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Abstract

The Pareto distribution takes part in life-testing experiments as a finite range
distribution. In this study, inference studies for the scale and shape parameters
of the Pareto distribution under type-II hybrid censoring scheme are consid-
ered. The main reason for choosing this censoring scheme is its advantage
of guaranteeing at least particular failures to be observed by the end of the
experiment. Maximum likelihood and Bayes estimation methods are used
with their approximate confidence intervals. Proposed estimation methods
are compared numerically based on simulation studies. A numerical example
is also used to illustrate the theoretical outcomes.

Keywords: Bayesian inference, maximum-likelihood, Pareto distribution,
hybrid censoring.

1 Introduction

In reliability theory, many lifetime datasets are modelled with probability
distributions under different ways. These probability distributions are mostly
defined on [0,∞) range and such as exponential, Weibull, lognormal, gamma
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distributions can be specified as mostly used distributions among them. On
the other hand, in many cases the lifetime distributions should be considered
on a finite range due to specific conditions of the items or components. For
instance, strength, length, pressure, temperature, time, voltage, weight of a
material may take any value on a finite range. Further, censored or truncated
cases reduce lifetimes of items on a finite range. In this way, finite range
probability distributions have importance in many reliability problems. For
instance, Pareto distribution by Abdel-Ghaly et al. [1], beta distribution by
Gupta and Gupta [2], Topp-Leone distribution by Ghitany et al. [3] were
considered in the context of reliability.

On the other hand, it is known that the lifetimes of components or units
may not be recorded exactly always. In most cases, units are lost or removed
from the experiments before they failed so censored datasets are observed. In
reliability theory, there are many different censoring schemes (CS) such as
Type-I censoring, Type-II censoring and hybrid censoring which is a mixture
of Type-I and Type II and introduced by Epstein [4] known as the Type-I
hybrid censoring scheme in the literature. However, similar to conventional
Type-I CS, Type-I hybrid censoring scheme has disadvantage when only few
failures occurring up to the pre-fixed time T . For this reason, Childs et al. [5]
proposed another hybrid censoring scheme known as the Type-II hybrid
censoring scheme as described in the following. Firstly, the experiment starts
with n independent and identical units. Then, the experiment is terminated
at the random time T ∗ = max{XR:n, T} where R < n and T are prefixed
numbers. Thus, the Type-II hybrid CS guaranteed at least R failures on test.
Based on many probability distribution, Type-II hybrid CS is considered.
Among them, Banerjee and Kundu [6] for Weibull distribution, Ganguly
et al. [7] for two-parameter exponential distribution can be given as reference
to motivation of this study.

As a finite range distribution, the Pareto distribution with scale parameter
k and shape parameter σ is defined with the following density, distribution
and survival functions

f(x; k, σ) = σkσx−(σ+1) (1)

and

F (x; k, σ) = 1−
(
k

x

)σ
, S(x; k, σ) =

(
k

x

)σ
(2)

where x > k and k, σ > 0.
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The Pareto distribution is considered for modelling lifetime datasets in
many engineering problems due to its range depended to its scale param-
eter. Under censored cases, many inference studies for Pareto distribution
take part in literature. Recently, Cheng and Zhao [8] studied estimation of
Pareto distribution under hybrid Type-I and the progressive Type-II hybrid
censored samples. Fu et al. [9] considered objective Bayesian inference under
progressive Type-II censoring. Cheng et al. [10] Type-II hybrid censored
studied exact inference of the distribution for doubly Type-II and the pro-
gressive Type-II censored samples. The Type-II hybrid CS only considered
by Balakrishnan and Shafay [11] for the Bayesian prediction intervals.

