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Abstract

In this article, we aim to estimate the parameters of the transmuted Weibull
distribution (TWD) using Bayesian approach, as the Weibull distribution
plays an important role in reliability engineering and life testing problems.
Informative and non-informative priors under squared error loss function
(SELF), precautionary loss function (PLF) and quadratic loss function (QLF)
are assumed to estimate the scale, the shape and the transmuted parameter
of the TWD. In addition to this, we also compute the Bayesian credible
intervals (BCIs). To estimate parameters, we adopt Markov Chain Monte
Carlo (MCMC) technique assuming uncensored and censored environments
in terms of different sample sizes and censoring rates. The posterior risks,
associated with each estimator are used to compare the performance of
different estimators. Two real data sets are analyzed to illustrate the flexibility
of the proposed distribution.

Keywords: Transmuted Weibull distribution, loss functions, Bayes esti-
mators, posterior risks, uniform prior, informative prior, BCIs, MCMC,
censoring and chi-square test.

Journal of Reliability and Statistical Studies, Vol. 13, Issues 2–4 (2020), 287–324.
doi: 10.13052/jrss0974-8024.13245
© 2021 River Publishers



288 R. Yousaf et al.

1 Introduction and Motivation

Statistical distributions are very useful in describing and predicting real
world phenomena. However, due to recent developments in data gathering
mechanism the available probability models do not properly fit data in many
important and practical problems. In such cases, non-parametric models
may be recommended, but the popularity of parametric models is undeni-
able. Shaw and Buckley (2009) used the quadratic rank transmutation map
(QRTM) technique to construct new families of non-Gaussian distributions.
In fact, this technique is used to modify the moments, skewness and kurtosis
of a baseline distribution (Al- Kadim and Mohammed, 2017). The resulted
distribution is known as the transmuted distribution. This family gained
attention of many researchers and as a result, many new flexible distributions
have been developed and studied over the past decade. For example, Khan and
King (2013) introduced the transmuted modified Weibull distribution while
Ebraheim (2014) introduced exponentiated transmuted Weibull distribution.
Recently, Al- Kadim and Mohammed (2017) constructed a new lifetime
distribution, known as the transmuted cubic Weibull distribution. Mobarak
et al., (2017) introduced a new weighted distribution called the size biased
weighted transmuted Weibull distribution. Abdurrahman (2017) used the
method of least squares and method of moments to estimate parameters of
transmuted Weibull distribution and compared them through a simulation
study under statistical measure like mean squared error (MSE). Ahmad et al.
(2015) discussed some structural properties of transmuted Weibull distribu-
tion, including mean, harmonic mean, standard deviation, moment generating
function (MGF), skewness and kurtosis. Currently, transmuted distributions
are applied in many areas such as reliability studies, lifetime analysis,
engineering, economics, insurance and environmental sciences (Shaw and
Buckley, 2009).

A random variable X is said to have transmuted probability distribution
if its probability density function (pdf) and cumulative distribution function
(CDF) can be written as (Shaw and Buckley, 2009):

f(x) = g(x)[1 + λ− 2λG(x)] (1)

F (x) = (1 + λ)G(x)− λG2(x) (2)

where x > 0 and |λ| ≤ 1 is the transmuted parameter, G(x) denotes the CDF
of the baseline distribution, f(x) and F (x) are the associated transmuted pdf
and CDF, respectively.
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The Weibull distribution is a very popular lifetime probability distribution
and used in many different areas of reliability and survival analysis. Much of
the attractiveness of the Weibull distribution is due to the wide variety of
shapes which can be generated by altering its shape parameter. Moreover, it
is a versatile distribution because many other distributions, like exponential,
Rayleigh, are special cases of this flexible distribution. Despite its popularity,
and wide applicability, the traditional Weibull distribution is unable to capture
the entire lifetime phenomenon. For instance, the Weibull distribution is not
suitable for the data set which has a non-monotonic failure rate. Therefore,
some generalizations of the Weibull distribution have been studied. For
example, a generalization of the Weibull distribution with application to the
analysis of survival data is given by Mudholkar, Srivastava, and Kollia (1996).
Khan and King (2014) proposed transmuted generalize inverse Weibull dis-
tribution and discussed some of its mathematical properties. The authors also
used the method of maximum likelihood to estimates the parameters. Khan
et al. (2016) introduced transmuted generalized Weibull distribution and
explored its mathematical properties including expressions for the quantile
function, moments, entropies, mean deviation, Bonferroni and Lorenz curves
and moments of the order statistics. The authors also used the method of
maximum likelihood to estimate model parameters. Similarly Nofal et al.
(2017) proposed the generalized transmuted Weibull distribution and derived
its properties.

