
f(x)[F (x)]i−1[1− F (x)]n−i

B(i, n− i+ 1)
, i = 1, . . . , n.

Now, we derive an expansion for fi,n(x). Using the binomial series
expansion of [1− F (x)]n−i, we obtain

[1− F (x)]n−i =

n−i∑
l=0

(−1)lΓ(n)

Γ(n− l)
[F (x)]l,

then

fi,n(x) =
f(x)

B(i, n− i+ 1)

n−i∑
l=0

(−1)lΓ(n)

Γ(n− l)
[F (x)]l+i−1. (10)

The incomplete beta function expansion for b real non-integer gives

F (x) = IG(x)(a, b) =

∞∑
k=0

tk[G(x)]k+a,

where

tk =
Γ(1− b+ k)

k!(a+ k)B(a, b)Γ(1− b)
.

From Gradshteyn and Ryzhik [19] (Section 0.314), for a power series raised
to a positive integer s, we have ∞∑

j=0

aju
j

s

=
∞∑
j=0

ds,ju
j , (11)

where the coefficients ds,j (for j = 1, 2, . . .) are determined from the
recurrence equation

ds,j = (ja0)
−1

j∑
m=1

[m(s+ 1)− j]amds,j−m, (12)
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with ds,0 = as0. Then, by using (11) and after some simplifications, we get( ∞∑
k=0

tk[G(x)]k+a

)i+l−1
=
∞∑
k=0

ti+l−1,k(1− e−α
√
x−β
√
xeλx)k+a(i+l−1),

(13)

where the coefficients ti+l−1,k follow from Equation (12). Substituting (4)
and (13) in (10), we obtain

fi,n(x) =
1

B(i, n− i+ 1)

n−i∑
l=0

(−1)lΓ(n)

Γ(n− l)

∞∑
k=0

ti+l−1,k
[α+ β(1 + 2λx)eλx]

2
√
xB(a, b)

× e−α
√
x−β
√
xeλx(1− e−α

√
x−β
√
xeλx)k+a(i+l−1).

Using the binomial series expansion of [1 − e−α
√
x−β
√
xeλx ]k+a(i+l)−1,

we obtain

fi,n(x) =

∞∑
k,r=0

vi,k,rg(x; (r + b)α, (r + b)β, a, b), (14)

where

vi,k,r =
(−1)rΓ(n)

(r + b)B(a, b)B(i, n− i+ 1)

n−i∑
l=0

(−1)lti+l−1,kΓ(k + a(i+ l))

Γ(n− l)Γ(k + a(i+ l)− r)

and g(x; (r + b)α, (r + b)β, a, b) denotes the pdf of the RMW distribution
with parameters (r + b)α, (r + b)β, a and b. Equation (14) indicates that the
pdf of the BRMW order statistics is a linear combination of RMW densities.
So, we can get the moments of the BRMW order statistics in terms of the
moments of RMW distributions from (14) and (9). The pth moment of Xi,n

is

E(Xp
i,n) = 2p

∞∑
k,r,n,m=0

(−1)n(bβ + rβ)n(nλ)mΓ(n+ 2(m+ p))vi,k,r)

n!m!(bα+ rα)n+2(m+p))
.

6 Stress-strength Reliability

The probability R = P (X2 < X1) is a measure of component reliability
when it is subjected to random stress X2 and has strength X1 in the stress-
strength modelling. The component fails when X2 < X1. In this Section, we



The Beta Reduced Modified Weibull Distribution 333

compute the reliabilityR whenX1 andX2 are independent random variables
following the same BRMW distribution. We can write the reliability R as
follows

R =

∫ ∞
0

f(x)F (x)dx. (15)

From (7), we have

f(x) =
∞∑
k=0

wkg(x; (b+ k)α, (b+ k)β, a, b), (16)

where

wk =
(−1)kΓ(a+ b)

(b+ k)Γ(a− k)Γ(b)
,

and g(x; (b + k)α, (b + k)β, a, b) is the pdf of RMW distribution with
parameters (b+ k)α, (b+ k)β, a and b. By integrating (16), we obtain

F (x) =
∞∑
k=0

wkG(x; (b+ k)α, (b+ k)β, a, b), (17)

where G(x; (b + k)α, (b + k)β, a, b) is the cdf of RMW distribution with
parameters (b + k)α, (b + k)β, a and b. Substituting (16) and (17) in (15),
we get

R = 1−
∞∑
k=0

wk

∫ ∞
0

(b+ k)[α+ β(1 + 2λx)eλx]

2
√
x

× e−2α(b+k)
√
x−2β(b+k)

√
xeλxdx.

