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Abstract

In biomedical studies, competing risks framework in which an individ-
ual fails due to multiple causes is frequently available. Joint modeling
of longitudinal measurements and competing risks has become prominent,
recently. In this paper, we proposed a joint model considering fully-specified
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subdistribution model introduced by Ge and Chen (2012) and longitudinal
measurements. The proposed model links a linear mixed effect submodel to
a fully-specified subdistribution submodel through a shared random effect.
A Bayesian paradigm using MCMC is adopted to estimate the parameters.
Performance of the proposed model is illustrated using a simulation study. In
addition, this model is used to analyze the lung transplant dataset.

Keywords: Bayesian analysis, competing risks, joint modeling, longitudinal
measurements, shared parameter model.

1 Introduction

Competing risks data in which patients may experience multiple distinct
causes of failure are encountered in biomedical studies. A cause-specific
hazard function (CSHF), mixture model with hazards functions conditional
on failure cause, and the subdistribution model were introduced to analyze the
competing risks data [1, 2, 3]. Fine and Gray [4] extended the Gray model [3]
to introduce a regression model using proportional hazard (PH) assumption.
Recently, fully-specified subditribution (FS) model has been established for
competing risks data modeling [5]. Not only is this model a natural expansion
of the subdistribution model of [4], also it is possible to estimate covariates
effect alone on the cumulative incidence function of each cause [5].

Joint modeling (JM) of longitudinal measurements and survival has been
used to overcome the limitation of Cox PH model with time-dependent
covariates [6]. JM reduces estimation biases by accounting for measurement
error and handles informative censoring. Shared parameter model (SPM) in
which longitudinal and survival submodels share common random effects is
one of the JM approaches and has been used frequently in AIDS studies [7, 8].
An overview of JM approaches has been presented in [9, 10].

JM of longitudinal measurements and competing risks evaluates the asso-
ciation between a time-dependent covariate which measures intermittently
and more than one endpoint simultaneously. This model has been proposed
through mixture model [11] and considering CSHF model [12] in Sclero-
derma study. Both studies consisted of a linear mixed effects model for
longitudinal measurements and a proportional hazard frailty submodel using
SPM utilizing an expectation maximization (EM) approach.

Baghfalaki et al. assumed that the random effect and longitudinal mea-
surements in SPM follow a normal/independent distribution by consider-
ing Cox model and a Weibull model for survival time to perform their
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proposed method under the presence and absence of outliers in [13] and
[14], respectively. [14] proposed a joint modeling of modified longitudinal
mixed measurements, and the time to event data for analyzing HIV dataset.
A marginal JM of longitudinal outcome and event time is proposed in [15].
In addition, [16] introduced a JM for detecting unobserved heterogeneity and
classifying the individuals to some homogeneous groups.

Li et al. proposed a modification in the joint model developed by Elashoff
[12] such that they considered t distribution for measurement error to obtain
robust estimations in the presence of outliers [17]. Li et al. developed a JM of
longitudinal ordinal data and competing risks data [18]. JM of longitudinal
measurements and competing risks using Bayesian approach was proposed
by Huang et al. and Hu et al. [19, 20], although they considered CSHF as the
competing risk model. In addition, Huang et al. considered a heterogeneous
covariance matrix for random effect using modified cholesky decomposition
[20].

The main aim of this study is to develop a JM of longitudinal mea-
surements and fully-specified subdistribution model via SPM using Bayesian
method. The rest of this paper is organized as follows. Section 2 describes the
motivating lung transplant (LTX) data. The proposed model is introduced in
details in Section 3. A simulation study and LTX data analysis are presented
in Section 4 and 5, respectively. This paper concludes through a discussion in
Section 6.

2 The Motivating Lung Transplant Data

This study was motivated by a retrospective cohort study including 71 end-
stage lung disease patients who underwent LTX since 2000 to 2014 in Masih
Daneshvari Hospital (National Research Institute of Tuberculosis and Lung
Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran).
Bronchiolitis obliterans syndrome (BOS), a delayed allograft deterioration, is
still a major obstacle that limits longterm survival post-LTX [21, 22]. Death
(due to all causes except BOS) and BOS are correlated, because censoring
of BOS due to death is informative. BOS (11 recipients) is considered as
the primary event of interest and death (due to all causes except BOS)
which occured for 41 recipients is the competing risks. The estimate of the
cumulative incidence function of BOS and death are shown in Figure 1.