The aim of this paper is to obtain the parameter estimations of a Pareto
model under Type-II hybrid censoring. Importance of this CS is let the test to
terminate whenever a pre-specified number of observations has been obtained
and prespecified time point for the duration of experiment has reached. On
contrast to Type-I hybrid CS, the test provides both of the failure points. For
this purpose, we consider parameter estimations of the Pareto distribution
under Type-II hybrid CS. It should be note that previous inferential studies
based on progressive Type-II hybrid samples [9, 11] can be reduced to
the Type-II hybrid CS by taking the number of removed live units at each
failure as zero. However, in these previous studies, Bayesian estimation and
comparing the estimation methods do not take part. Based on this matter,
we used the maximum likelihood (MLE) and Bayes estimation methods to
obtain estimation of the shape and scale parameters of the Pareto distribution
under Type-II hybrid CS. As approximate confidence intervals of estimates,
bootstrap method is used for MLEs and compared for frequentist coverage
probability with Bayes credible intervals.

2 Model Description and Maximum Likelihood Estimation

Let suppose that X be a positive random variable from the Pareto(k, σ)
distribution. Firstly, we describe the observed data under the Type-II hybrid
censoring scheme with a known prefixed failure number R and a prefixed
test terminate time T . In this case, we observe the following two cases of
observations.

Case I: {x1:n < x2:n < · · · < xR:n} if T < xR:n

Case II: {x1:n < x2:n < · · · < xd:n < T < xd+1:n} if xR:n < T and
R ≤ d < n.
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where x1:n < x2:n < · · · < xn:n denotes the ordered random sample from
the Pareto(k, σ) sample. It should be note that we do not observe xd+1:n but
xd:n < T < xd+1:n means d-th failure occurs before T and there is no failure
between xd:n and T . Based on these cases, the associated likelihood function
of the observed data can be obtained as in the following

L(θ|X) =
n!

(n−m)!

m∏
i=1

f(xi:n; θ)[1− F (U ; θ)]n−m (3)

where m = R and U = xR:n for the Case I (T < xR:n) and m = d, U = T
for the Case II (xR:n < T ).

For our problem, let X = (x1:n, x2:n, . . . , xm:n) denotes a hybrid cen-
sored sample from the Pareto(k, σ) distribution. Then, the corresponding
log-likelihood function of the observed sample, denoted by l(k, σ), can be
obtained as in the following

l(k, σ) ∝ m(lnσ + σlnk)− (σ + 1)
m∑
i=1

lnxi:n + σ(n−m)[lnk − lnU ]

(4)

From (4), the MLEs of the k and σ, denoted by k̂ML and σ̂ML, are the
values that maximizing l(k, σ) with respect to k and σ, respectively. Here, it is
clearly seen that the log-likelihood function l(k, σ) is an increasing function
of k. Therefore the k̂ML is the first order statistics of the observed sample.
That is k̂ML = x1:n. Then, the MLE of the shape parameter σ can be obtained
as

σ̂ML =
m∑m

i=1 lnxi:n − (n−m)[lnx1:n − lnU ]−mlnx1:n
(5)

In addition to estimates, confidence intervals for the parameters are
needed. However, the Pareto distribution does not belong to a regular family
of distributions since the support of the distribution depends on its scale
parameter k and Fisher information matrix is not a positive definite matrix in
the case of σ ≥ R/n [4]. Therefore, asymptotic variances of the parameters
cannot be determined by using the standard theory of the Fisher information
matrix and a confidence interval by using the asymptotic normality of MLEs
cannot be obtained for Pareto parameters. Hence, we can propose bootstrap
percentile method (boot-p) as suggested by Efron and Tibshirani [12] as an
alternative approximate confidence interval.
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2.1 Bootstrap Confidence Interval for MLEs

In this subsection, parametric bootstrap confidence intervals are considered
for the MLEs of the parameters. Since the asymptotic variances of the
parameters cannot be determined by using the standard theory of the Fisher
information matrix, bootstrap percentile method (boot-p) will be used in
place of bootstrap-t confidence interval that require a regular family in its
construction.

The following algorithm is proposed to generate parametric bootstrap
samples, as suggested by Efron and Tibshirani [7].

• Step 1: Generate a random sample (x1, x2, . . . , xm) from Pareto(k, σ).
• Step 2: After computing the MLEs of all parameters k and σ, gener-

ate independent bootstrap sample (x∗1, x
∗
2, . . . , x

∗
m) from Pareto(k̂, σ̂).

Then, compute the MLEs of all parameters based on the bootstrap
samples, denoted by k̂∗ and σ̂∗.