Using the Maclaurin series expansion of an exponential function, and
after some simplifications, we get

R =1−
∞∑

k,i,j=0

α(b+ k)i+1(−2β)i(iλ)j

i!j!2
wk

∫ ∞
0

x((i−1)/2)+je−2α(b+k)
√
xdx

−
∞∑

k,i,l=0

β(b+ k)i+1(−2β)i(λ(i+ 1))l

i!l!2
wk

×
∫ ∞
0

x((i−1)/2)+le−2α(b+k)
√
xdx
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−
∞∑

k,i,l=0

β(b+ k)i+1(−2β)i(λ(i+ 1))l

i!l!
wk

×
∫ ∞
0

x((i−1)/2)+l+1e−2α(b+k)
√
xdx.

Using the gamma function, we get∫ ∞
0

x((i−1)/2)+je−2α(b+k)
√
xdx =

2Γ(2j + i+ 1)

[2α(b+ k)]2j+i+1
,∫ ∞

0
x((i−1)/2)+le−2α(b+k)

√
xdx =

2Γ(2l + i+ 1)

[2α(b+ k)]2l+i+1
,

and ∫ ∞
0

x((i−1)/2)+l+1e−2α(b+k)
√
xdx =

2Γ(2l + i+ 3)

[2α(b+ k)]2l+i+3
.

Therefore, we obtain

R =1−
∞∑

k,i,j=0

α(b+ k)i+1(−2β)i(iλ)jwkΓ(2j + i+ 1)

i!j![2α(b+ k)]2j+i+1

−
∞∑

k,i,l=0

β(b+ k)i+1(−2β)i(λ(i+ 1))lwk
i!l

×
(

Γ(2l + i+ 1)

[2α(b+ k)]2l+i+1
+

2λΓ(2l + i+ 3)

[2α(b+ k)]2l+i+3

)
.

7 Parameter Estimation

In this section, we determine the maximum likelihood estimates (MLEs) of
the parameters of the BRMW distribution for complete and right-censored
data.

7.1 Complete Data

Let x1, . . . , xn be the observed sample of size n from the BRMW distribution
with unknown parameter vector ξ = (α, β, λ, a, b)T . The log-likelihood
function for ξ, is

` = −n log(2)− n log(B(a, b))− 1

2

n∑
i=1

log(xi)
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− (a− 1)

n∑
i=1

log
(

1− e−α
√
xi−β

√
xie

λxi
)

− b
n∑
i=1

√
xi(α+ βeλxi)

+
n∑
i=1

log[α+ β(1 + 2λxi)e
λxi ].

The elements of the score vector are obtained by taking the first partial
derivatives of ` = `(ξ) with respect to α, β, λ, a and b as follows

∂`

∂α
=

n∑
i=1

1

α+ β(1 + 2λxi)eλxi

+ (a− 1)

n∑
i=1

√
xi

e−α
√
xi−β

√
xieλxi−1

− b
n∑
i=1

√
xi,

∂`

∂β
=

n∑
i=1

(1 + 2λxi)e
λxi

α+ β(1 + 2λxi)eλxi

+ (a− 1)

n∑
i=1

√
xie

λxi

e−α
√
xi−β

√
xieλxi−1

− b
n∑
i=1

√
xie

λxi ,

∂`

∂λ
= β

n∑
i=1

xi(3 + 2λxi)e
λxi

α+ β(1 + 2λxi)eλxi

+ (a− 1)
n∑
i=1

βxi
√
xie

λxi

e−α
√
xi−β

√
xieλxi−1

− bβ
n∑
i=1

xi
√
xie

λxi ,

∂`

∂a
= −n [ψ(a)− ψ(a+ b)] +

n∑
i=1

log
(

1− e−α
√
xi−β

√
xie

λxi
)
,

and

∂`

∂b
= −n [ψ(b)− ψ(a+ b)]−

n∑
i=1

√
xi(α+ βeλxi),

where ψ(·) is the digamma function.
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7.2 Censored Data

Suppose that Xi, i = 1, 2, . . . , n, the failure time of individual i and Yi
is the corresponding censoring time, where Xi and Yi are independent.
Assume thatXi have the BRMW distribution with unknown parameter vector
ξ = (α, β, λ, a, b)T and Yi have a non-informative distribution. We can only
observe the pair (Ti, δi) where Ti = min(Xi, Yi) and δi = I(Xi ≤ Yi) is the
censoring indicator.