In this article, we focus on the Bayesian analysis of the transmuted
Weibull distribution introduced by Aryal and Tsokos (2011), which is a
generalization of the Weibull probability distribution. We particularly focus
on the Bayesian analysis because Abdurrahman (2017) used the method of
maximum likelihood and the method of moment estimators to estimate the
parameters of the transmuted Weibull distribution. To this end, we devise a
Markov Chain Monte Carlo algorithm to compute the posterior summaries
of the unknown parameters of the said distribution. We compare results by
assuming different priors, loss functions, and various choices of sample size
and different sets of parameters.

The rest of the paper is organized as follows: Section 2 defines the
transmuted Weibull distribution, its likelihood function, expressions for the
posterior distributions using non-informative and informative priors and
marginal posterior densities for censored and uncensored data, respectively.
Expressions of the Bayes estimators (BEs) and their respective posterior risks
(PRS) under different loss functions are discussed in Section 3. Estimation of
the unknown parameters of the proposed distribution by MCMC algorithm



290 R. Yousaf et al.

to compute the posterior summaries is also given in the same section. A
simulation study under different loss functions and different types of priors is
presented in Section 4. In Section 5, the Bayesian credible intervals (BCI) are
discussed mathematically and numerically. Two real-life data sets have been
analyzed in Section 6 while Section 7 concludes the article.

2 Transmuted Weibull Distribution

A random variable ‘X’ follows a Weibull distribution with parameters α > 0
and β > 0, if its probability density function is of the form:

g(x;α, β) =
α

β
xα−1 exp

(
−x

α

β

)
, x ≥ 0

The cumulative distribution function (CDF) of the Weibull distribution is:

G(x) = 1− exp

(
−xα

β

)
(3)

where α denotes the shape parameter and β is the scale parameter. To obtain
the CDF of transmuted Weibull distribution, we substitute the value of G(x)
in Equation (2), which is

F (x) = (1 + λ)

{
1− exp

(
−xα

β

)}
− λ

{
1− exp

(
−xα

β

)}2

After some algebraic simplifications, we get

F (x;α, β, λ) = exp

(
−xα

β

){
1− λ+ λ exp

(
−xα

β

)}
(4)

which is the required CDF of the transmuted Weibull distribution. Now, to
find the PDF of the transmuted Weibull distribution, we differentiate Equation
(4) with respect to ‘x’ and simplify it. The resulting PDF is

f(x;α, β, λ) =
α

β
xα−1 exp

(
−xα

β

){
1− λ+ 2λ exp

(
−xα

β

)}
,

x ≥ 0, α, β > 0 and |λ| ≤ 1 (5)

Special Cases

• If λ = 0, then Transmuted Weibull distribution reduces to the ordinary
Weibull distribution.
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• If α = 1 then we obtained transmuted exponential distribution. In
addition, if λ = 0, we get the ordinary exponential distribution.

• If α = β = 1 then the resulting distribution is known as transmuted
standard exponential distribution.

• If α = 2 then we have transmuted Rayleigh distribution. Also, if λ = 0,
we get the traditional Rayleigh distribution.

Next, we discuss the likelihood function for Equation (5).