Moreover, cyclosporine is a maintenance immunosupressive regimen
post-LTX, and monitoring the serum cyclosporine level (SCL) is routine
and mandatory for recipients post-LTX [23]. SCL is correlated with clinical
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Figure 1. The estimate of the cumulative incidence function of BOS
and death

syndrome (BOS), a delayed allograft deterioration, is still a major obstacle that

limits longterm survival post-LTX [21, 22]. Death (due to all causes except BOS)

and BOS are correlated, because censoring of BOS due to death is informative.

BOS (11 recipients) is considered as the primary event of interest and death (due

to all causes except BOS) which occured for 41 recipients is the competing risks.

The estimate of the cumulative incidence function of BOS and death are shown in

Figure1.

Moreover, cyclosporine is a maintenance immunosupressive regimen post-LTX,

and monitoring the serum cyclosporine level (SCL) is routine and mandatory for

Figure 1 The estimate of the cumulative incidence function of BOS and death.

outcomes in transplant [24]. In this sample, the recipient’s SCL was measured
starting from intensive care unit and during the patient’s follow-ups. The
minimum and maximum of longitudinal measurements were 10 and 60,
respectively. The aim of this study was to evaluate the association between
SCL and BOS as well as the association between SCL and death controlling
for sex, age at LTX, type of transplant, cytomegalovirus (CMV) infection,
history of acute rejection (AR), and body mass index (BMI). The estimate of
the cumulative incidence function of BOS and death is shown in Figure 1. In
addition, Figure 2 illustrates the profile plot for the patients with SCL and the
corresponding smooth curve.

3 Proposed Model

Assume there are n subjects. Suppose Yi(t) is the longitudinal measurements
for the ith subject observed at time t ∈ {ai1, ai2, . . . , aini}, where ni ≥
1. Let ti and δi denote the competing risks data presenting failure/censor
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Figure 2. Profile plot for the patients with SCLs along with smooth curve
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Figure 2 Profile plot for the patients with SCLs along with smooth curve.

time and indicator, respectively. δi takes three possible values 0, 1, and 2,
corresponding to censored, failure due to cause 1, and failure due to cause 2,
respectively. Throughout the paper, two competing risks are considered and
their sub-distribution hazard functions are fully-specified [5]. The mechanism
of censoring and competing risks times is assumed independent.

3.1 Longitudinal Submodel of the Proposed Model

Let Yi1, Yi2, . . . , Yini be the values of longitudinal measurements, Yi(t),
observed at t ∈ {ai1, ai2, . . . , aini}, i.e., Yij = Yi(aij) for j = 1, . . . , ni.
Although it is possible that a patient do not have any longitudinal measure-
ment. Assume Yi = (Yi1, Yi2, . . . , Yini)

′ for individuals with longitudinal
measurements follows linear mixed effects model as follows

Yi(t) = α′xi + b′ig(t) + εi(t), (1)

where xi and α are covariates and their coefficients, respectively. g(t) is a
function of trajectory, and bi ∼ N(0,Ω) is a vector of subject-specific effects.
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It is further assumed that εi ∼ Nq(0, σ
2). The likelihood for longitudinal

measurements for ith subject is as follows

L(α, σ2|Yi,xi, bi) ∝
ni∏
j=1

(σ2)−
1
2 exp

{
− 1

2σ2
(Yij −α′xi − b′ig(t))2

}
(2)

Note that the density function of bi is given by

f(bi|Ω) ∝ |Ω|−1/2 exp
(
− 1

2
b′iΩ

−1bi

)
(3)

where Ω is a q × q positive definite matrix.