For the data (ti, δi), i = 1, 2, . . . , n, the likelihood function is given by

` = −n
n∑
i=1

δi log(2B(a, b))− 1

2

n∑
i=1

δi log(ti)

+
n∑
i=1

δi log[α+ β(1 + 2λti)e
λti ]

− (a− 1)

n∑
i=1

δi log
(

1− e−α
√
ti−β

√
tie

λti
)
− b

n∑
i=1

δi
√
ti(α+ βeλti)

+

n∑
i=1

(1− δi) log
(

1− I
1−e−α

√
ti−β
√
tie
λti (a, b)

)
.

Therefore, the elements of the score for the parameters α, β, λ, a and b
are given by

∂`

∂α
=

n∑
i=1

δi
α+ β(1 + 2λti)eλti

+ (a− 1)
n∑
i=1

δi
√
ti

e−α
√
ti−β

√
tieλti − 1

− b
n∑
i=1

δi
√
ti −

n∑
i=1

(1− δi)
[
I
1−e−α

√
ti−β
√
tie
λti (a, b)

],
α(

1− I
1−e−α

√
ti−β
√
tie
λti (a, b)

) ,

∂`

∂β
=

n∑
i=1

δi(1 + 2λti)e
λti

α+ β(1 + 2λti)eλti
+ (a− 1)

n∑
i=1

δi
√
tie

λti

e−α
√
ti−β

√
tieλti − 1

− b
n∑
i=1

δi
√
tie

λti −
n∑
i=1

(1− δi)
[
I
1−e−α

√
ti−β
√
tie
λti (a, b)

],
β(

1− I
1−e−α

√
ti−β
√
tie
λti (a, b)

) ,
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∂`

∂λ
= β

n∑
i=1

δiti(3 + 2λti)e
λti

α+ β(1 + 2λti)eλti

+ (a− 1)

n∑
i=1

βδiti
√
tie

λti

e−α
√
ti−β

√
tieλti − 1

− bβ
n∑
i=1

δiti
√
tie

λti

−
n∑
i=1

(1− δi)
[
I
1−e−α

√
ti−β
√
tie
λti (a, b)

],
λ(

1− I
1−e−α

√
ti−β
√
tie
λti (a, b)

) ,

∂`

∂a
= −

n∑
i=1

δi [ψ(a)− ψ(a+ b)] +

n∑
i=1

δi log
(

1− e−α
√
ti−β

√
tie

λti
)

−
n∑
i=1

(1− δi)
[
I
1−e−α

√
ti−β
√
tie
λti (a, b)

],
a(

1− I
1−e−α

√
ti−β
√
tie
λti (a, b)

) ,

and

∂`

∂b
= −

n∑
i=1

δi [ψ(b)− ψ(a+ b)]−
n∑
i=1

δi
√
ti(α+ βeλti)

−
n∑
i=1

(1− δi)
[
I
1−e−α

√
ti−β
√
tie
λti (a, b)

],
b(

1− I
1−e−α

√
ti−β
√
tie
λti (a, b)

) ,

where [I
1−e−α

√
ti−β
√
tie
λti (a, b)]

,
θ is the derivative of I

1−e−α
√
ti−β
√
tie
λti (a, b)

at θ.
In order to find the MLE ξ̂ = (α̂, β̂, λ̂, â, b̂)T of ξ = (α, β, λ, a, b)T for

complete and censored data, we solve the nonlinear equations simultaneously
∂`/∂α = 0, ∂`/∂β = 0, ∂`/∂a = 0, ∂`/∂b = 0, using iterative methods
such as the Newton-Raphson algorithm to numerically maximize `.