• Step 3: Repeat Step 2 B times and obtain sets of bootstrap estimates of
k and σ, say k̂∗i and σ̂∗i where i = 1, 2, . . . , B.

By using these bootstrap samples, compute (k̂∗(γ/2), k̂∗(1−γ/2)) where
k̂∗(γ) is the γ-percentile of k̂∗i , i = 1, 2, . . . , B, that is a number such that

1

B

B∑
i=1

I(k̂∗i ≤ k̂∗(γ)), 0 < γ < 1

where I(◦) is the indicator function. Similarly, (σ̂∗(γ/2), σ̂∗(1−γ/2)) can be
obtained easily.

3 Bayesian Estimation

In this section, we consider the Bayesian estimations of the parameters for our
problem. It is known that selection of prior distributions for the parameters
play an important role in Bayesian estimations. In the previous studies,
various prior distributions have been proposed for the unknown parameters
of a particular distribution of interest. In specific of Pareto distribution, Fu
et al. [4] compared different independent priors for the Pareto parameters and
recommended π(k, σ) = 1/kσ as the reference pripor. Here, 0 < k < x1:n
and σ > 0. In a similar manner with progressive type-II censored Pareto data
by Fu et al. [9], posterior distributions based on type-II hybrid censored case
can be obtained as follows.
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Based on the given likelihood function of the observed sample and the
reference prior π(k, σ), the joint posterior density of the scale and shape
parameters can be obtained as in the following

π(k, σ|x1, x2, . . . , xm) ∝ L(k, σ|x1, x2, . . . , xm)π(k, σ)

∝ σmkσnexp

{
−σ

(
m∑
i=1

lnxi:n + (n−m) lnU

)}
1

kσ

where 0 < k < x1:n and σ > 0. Then, the marginal densities of
the parameters are derived by integrating out the nuisance parameter in
the joint posterior density. Firstly, the marginal posterior density of the
shape parameter σ is obtained as a gamma distribution such as GA(m −
1,
∑m

i=1 lnxi:n + (n−m)lnU − nlnx1:n) as given in the following

π(σ|X) =

∫ x1:n

0
π(k, σ|x1, x2, . . . , xm)dk

∝
∫ x1:n

0
σm−1kσn−1exp

{
−σ

(
m∑
i=1

lnxi:n + (n−m)lnU

)}
dk

∝ σm−2exp

{
−σ

(
m∑
i=1

lnxi:n + (n−m) lnU − nlnx1:n

)}
and equally

π(σ|X) ∝ GA

(
m− 1,

m∑
i=1

lnxi:n + (n−m)lnU − nlnx1:n

)
(6)

For the scale parameter k,

π(k|X) =

∫ ∞
0

σm−1kσn−1exp

{
−σ

(
m∑
i=1

lnxi:n + (n−m)lnU

)}
dσ

∝ 1

k(
∑m

i=1 lnxi:n + (n−m)lnU − nlnk)m

with the normalization constant

C =
1

n(m− 1)(
∑m

i=1 lnxi:n + (n−m)lnU − nlnx1:n)m−1
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and the quantile function of the posterior distribution of k can be obtained as

k = F−1(u) = exp

{∑m
i=1 lnxi:n + (n−m)lnU − (ucn(m− 1))

1
1−m

n

}
(7)

where u denotes a random variable from the uniform distribution U(0, 1).

4 Simulation Studies

In this section, we provide some simulation studies to evaluate the per-
formances of the MLE and Bayesian methods for parameters. The biases
and mean squared errors (MSE) of the estimates are used for comparisons.
Average confidence lengths and frequentist coverage probability forα = 0.95
are reported for the approximate confidence intervals. We can decide that
an estimate is good or bad depend on whether the frequentist coverage
probability of α credible interval or confidence interval close to α or not
(Fu et al. [9]). Therefore, let kπ(α;X) and σπ(α;X) be the posterior α
quantile of k and σ for given censored dataset. Thus, the credible intervals for
k and σ are obtained as (kπ(α/2;X), kπ(1 − α/2;X)) and (σπ(α/2;X),
σπ(1 − α/2; X)). Then, the frequentist coverage probability of a one-sided
credible interval for k and σ is given as in the following (see Guan et al. [13])