3.2 Competing Risks Submodel of the Proposed Model

The competing risks model is a FS hazard functions as follows

λk(t|λk0,βk, γk, zi, bi, g) = λk0(t) exp{β′kzi + hk(bi, g, γk)}
(4)

where λk(t|λk0,βk, γk, zi, bi, g), k = 1, 2, is the hazard functions for failure
due to cause k. zi is a vector of fixed covariates and βk is the corresponding
coefficient. In addition, λk0 is the baseline hazard function, h(.) is a linear
function of bi, g(t), γk. For example, b′ig = (bi0, bi1)(1, t)

′ = bi0 + bi1t
and hk(bi, gi, γk) = γk(bi0 + bi1t). In the FS model, F1(t) = Pr(T1 <
ti, δ = 1) and M2(t) = Pr(T2 < ti|δ = 2)Pr(δ = 2) are defined under the
proportional hazard assumption such that

F1(t) = 1− exp{−Λ1(t|λ10,β1, γ1, zi, bi, g)}

and

M2(t) = 1− exp{−Λ2(t|λ20,β2, γ2, zi, bi, g)} (5)

where

Λk(t|λk0,βk, γk, zi, bi, g) =

∫ t

0
λk(u|λk0,βk, γk, zi, bi, g)du. (6)

Moreover, P (δ = 1) = 1−P (δ = 2) = 1−F1(∞) is assumed to overcome
the non-identifiability issue ([5]). Considering hk(bi, g(t), γk) = h∗(bi, γk)
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where h∗ is a linear function of bi and γk2, the trajectory model in (4) reduces
to shared parameter model. Moreover, when γk = 0 then hk(bi, g, γk) ≡ 0
which results in fitting competing risks model to the data alone without the
longitudinal model. Let θ1 = (β1, γ1) and θ2 = (β2, γ2). The likelihood
function for competing risks model for the ith subject is given by

L(λ10, λ20,θ1,θ2,φ|ti, δi, zi, bi, g)

=
[
λ1(ti|λ10,θ1, zi, bi, g) exp{−Λ1(ti|λ10,θ1, zi, bi, g)}

]I{δi=1}[
λ2(ti|λ20,θ2, zi, bi, g) exp{−Λ2(ti|λ20,θ2, zi, bi, g)

− Λ1(∞|λ10,θ1, zi, bi, g)}
]I{δi=2}[

exp{−Λ1(ti|λ10,θ1, zi, bi, g)}

− (1− exp{−Λ2(ti|λ20,θ2, zi, bi, g)})

exp{−Λ1(∞|λ10,θ1, zi, bi, g)}
]I{δi=0}

(7)

3.3 The Likelihood Function

The longitudinal measurements which are caused by any reason
assumed missing at random under the other cause. Write θ =
(α, σ2,Ω, λ10, λ20,β1,β2, γ1, γ2) as the parameter vector and Dobs =
(Y,x, t, δ) as the observed data. Using (2), (3), and (5) the likelihood function
for the observed data, L(θ|Dobs), is considered in as follows

L(θ, bi, g|Dobs) =
∏
i

∫
L(λ10, λ20,θ1,θ2|ti, δi, zi, bi, g)

L(α, σ2|Yi,xi, bi)f(bi|Ω)dbi (8)

3.4 Priors and Posteriors

We consider independent normal priors for α ∼ Np1(0, c01Ip1), β1 ∼
Np2(0, c02Ip2), β2 ∼ Np3(0, c03Ip3), γ1 ∼ N(0, c04), γ2 ∼ N(0, c05). In
addition, σ2 ∼ IΓ(a, b), a, b > 0, Ω follows inverse wishart distribution,
Ω|V ∼ IWq(V, n), where V ∈ Rq×q is a positive definite scale matrix.
Assume piecewise constant hazard model for λk0(t) of the form of (9) such
that 0 = sk0 < sk1 < ... < skJk < ∞ is a finite partition of size of Jk + 1
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on time axis.
λ10(t) = λ1j , s1j−1 < t ≤ s1j , j = 1, 2, . . . , J1 ;
λ10(t) = λ1J1+1 exp{−(t− s1J1)}, t > s1J1 ;
λ20(t) = λ2j , s2j−1 < t ≤ s2j , j = 1, 2, . . . , J2;
λ20(t) = λ2J2+1, t > s2J2 .