The normal approximation of ξ can be used to construct approximate
confidence intervals for α, β, λ, aandb. We have, under appropriate regularity
conditions, see Miller et al. [20],

√
n(ξ̂−ξ) isN5(0, I

−1(ξ̂)), where I−1(ξ) is
the inverse of the expected information matrix I(ξ). This asymptotic behavior
holds if I(ξ) is replaced by Jn(ξ), where Jn(ξ) is the observed information
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matrix given by

J(ξ) = −


Jαα Jαβ Jαλ Jαa Jαb
· Jββ Jβλ Jβa Jβb
· · Jλλ Jλa Jλb
· · · Jaa Jab
· · · · Jbb

 ,

whose its elements are obtained from the author upon request. Approx-
imate confidence intervals for α, β, λ, aandb are given, respectively, by

α ± zη/2
√
var(α̂), β ± zη/2

√
var(β̂), zη/2

√
var(λ̂), a ± zη/2

√
var(â)

and b ± zη/2

√
var(b̂), where var(·) is the diagonal element of J−1(ξ̂)

corresponding to each parameter and zη/2 is the quantile 100(1 − η)% of
the standard normal distribution.

8 Simulation Study

In this simulation study we examine the performance of MLEs of the BRMW
distribution parameters. To this end, we generate from this distribution N =
5000 samples of different sizes n = 50, 100, 200, 300 and 500 with α =
2.5, β = 0.5, λ = 1.5, a = 4 and b = 3.5. The algorithm for generating
random data is given in Section 4 and the R code is given in Appendix. We
evaluate the performance by using the bias and the root mean squared errors
(RMSE) that defined as follows

Bias =
1

N

N∑
i=1

(
θ̂i − θ

)
and RMSE =

√√√√ 1

N

N∑
i=1

(
θ̂i − θ

)2
,

where θ = α, θ = β, θ = λ, θ = a, θ = b. The results of our simulation
study are given in Table 2, where we observe that the bias and RMSE of
the MLEs of α, β, λ, a and b decrease when the sample size is increased.
So, estimating the parameters of the BRMW distribution by using the MLE
method performs quite well.

9 Fitting Reliability Data

To show the flexibility of the BRMW distribution we use three real, complete
and censored, data sets from engineering reliability. For these data sets, we
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Table 2 Simulation results of the MLEs for the BRMW distribution parameters
Sample Size n Parameter Bias RMSE
50 α 0.0412 0.6155

β 0.5538 2.6217
λ 0.2561 1.0298
a 0.3513 0.7387
b 1.7897 1.832

100 α 0.0106 0.3752
β 0.3215 1.9771
λ 0.1989 0.8512
a 1.0010 0.4208
b 0.0102 1.2572

300 α 0.0031 0.1428
β 0.0980 0.1273
λ 0.1017 0.1032
a 0.6253 0.1587
b 0.0051 0.5716

500 α 0.0018 0.1023
β 0.0671 0.0856
λ 0.7852 0.6521
a 0.3158 0.4399
b 0.0020 0.1007

compare the fit of the BRMW distribution with the ERMW, RMW, beta
generalized Weibull (BGW) (Singla et al. [9]), beta Weibull (BW) (Famoye
et al. [4]) and generalized odd log-logistic flexible Weibull (GOLLFW)
(Prataviera et al. [12]). The pdfs of these distributions are, for x > 0,

fBGW (x) =
αβλxβ−1e−λx

β
(1− e−λxβ )αa−1

B(a, b)
(1− (1− e−λxβ )α)b−1,

fBW (x) =
βλxβ−1

B(a, b)
(1− e−λxβ )a−1e−bλx

β
,

fGOLLFW (x) = αβ

(
a+

b

x2

)
exp

([
ax− b

x

]
− κab(x)

)
× (1− exp[−κab(x)])αβ−1

(
1− (1− exp[−κab(x)])β

)α−1
×
(

1− exp[−κab(x)]αβ + [1− (1− exp[−κab(x)])β]α
)−2

,
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where κab(x) = exp(ax − (b/x)). The parameters of the above densities
are positive real numbers. These parameters are estimated by maximum
likelihood using the optimizer mle2 of the R package bbmle. The R code
is given in Appendix. In order to verify which model fits better to these data
sets, we use the twice maximized loglikelihood (−2`), Akaike information
criterion (AIC), consistent Akaike information criteria (CAIC), Bayesian
information criterion (BIC), Kolmogorov-Smirnov (K-S) test statistics and
the corresponding p-values. The better distribution to fit the data corresponds
to smaller values of these statistics and largest p-value.