Qπ(α; k) = P(k,σ)(0 ≤ k ≤ kπ(α;X))

Qπ(α;σ) = P(k,σ)(0 ≤ σ ≤ σπ(α;X))

where k(α;X) and σ(α;X) is a random variable. Then, corresponding
Bayesian estimations are calculated by using the Equations (6) and (7) as pro-
posed estimators. Frequentist coverage probabilities Qπ(α; k) and Qπ(α;σ)
are estimated by the relative frequency

{k < kπ(α;X)}/N

where k < kπ(α;X) is the proportion of the true value less than the posterior
α quantiles of k (Fu et al. [9]). Similar calculations are needed for Qπ(α;σ).

By taking arbitrary parameter values (k, σ) = (2.5, 1.5), different sample
sizes such as n = 30 and n = 40, for each sample sizes R = 20, 25, 28 and
R = 30, 35, 38, respectively and for different prefixed time T = 4 and T = 8
we generated N = 100 000 samples from the Pareto(k, σ) distribution by
using the posterior densities which is given in Equations (6) and (7). For each
replication we used B = 500 bootstrap intervals.
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Table 1 Biases and MSEs (within parentheses) of the estimates in the first rows with their
average confidence length and coverage probabilities (within parentheses) in the second rows
for n = 30, T = 4 and T = 8 with various R

R T k̂ML k̂B σ̂ML σ̂B

20 4 0.0573 (0.0034) 0.0014 (0.0073) 0.1587 (0.1482) 0.0734 (0.2759)

0.2044 (1.00) 0.2198 (0.95) 1.2163 (0.90) 1.4087 (0.95)

8 0.0566 (0.0033) 0.0020 (0.0069) 0.1063 (0.1094) 0.0404 (0.2104)

0.2091 (1.00) 0.2187 (0.95) 1.3277 (0.99) 1.2288 (0.95)

25 4 0.0570 (0.0034) 0.0007 (0.0071) 0.1300 (0.1206) 0.0671 (0.2243)

0.2059 (1.00) 0.2151 (0.95) 0.9293 (0.94) 1.2476 (0.95)

8 0.0570 (0.0034) 0.0010 (0.0071) 0.1137 (0.1067) 0.0531 (0.2053)

0.2072 (1.00) 0.2159 (0.95) 1.2397 (0.98) 1.2162 (0.95)

28 4 0.0568 (0.0034) 0.0005 (0.0069) 0.1147 (0.1050) 0.0588 (0.1961)

0.2068 (1.00) 0.2134 (0.95) 1.0669 (0.97) 1.1708 (0.95)

8 0.0570 (0.0035) 0.0005 (0.0069) 0.1136 (0.1034) 0.0578 (0.1942)

0.2069 (1.00) 0.2134 (0.95) 1.2177 (0.97) 1.1692 (0.95)

All obtained results are reported in Table 1 for n = 30 and in Table 2
for n = 40. As expected, the biases and MSEs decreasing with parallel
to increasing sample size. Bayes estimates have smaller bias but MLEs
have smaller MSEs. As Fu et al. [4] mentioned before, frequest coverage
probabilities of k become 1.00 is obviously seems unreasonable. However, it
can be said that the MLEs of the scale parameter is an order statistics. So, all
the estimates on each iteration provide the k < kπ(α;X) condition so this
fact can explain the reason of this result.

Further, we see that bootstrap confidence intervals have smaller lengths
than Bayesian methods in all cases. All the frequentist coverage probabilities
are observed close to α.