(9)
Let λ1 = (λ1j), j = 1, . . . , J1 + 1, λ2 = (λ2j), j = 1, . . . , J2 + 1
and λkj follows independent gamma prior λkj ∼ Γ(akj , bkj), akj , bkj > 0
for k = 1, 2. Further, we assume that all the parameters are independent
π(θ) = π(α)π(σ2)π(Ω−1|V )π(λ1)π(λ2)π(β1)π(β2)π(γ1)π(γ2). Then,
the posterior distribution is given by

π(θ|Dobs) ∝ L(θ|Dobs)× π(θ) (10)

3.5 Computational Development

We adopt Markov Chain Monte Carlo (MCMC) paradigm; Metropolis Hast-
ings algorithm and efficient Gibbs sampling algorithm to sample from the
joint posterior distribution in (10) through steps: First, we sample from
f(bi|Ω) using Metropolis Hastings algorithm for censored subjects. Second,
we used complete data likelihood for FS model through definition of two
latent variables ηi and ui avoiding complexity form in the censor part of the
likelihood. Let η = (ηi : δi = 0, 1 ≤ i ≤ n) and u = (ui : δi = 0, ηi =
1, 1 ≤ i ≤ n) such that ui ≥ ti. Then, the augmented likelihood for the
censored part is given by[

λ1(ui|λ10,θ1, zi, bi, g) exp{−Λ1(ui|λ10,θ1, zi, bi, g)}
]I{δi=0,ηi=1}

×
[

exp{−Λ2(ti|λ20,θ2, zi, bi, g)

− Λ1(∞|λ10,θ1, zi, bi, g)}
]I{δi=0,ηi=2}

(11)

It can be shown that
∑
η
∫ ∫

π(θ,η,u, b|Dobs)dudb = π(θ|Dobs).
For detail see [5]. The sampling algorithm requires sampling from the full
conditional posterior densities which are shown in Appendix 1 elaborately.

4 Simulation Study

In this section, a simulation study is carried out to check different scenarios
under the proposed model. For the longitudinal submodel, covariates xi1 and
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xi2 are generated from Gaussian(2, 1) and Bernouli(0.2), respectively,
with true parameters bl = (bl0, bl1, bl2, bl3)

′. The linear mixed effect model
including random intercept b0i is as follows:

Y (tij) = bl0 + bl1tij + bl2xi1 + bl3xi2 + b0i + ε(tij)

where b0i ∼ N(0, σb
2 = 1) and ε(tij) ∼ N(0, σε

2 = 1) are
mutually independent. It is considered 25 time points for the longitu-
dinal measurements such that ai1 = 0 and Yi1 is the baseline lon-
gitudinal measurement. For the competing risks submodel, we assumes
two causes where cause 1 is the event of interest and p(δ = 1) '
1/3. Covariates zi1 and zi2 given zi1 are generated from N(0, 1) and
Bernouli(p(zi1)) where p(zi1) = exp(0.3+.2zi1)

1+exp(0.3+.2zi1)
, respectively. Two covari-

ates with true parameters β1 = (β11, β12)
′ and β2 = (β21, β22)

′ are
considered. The failure times of two causes follow distinct piecewise expo-
nential distributions such that partitioned time axis is as follows; s1j =
(0, 3, 6, 9) with corresponding λ1 = (0.02, 0.08, 0.1, 0.15) and s2j =
(0, 5, 10, 15, 20, 25) with corresponding λ2 = (0.05, 0.10, 0.15, 0.20, 0.25).
For more details about FS model simulation see [5]. λ1(ti) and λ2(ti)
are hazard functions for the competing risks involving shared random
intercept b0i.

λ1(ti) = λ01(ti) exp{β11zi1 + β12zi2 + γ1b0i}
λ2(ti) = λ02(ti) exp{β21zi1 + β22zi2 + γ2b0i} (12)

300 data sets with the sample size (N) of 75, 100, 300, 500, and 800
were generated. The true value, estimate, standard deviation (SD), coverage
probability (CP), and mean square error (MSE) of each parameter for both
submodels are given in Table 1. Squared error loss, the most commonly used
loss function, was used for the estimations of the parameters. The higher
sample size, the more acceptable CP. For sample size of 800, all the CPs are
around 0.95. The simulation study showed that MSE and CP increased as
the sample size increased. However, parameter’s bias has no decreasing trend
when sample size increased.