9.1 Data Set 1: Aarset Data (Complete Data)

The data set is given by Aarset [21] and represents the time to first failure of
50 devices (in weeks). This data set is: 0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11,
12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67,
67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86. As shown
in Figure 4(a), the scaled TTT-Transform plot of this data set has a convex
shape followed by a concave shape. So, the data set has a bathtub-shaped
hazard rate.

Table 3 gives the values of the MLEs of the parameters for all fitted
distributions. Table 4 presents −2`, AIC, BIC, CAIC, K-S statistics and the
p-values of K-S test. The BRMW distribution has the smallest values for the
−2`, AIC, BIC, CAIC, K-S and highest p-value. So, the BRMW distribution
gives an excellent fit than the others models for the Aarset data.

In addition, the plots of the estimated densities and the histogram of this
data given in Figure 5(a) show that the BRMW pdf provides a closer fit to
the histogram. The plots of the estimated and empirical survival function are
displayed in Figure 5(b). These plots reveal that the survival function of the
BRMW distribution is the closest curve to the empirical survival function.
Figure 4(b) indicates that the estimated hazard function has a bathtub-shaped
shape. The variance-covariance matrix for the estimated parameters of the
BRMW distribution is given by

J−1(ξ̂) = −


0.2769 0.0011 −0.0013 0.0824 −0.0483
0.0011 0.00004 −0.0002 −0.0005 −0.0003
−0.0013 −0.0002 0.00093 0.0031 0.0008
0.0824 −0.0005 0.0031 0.1800 −0.0054
−0.0483 −0.0003 0.0008 −0.0054 0.0099

 ,
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Figure 4 (a) TTT-Transform plot and (b) BRMW hazard rate function for the Aarset data.

Table 3 MLEs and standard errors (in parentheses) of the model parameters for the Aarset
data

Model α β λ a b

BRMW 0.8096 0.0017 0.0812 1.1475 0.1051
(0.5263) (0.0069) (0.0306) (0.4244) (0.0998)

ERMW 0.0923 0.0022 0.0521 1.1340
(0.0403) (0.0063) (0.0301) (0.2626)

RMW 0.0746 0.0014 0.0575
(0.0415) (0.0128) (0.0579)

BGW 0.0294 1.8812 0.0031 3.8281 0.1353
(0.0086) (0.5256) (0.0066) (0.0017) (0.0804)

BW 1.5461 0.0350 0.2584 0.0530
(0.9302) (0.0775) (0.1389) (0.0204)

GOLLFW 0.0851 39.1352 0.0408 0.1577
(0.0864) (6.7242) (0.0049) (0.0058)

So, the approximate 95% confidence intervals for the parame-
ters α, β, λ, a and b are (0.00;1.8412], (0.00;0.0153], [0.0212;0.1413],
[0.3157;1.9793] and (0.00;0.3008] respectively.

9.2 Data Set 2: Meeker and Escobar Data (Complete Data)

This data set is studied by Meeker and Escobar [22] and gives the times of
failure and running times for a sample of 30 devices from a field-tracking
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Table 4 The values of −2ˆ̀, AIC, BIC, CAIC and K-S with the corresponding p-values for
the Aarset data

Model −2ˆ̀ AIC BIC CAIC K-S p-value

BRMW 432.8562 442.8562 448.5043 443.7451 0.1239 0.4267

ERMW 439.6272 447.6272 455.2753 448.5161 0.1414 0.2703

RMW 437.9118 443.9118 449.6478 444.4335 0.1384 0.2939

BGW 462.3321 472.3321 481.8923 473.6958 0.1536 0.189

BW 464.5342 472.5342 480.1823 473.4231 0.1654 0.1298

GOLLFW 438.8676 446.8676 454.5157 447.7565 0.1501 0.2099

Figure 5 (a) Plots of the histogram and the fitted densities (b) empirical survival function
and estimated survival functions for the Aarset data.

study of a larger system. The data set is: 2, 10, 13, 23, 23, 28, 30, 65, 80, 88,
106, 143, 147, 173, 181, 212, 245, 247, 261, 266, 275, 293, 300, 300, 300,
300, 300, 300, 300, 300. The TTT-transform plot in Figure 6(a) shows that
the data set exhibits a bathtub-shaped hazard rate.