5 Numerical Example

In this section, a real dataset is analyzed to illustrate the use of our proposed
estimation methods. The data from Crowder [14] which is the lifetimes of
the steel specimens tested at 38.5 stress level is used. Observations of this
data set are given as 60, 51, 83, 140, 109, 106, 119, 76, 68, 67, 111, 57,
69, 75, 122, 128, 95, 87, 82, 132. The truncated form of this data was also
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Table 2 Biases and MSEs(within parentheses) of the estimates in the first rows with their
average confidence length and coverage probabilities(within parentheses) in the second rows
for n = 40, T = 4 and T = 8 with various R

R T k̂ML k̂B σ̂ML σ̂B

30 4 0.0431 (0.0020) 0.0003 (0.0039) 0.1102 (0.0948) 0.0637 (0.1800)

0.1530 (1.00) 0.1598 (0.95) 0.7534 (0.91) 1.1296 (0.95)

8 0.0431 (0.0019) 0.0005 (0.0039) 0.0819 (0.0786) 0.0420 (0.1520)

0.1552 (1.00) 0.1606 (0.95) 1.0576 (0.98) 1.0543 (0.95)

35 4 0.0428 (0.0019) 0.0005 (0.0037) 0.0926 (0.0809) 0.0502 (0.1484)

0.1538 (1.00) 0.1586 (0.95) 0.8051 (0.95) 1.0374 (0.95)

8 0.0428 (0.0019) 0.0004 (0.0037) 0.0876 (0.0764) 0.0457 (0.1426)

0.1541 (1.00) 0.1588 (0.95) 1.0159 (0.96) 1.0299 (0.95)

38 4 0.0427 (0.0019) 0.0004 (0.0037) 0.0858 (0.0731) 0.0480 (0.1352)

0.1540 (1.00) 0.1578 (0.95) 0.9189 (0.97) 0.9927 (0.95)

8 0.0427 (0.0019) 0.0004 (0.0037) 0.0857 (0.0728) 0.0478 (0.1349)

0.1540 (1.00) 0.1578 (0.95) 0.9796 (0.97) 0.9925 (0.95)

Table 3 Estimates (first rows) and length of their corresponding credible intervals (second
rows) for the data of lifetimes of the steel specimens for different R and T

R T k̂ML k̂B σ̂ML σ̂B

16 80 51.0000 50.6380 1.3325 1.0391

6.9561 7.8087 1.0413 1.2571

100 51.0000 48.5424 1.3325 1.1821

7.5527 7.8087 1.1821 1.2571

120 51.0000 50.8495 1.3325 1.1361

7.4172 7.8087 1.4854 1.2571

18 80 51.0000 49.1921 1.7060 1.3722

5.9629 6.0803 1.9067 1.5240

100 51.0000 49.5787 1.7872 1.4933

5.3507 5.7696 2.0093 1.5568

120 51.0000 49.3915 1.7571 1.1414

5.4763 5.8625 1.7361 1.5306
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used by Juvairiyya and Anilkumar [15] and fitted by Pareto distribution. We
first fit this data to Pareto distribution under uncensored case. The MLEs
of the parameters are obtained as 51 and 1.8334, respectively. Then, the
corresponding Kolmogorov–Simirnov test statistic and associated p-value are
obtained as 0.35 and 0.1745, respectively. Thus, one cannot reject the null
hypothesis that the data set comes from the Pareto distribution. We obtained
the proposed estimates and their credible intervals for different time point
T = 80, 100, 120 and R = 16, 18. The results are presented in Table 3.

We observed that lengths of credible intervals for both methods are
decreasing with increasing time point T and censored failure numbers R. For
scale parameter k, ML method gives shorter lengths in all cases. For the shape
parameter σ, Bayesian credible intervals are getting shorter with increasing
T and R.

6 Conclusions

In this paper, maximum likelihood and Bayesian estimated of the parameters
of the Pareto distribution based on the Type-II hybrid censoring scheme
is obtained. Since the distribution does not belong to regular family of
distributions a bootstrap confidence interval is proposed for maximum like-
lihood estimates and an objective Bayesian analysis which is proposed by
Fu et al. [9] is used under this censoring scheme. Simulation results perform
consistent results and provide target coverage probabilities.
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is currently studying as a research assistant in Department of Business
Administration of Bingöl University, Turkey.


	Introduction
	Model Description and Maximum Likelihood Estimation
	Bootstrap Confidence Interval for MLEs

	Bayesian Estimation
	Simulation Studies
	Numerical Example
	Conclusions