5 Lung Transplant Study

Table 2 describes the recipient’s characteristics. The mean and the median of
longitudinal measurement time points were 28 and 26, respectively. It was
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Table 2 The recipient’s characteristics
Variable Mean (SE) or N (%)
Age 35.87 (13.2)

BMI 19.98 (3.94)

Sex (female) 15 (21)

AR (Grade II and higher) (+) 12 (17)

CMV (+) 22 (31)

Type of transplant (lateral) 33 (46.5)

considered random intercept model for recipient i at time point j,

SCL(tij) = bl0 + bl1tij(0,10] + bl2t
2
ij(0,10] + βl3tij(10,∞) + b0i + ε(tij)

λBOS(ti) = λ0BOS(ti) exp{β11Sexi + β12Agei + β13Typei

+ β14CMVi + β15ARi + β16BMIi + γ1b0i}
λDeath(t) = λ0Death(ti) exp{β21Sexi + β22Agei + β23Typei

+ β24CMVi + β25ARi + β26BMIi + γ2b0i} (13)

where b0i ∼ N(0, σ2b ) and ε(tij) ∼ N(0, σ2e) are mutually independent.
Table 2 shows the results of the joint model in (13). The first part of the
Table 2 shows the estimates (SE) and 95% credible set (CS) for the longi-
tudinal submodel, and the second and the third parts present the estimates
(SE) along with 95% CS, and Hazard ratio (HR) accompanied by 95% CS,
respectively. The results shows that SCL follows a quadratic pattern up to
10 months post-LTX and a linear form afterwards. The risk of BOS was 3.1
(95% CS:1.5,14.8) times higher in recipients who experienced AR compared
to recipients with no history of AR . In addition, recipients who had history
of CMV infection and higher BMI had a significantly higher risk of death.
The estimates revealed that SCL was associated with higher risk of death
significantly. The higher initial SCL was associated with higher risk of death
(95% CS: (-0.07, -0.008)). However, the initial SCL was not related to BOS
risk significantly (95% CS: (-0.02, 0.012)) controlling for SCL and other
covariates.

6 Discussion

Joint modeling has been developed for more than one causes of failure to
assess the relationship between longitudinal measurements and causes as
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Table 3 The results of the proposed joint model on LTX data using Bayesian approach
Submodel Term in the Model Estimation (95% Credible Set)
Longitudinal

Intercept 130 (121.83, 155.09)

T ime(0,10] −85.04 (−94.1, −73.08)

T ime2(0,10] 12.29 (6.37, 18.76)

T ime(10,∞) −29.53 (−39.11, −21.07)
Competing risks Hazard Ratio (95% Credible Set)
BOS
(the event of interest)

Sexfemale 4.1 (1.15, 12.21)

Age 0.93 (0.69, 1.35)

Type of transplantlateral 1.5 (0.01, 77.21)

CMV+ 2.9 (0.69, 18.28)

AR+ 3.21 (1.41, 14.99)

BMI 0.36 (0.19, 1.23)

Death
(the competing risk)

Sexfemale 1.53 (0.27, 13.06)

Age 0.81 (0.78, 1.01)

Type of transplantlateral 2.73 (0.56, 8.92)

CMV+ 3.14 (1.47, 5.57)

AR+ 1.03 (0.08, 13.89)

BMI 1.12 (1.03, 1.73)
Association parameter

γ1 −0.01 (−0.017, 0.019)

γ2 −0.03 (−0.07, −0.009)

well as providing a tool for inferences of longitudinal measurements at the
presence of non-informative censoring.

In this study, we proposed a new joint model for longitudinal measure-
ments and competing risks in which FS model is utilized as the competing
risks submodel. In addition, a linear mixed model was utulized for the
longitudinal submodel. These two submodels are linked through a shared
random effect approach [11]. The asymptotic properties of the proposed
model is complex although convergency and identifiability of the model



234 F. S. Hosseini-Baharanchi et al.

is shown throughout the simulation. Recently, Tian et. al used quantile
regression for longitudinal mixed models for joint model with multiple data
features. They employed Monte Carlo Expectation-Maximization algorithm
for estimation problem [25]. Zhang et al proposed a joint model of mixed
effects regression models for longitudinal measures and a cure rate model
under the semi-competing risks framework; the disease progression as the
non-terminal event, and the occurrence of death as the terminal event. The
Bayesian paradigm was applied for estimation process [26].