The MLEs of the parameters of all models are given in Table 5 whereas
the statistics −2`, AIC, BIC, CAIC and K-S with the corresponding p-value
are listed in Table 6. Since the values of −2`, AIC, BIC, CAIC and K-S are
smaller and the p-value is higher for the BRMW model when compared with
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Figure 6 (a) TTT-Transform plot and (b) BRMW hazard rate function for the Meeker and
Escobar data.

those values of the other models, then the BRMW model gives the best fit for
the data set.

Figures 7(a) and 7(b) illustrate the pdfs and the empirical survival func-
tions, respectively, of the comparative models to show the over fitting of the
BRMW distribution. Figure 6(b) indicates that the estimated hazard function
has a bathtub-shaped shape.

The estimated variance-covariance matrix of the BRMW distribution is

J−1(ξ̂) = −


0.0010 −0.0002 0.0003 0.0192 0.0079
−0.0002 7.6× 10−5 −0.0001 −0.0053 −0.0079
0.0003 −0.0001 0.0002 0.0094 0.0134
0.0192 −0.0053 0.0094 0.7013 0.6763
0.0079 −0.0079 0.0134 0.6763 1.2445

 ,
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Table 5 MLEs and standard errors (in parentheses) of the model parameters for the Meeker
and Escobar data

Model α β λ a b

BRMW 0.3656 0.0024 0.0194 2.0632 0.1088

(0.0317) (0.0087) (0.0162) (0.8374) (1.1155)

ERMW 0.0494 0.0019 0.0128 1.4480

(0.0495) (0.0104) (0.0191) (0.6681)

RMW 0.0491 0.0019 0.01300

(0.0165) (0.0042) (0.0082)

BGW 14.9067 1.0637 0.0028 0.0682 18.8482

(0.0004) (0.1221) (0.0020) (0.0160) (0.0001)

BW 1.4101 0.0107 0.4644 0.0490

(0.0026) (0.0794) (0.0189) (0.0053)

GOLLFW 0.2268 13.6617 0.0083 3.1641

(0.1181) (0.2993) (0.0015) (2.7306)

Table 6 The values of −2ˆ̀, AIC, BIC, CAIC, K-S and p-values for the Meeker and Escobar
data

Model −2ˆ̀ AIC BIC CAIC K-S p-value

BRMW 343.0634 353.0634 360.0694 355.5634 0.1456 0.5483

ERMW 347.7469 355.7469 361.3517 357.3469 0.1545 0.4714

RMW 351.5551 357.5551 361.7587 358.4782 0.2423 0.0591

BGW 361.0988 371.0988 378.1048 373.5988 0.2475 0.0507

BW 365.2835 373.2835 378.8883 374.8835 0.1927 0.2148

GOLLFW 351.7009 359.7009 365.3057 361.3009 0.2221 0.1034

So, the approximate 95% confidence intervals for the parame-
ters α, β, λ, a and b are, respectively, [0.3033;0.4279], (0.00;0.0196],
(0.00;0.0512], [0.4217;3.7046] and (0.00,2.2953].

9.3 Data Set 3: Liu and Abeyratne Data (Censored Data)

This data set is introduced by Liu and Abeyratne [23]. They supposed that
the reliability of a certain mechanical component of an automobile is tested
using an accelerated bench test. From Figure 8(b), we conclude that data
set has an increasing hazard rate. So, the BRMW distribution is appropriate
for modeling this data. The MLEs of the parameters of all models are given
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Figure 7 (a) Plots of the histogram and the fitted densities (b) empirical survival function
and estimated survival functions for the Meeker and Escobar data.