However, other semiparametric competing risks submodels such as mix-
ture model [11] and CSHF [12] have been used previously as the competing
risks submodel in joint models. It is noteworthy that CSHF is not able to
incorporate the correlation between causes however, FS model [5] takes into
account the correlation between competing risks via P (δ = 1) + P (δ =
2) = 1 to overcome nonidentifiability issue. FS model can incorporates
both risks in one likelihood function and estimate all the covariate effects
simultaneously.

The results of the proposed model on LTX data revealed that SCL was
related to the BOS risk nonsignificantly, and SCL was negatively associated
with mortality risk. Moreover, AR was hazardous factor on BOS develop-
ment, and CMV infection as well as BMI were found risk factors of mortality
post-LTX. Similar results were found in [27]. Hosseini-Baharanchi et al
applied a joint model of initial SCL and mortality on LTX data in which it was
found that AR was a predictor of mortality as well as a negative association
between higher initial SCL and lower mortality risk [28].

In this study, the submodels are linked using shared random intercept
only, it can be further extended to both shared random intercept and random
slope.t is suggested to find a robust estimation procedures when random
effects violate the normality assumption for future researches. The code is
written in R 3.2.1 and is available upon the request.

7 Appendix

Full conditional posterior densities for some of the parameters including α,
σ2, Ω−1, β1, and λ1

1. Sampling α from

α|bi, Dobs ∼ N

∑
i∈G1

(
nii′i
σ2

+
I

c01

)−1
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∑
i∈G1

i

nj∑
j=1

(Yij − b′ig(t)),

∑
i∈G1

(
nii′i
σ2

+
I

c01

)−1 (14)

2. Sampling σ2 from

σ2|bi, Dobs ∼ IG(
ni
2

+ a,

∑ni
j=1(Yij −α′i − b

′
ig(t))2

2
+ b)

(15)

3. Sampling Ω−1 from

Ω−1|bi, Dobs ∼ IWishart(n+ q + 1, bib
′
i + V )

(16)

4. Sampling β1 from

π(β1|bi, ηi, ui,λ1,λ2, γ11,γ12, Dobs)

∝
n∏
i=1

[
λ10(ti) exp{β′1zi + γ11(1− di) + dih1(bi, g(t),γ12)}

exp

{∫ ti

0
λ10(u) exp{β′1zi + γ11(1− di)

+ dih1(bi, g(t),γ12)}du}

]I{δi=1}

×

[
exp

{
−
∫ ∞
0

λ10(u) exp{β′1zi + γ11(1− di)

+ dih1(bi, g(t),γ12)}du

]I{δi=2}

×

[
λ10(ti) exp{β′1zi + γ11(1− di) + dih1(bi, g(t),γ12)}
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exp

{∫ ui

0
λ10(u) exp{β′1zi + γ11(1− di)

+ dih1(bi, g(t),γ12)}du}

]I{δi=0,ηi=1}

×
[

exp{−
∫ ∞
0

λ10(u) exp{β′1zi + γ11(1− di)

+ dih1(bi, g(t),γ12)}du}
]I{δi=0,ηi=2}

exp

{
− 1

2c02
β′1β1

}
(17)

5. Sampling λ1 from

π(λ1|bi, ηi, ui,β1,β2, γk1,γk2, Dobs)

∝
n∏
i=1

[
λ10(ti) exp{β′1zi + γ11(1− di)

+ dih1(bi, g(t),γ12)}

exp{
∫ ti

0
λ10(u) exp{β′1zi + γ11(1− di)

+ dih1(bi, g(t),γ12)}du}

]I{δi=1}

×

[
exp{−

∫ ∞
0

λ10(u) exp{β′1zi + γ11(1− di)

+ dih1(bi, g(t),γ12)}du}

]I{δi=2}

×

[
exp{λ10(u) exp{β′1zi + γ11(1− di) + dih1(bi, g(t),γ12)}∫ ui

0
λ10(u) exp{β′1zi + γ11(1− di)

+ dih1(bi, g(t),γ12)}du}

]I{δi=0,ηi=1}
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×

[
exp{−

∫ ∞
0

λ10(u) exp{β′1zi + γ11(1− di)

+ dih1(bi, g(t),γ12)}du}

]I{δi=0,ηi=2}

J1+1∏
j=1

λ
a1j−1
1j exp{−bkjλ1j} (18)
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