Figure 8 (a) TTT-Transform plot and (b) BRMW hazard rate function for the Aarset data.

in Table 7. Table 8 shows that the BRMW distribution has the smallest
values of the −2`, AIC, BIC, CAIC, K-S and the highest p-value. So, the
BRMW distribution provides the best fit than the others models. This result
is confirmed in Figure 9. Figure 8(b) indicates that the estimated hazard
function has an increasing shape. The estimated variance-covariance matrix
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Table 7 MLEs and standard errors (in parentheses) of the model parameters for the Liu and
Abeyratne data

Model α β λ a b

BRMW 0.3306 0.0029 0.0588 9.5612 0.4552

(0.2812) (0.0017) (0.0138) (12.4000) (0.5074)

ERMW 0.0743 0.0172 0.0353 3.3595

(0.0706) (0.0147) (0.0525) (0.0019)

RMW 0.1036 0.2379 0.0113

(0.0211) (0.5578) (0.0254)

BGW 15.7172 1.2452 0.0063 0.2002 12.92658

(11.2279) (0.0897) (0.0042) (0.1248) (14.0341)

BW 1.1084 0.0139 5.6711 2.1871

(0.2816) (0.0121) (2.7254) (3.3199)

GOLLFW 3.6195 3.1609 0.0077 3.0137

(3.1079) (1.7824) (0.0052) (5.3605)

Table 8 The values of -2ˆ̀, AIC, BIC, CAIC, K-S and p-values for the Liu and Abeyratne
data

Model −2ˆ̀ AIC BIC CAIC K-S p-value

BRMW 225.4037 235.4037 242.4097 237.9037 0.21135 0.1371

ERMW 229.6155 237.6155 243.2203 239.2155 0.24179 0.05993

RMW 233.7462 239.7462 243.9498 240.6692 0.39603 0.0001638

BGW 226.9627 236.9627 243.9687 239.4627 0.22903 0.08593

BW 229.6841 237.6841 243.2889 239.2841 0.26052 0.03408

GOLLFW 229.0184 237.0184 242.6232 238.6184 0.30199 0.008406

of the BRMW distribution for the this data set is

J−1(ξ̂) = −


0.0790 −0.0001 0.0023 3.0851 −0.1011
−0.0001 2.9× 10−6 −1.0× 10−5 −0.0053 −1.2× 10−5

0.0023 −1.0× 10−5 1.9× 10−4 0.0465 −5.9× 10−3

3.0851 −0.0053 0.0465 153.761 −2.1121
−0.1011 −1.2× 10−5 −5.9× 10−3 −2.1121 0.2574

 ,

So, the approximate 95% confidence intervals for the parame-
ters α, β, λ, a and b are, respectively, (0.00;0.8818], (0.00;0.0063],
[0.0318;0.0859], (0.00;33.8654] and (0.00;1.4499].
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Figure 9 (a) Plots of the histogram and the fitted densities (b) empirical survival function
and estimated survival functions for the Liu and Abeyratne data.

10 Conclusion

We have proposed a new five-parameter distribution, called the beta reduced
modified Weibull distribution, which generalizes the reduced modified
Weibull distribution discussed by Almalki [15]. We have seen that the
proposed distribution exhibits a decreasing, increasing, bathtub, unimodal
(upside-down bathtub) and modified unimodal shaped hazard rates. We have
also seen that this distribution has a bathtub-shaped hazard rate function
with a long flat region. Hence, it can be used to fit various types of data
sets in reliability analysis. We have derived the algebraic expansions for the
moments, quantile function, stress-strength reliability and the order statistics.
We have estimated, for complete and censored data, the unknown parameters
of new model by maximum likelihood method and obtained the observed
information matrix. A simulation study proved that the maximum likelihood
method performs well for estimating the parameters. We have shown, by
means of three reliability data sets (complete and censored) that the new
distribution is more flexible when it is compared to other modifications of
the Weibull distribution.
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Appendix

We present the following R code to compute the value of the pdf of
BRMW distribution:

f=function(x,alpha,beta,lambda,a,b)
A=-(alpha*sqrt(x))-(beta*sqrt(x))*exp(lambda*x)
B=alpha+(beta*(1+2*lambda*x)*exp(lambda*x)
g=(1/(2*sqrt(x)))*B*exp(A)
G=1-exp(A)
ff=(1/beta(a,b))*g*(G∧(a-1))*((1-G)∧(b-1))
return(ff)

The R code to compute the moments of BRMW distribution:

moment=function(alpha,beta,lambda,a,b,r)
ff=function(x,alpha,beta,lambda,a,b,r)
(x∧r)*(f(x,alpha,beta,lambda,a,b))
mr=integrate(ff,lower=0,upper=Inf,subdivisions=100,
alpha=alpha,beta=beta,lambda=lambda,a=a,b=b,r=r)
return(mr)

The R code to generate random variables from BRMW distribution with
α = 2.5, β = 0.5, λ = 1.5, a = 4 and b = 3.5 :

n=seq(1,100,1)
alpha=2.5;beta=0.5;lambda=1.5;a=4;b=3.5
T=function(x)alpha*sqrt(x)+beta*sqrt(x)*exp(lambda*x)
inverse=function(v,lower,upper)
uniroot((function(x)
T(x)+log(1-v)),lower=lower,upper=upper)$root
Xgenerator=function(n,lower,upper)
V=rbeta(n,4,3.5)
X=c()
for(i in 1:n)
X[i]=inverse(V[i],lower,upper)
return(X)

The R code to obtain the MLEs of BRMW distribution parameters:

x=c(X) X is the data set
LikFunf=function(alpha,beta,lamda,a,b)
A=-(alpha*sqrt(x))-(beta*sqrt(x))*exp(lambda*x)
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B=alpha+(beta*(1+2*lambda*x)*exp(lambda*x))
g=(1/(2*sqrt(x)))*B*exp(A)
G=1-exp(A)
log=-sum(-log(beta(a,b))+log(g)+(a-1)*log(G)+(b-1)*log(1-G)
) return(log)
mle.results=mle2(LikFunf,start=list(alpha=alpha,beta=beta,
lambda=lambda,a=a,b=b),hessian.opts=TRUE)
summary(mle.results)

We obtain the variance covariance matrix of BRMW distribution by:

vcov(mle.results)

The R code to compute the value of Bias and RMSE with N iterate and
sample size n (for example for alpha parameter):

N=5000
n=c(50,100,200,300,500)
for(i in 1:length(n))
for(j in 1:N)
x=Xgenerator(n[i],-1000,1000)
alphamle[j]=coef(mle.results)[1]
bias1alpha[j]=alphamle[j]-alpha
RMSE1alpha[j]=sqrt((bias1alpha[j])∧2)
biasalpha[i]=mean(bias1alpha)
RMSEalpha[i]=mean(RMSE1alpha)
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[20] R.G. Miller, G. Gong and A. Muñoz. Survival analysis. New York: John
Wiley and Sons; 1981.

[21] M.V. Aarset. How to identify a bathtub hazard rate. EEE Transactions
on Reliability, 36(1):106-108, 1987.



The Beta Reduced Modified Weibull Distribution 351

[22] W.Q. Meeker and L.A. Escobar. Statistical methods for reliability data.
New York: Wiley; 1998.

[23] Y. Liu and A.I. Abeyratne. Practical applications of bayesian reliability.
New York: John Wiley and Sons; 2019.

Biography

Lazhar Benkhelifa received the engineer degree in statistics from univer-
sity of Biskra (Algeria), the Magister degree in probability and statistics
from university of Biskra (Algeria), the doctorate degree in statistics from
university of Biskra (Algeria) in 2015 and the habilitation (Habilitation Uni-
versitaire) from university of Oum El Bouaghi (Algeria) in 2018. He works
as a teacher at the department of Mathematics and Informatics, Larbi Ben
M’Hidi University, Oum El Bouaghi, Algeria. His current research activities
are focused in the following aspects: statistical computing, Life time data
analysis, distribution theory and statistical software.




	Introduction
	Beta Reduced Modified Weibull Distribution
	General Formula for the Moments
	Quantile Function
	Order Statistics
	Stress-strength Reliability
	Parameter Estimation
	Complete Data
	Censored Data

	Simulation Study
	Fitting Reliability Data
	Data Set 1: Aarset Data (Complete Data)
	Data Set 2: Meeker and Escobar Data (Complete Data)
	Data Set 3: Liu and Abeyratne Data (Censored Data)

	Conclusion