2.1 Likelihood Functions for Different Sampling Schemes

Let X1, X2, . . ., Xn be a complete random sample of size n is taken from
the transmuted Weibull distribution. Then, the likelihood function for the
complete data set is:

L(x;α, β, λ) =

(
α

β

)n
exp

{
−

n∑
i=1

xαi
β

}
n∏
i=1

×
[
xα−1i

{
1− λ+ 2λ exp

(
−xα

β

)}]

L(x ; Ω) =

(
α

β

)n
exp

{
−

n∑
i=1

xαi
β

}
exp

{
(α− 1)

n∑
i=1

logx i

}
exp

×

[
n∑
i=1

log

{
1− λ+ 2λexp

(
−xαi
β

)}]

where Ω = (α, β, λ) and x = x1,x2, . . . ,xn. After simplification, we get

L(x; Ω) = αnexp

{
(α− 1)

n∑
i=1

logx i

}
1

βn
exp

(
−
∑n

i=1 xαi
β

)
exp

×

[
n∑
i=1

log

{
1− λ+ 2λexp

(
−xαi
β

)}]
(6)

In many life testing experiments, we cannot collect complete data on
failure times due to time and cost restrictions. Thus, censoring is an important
aspect of the lifetime data (Romeu, 2004; Gijbels, 2010; and Kalbfleisch and
Prentice, 2011). Suppose X = (X1, X2, X3, . . . , Xr) is a type-I censored
sample of size r from n items whose lifetimes belong to transmuted Weibull
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distribution with parameters α, β and λ. It is worth mentioning that in type-
I censoring, the censoring time is fixed in advanced whereas number of
failures are random. We put n items on the life test and observe that r failures
t1, t2, . . . , tr, where r is an integer number lies between 0 to n and (n − r)
denotes the number of survived/uncensored items. According to Mendenhall
and Hader (1958), the likelihood function for censored data is:

L(x; Ω) ∝

 r∏
j=1

f(xj)

 [1− F (T )]n−r

where T denotes time, r denotes the number of censored observations and (n-
r) are uncensored observations. The simplified form of the likelihood function
assuming transmuted Weibull distribution for censored data is

L(x; Θ) ∝ αr exp

−α r∑
j=1

log
1

xj

 1

βr
exp

(
−
∑r

j=1 x
α
j

β

)

× exp

 r∑
j=1

log

{
1− λ+ 2λ exp

(
−
xαj
β

)}
exp

(
(n− r) log

[
1− exp

(
−T

α

β

)
×
{

1− λ+ λ exp

(
−T

α

β

)}])
Next, we discuss the posterior distribution, which is obtained by the cele-
brated Bayes theorem, g(α|x) = L(x;α)π(α)∫∞

α L(x;α)π(α)dα
, where π(α) denotes the

joint prior distribution ofα = (α1, α2, . . . αk), L(x;α) denote the likelihood
function and g(α|x) is the joint posterior distribution.

2.2 Posterior Distribution using Uniform Prior (UP)

To estimate the unknown parameters in Bayesian, we need to specify a
prior for each parameter that should not be directly specified by a model
itself (Lawrence et al., 2013). Contrary to the frequentist approach, Bayesian
approach utilizes the prior knowledge about the parameters as well as the
observed data. If prior knowledge about the parameters is not available, it
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is possible to make use of the non-informative prior in Bayesian analysis.
In short, non-informative prior is a prior which expresses vague information
about the parameters.

To estimate the unknown parameters of the transmuted Weibull distri-
bution, we have assumed α ∝ 1,∀α ∈ (0,∞), β ∝ 1,∀β ∈ (0,∞) and
λ ∝ 1, ∀λ ∈ (−1, 1). Assuming independence among parameters, the joint
prior distribution of parameters α, β and λ is:

π1(α, β, λ) ∝ 1 α, β > 0 and |λ| ≤ 1

Using the Bayes theorem g(α, β, λ|x) = L(x;α,β,λ)π(α,β,λ)∫∞
0

∫∞
0

∫ 1
−1 L(x;α,β,λ)π(α,β,λ)dλdβdα

,

the joint posterior distribution of parameters α, β and λ given data x
assuming uniform prior is:

g(α, β, λ|x) =

αnexp
(
−α

∑n
i=1 log 1

xi

)
1
βn exp

(
−

∑n
i=1 x

α
i

β

)
exp

[∑n
i=1 log

{
1− λ+ 2λexp

(
− xαi

β

)}]
∫∞
0

∫∞
0

∫ 1
−1 α

nexp
(
−α

∑n
i=1 log 1

xi

)
1
βn exp

(
−

∑n
i=1 x

α
i

β

)
exp

[∑n
i=1 log

{
1− λ+ 2λexp

(
− xαi

β

)}]
dλdβdα

g(α, β, λ|x) =
αA01−1exp(−αA11 ) 1

βn exp
(
−A21

β

)
exp(A31 )∫∞

0

∫∞
0

∫ 1
−1 α

A01−1exp(−αA11 ) 1
βn

exp
(
−A21

β

)
exp(A31 )dλdβdα

(7)

where A01 = n + 1, A11 =
∑n

i=1 log 1
xi

, A21 =
∑n

i=1 x
α
i and A31 =∑n

i=1 log
{

1− λ+ 2λ exp
(
−xαi

β

)}
Similarly, for censored data, the posterior distribution is:

g(α, β, λ|x) =
αB01−1exp(−αB11 ) 1

βr exp
(
−B21

β

)
exp(B31 )∫∞

0

∫∞
0

∫ 1
−1 α

B01−1exp(−αB11 ) 1
βr

exp
(
−B21

β

)
exp(B31 )dλdβdα

(8)

where

B01 = r + 1, B11 =
r∑

j=1

log
1

xj
, B21 =

r∑
j=1

xαj
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and

B31 =

r∑
j=1

log

{
1− λ+ 2λ exp

(
−
xαj
β

)}
+ (n− r) log

×
[
1− exp

(
−T

α

β

){
1− λ+ λ exp

(
−T

α

β

)}]
.

As the posterior distributions are not in closed form for both the censored
and the uncensored data, the marginal posterior densities of parameters α, β
and λ for uncensored and censored data are obtained by integrating out the
nuisance parameters, i.e., g(α|x) =

∫
β

∫
λ g(α, β, λ|x )dβdλ and vice versa.

Thus, we use the MCMC technique to obtain the posterior summaries.
Next, we discuss the derivation of the posterior distribution assuming

informative prior.

2.3 Posterior Distribution using Informative Prior (IP)

An an informative prior provides specific and definite information about
parameters in the form of probability distribution (Aslam et al., 2014).
In our study, we assumed that the prior distributions of α, β and λ are
independent (Punt and Walker, 1998; Punt and Butterworth, 2000). To be
more specific, we assume α ∼ gamma(a, b), β∼ inverse gamma(c, d) and
λ ∼ uniform(l1, l2). The joint prior of parameters α, β and λ is:

g(α, β, λ) ∝ αa−1e−bα 1

βc+1
e
− d
β

1

l2 − l1

The joint posterior distribution of parameters α, β and λ given data x
assuming IP for complete data is:

g(α, β, λ|x) =

αn+a−1 exp
{
−α

(
b+

∑
log 1

xi

)}
1

βn+c+1

exp
{
− 1
β (d+

∑
xαi )
}

exp
[∑

log
{

1 + λ− 2λ exp
(
−xαi

β

)}]
∫∞
0

∫∞
0

∫ 1
−1 α

n+a−1

exp
{
−α

(
b+

∑
log 1

xi

)}
1

βn+c+1

exp
{
− 1
β (d+

∑
xαi )
}

exp
[∑

log
{

1 + λ− 2λ exp
(
−xαi

β

)}]
dλdαdβ

(9)
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g(α, β, λ|x) =

αC11−1 exp (−αD11)
1

βC21−1

exp
(
−D21

β

)
exp (D31)∫∞

0

∫∞
0

∫ 1
−1 α

C11−1

exp (−αD11)
1

βC21−1

exp
(
−D21

β

)
exp (D31) dλdαdβ

α, β > 0, |λ| ≤ 1

(10)

where

C11 = n+ a,D11 = b + log
1

xi
,C21 = n+ c,D21 = d +

∑
xαi

and

D31 =
∑

log

{
1− λ+ 2λ exp

(
−x

α
i

β

)}
For censored data, the joint posterior distribution of α, β and λ given

data is:

g(α, β, λ|x) =

αC11−1 exp (−αD12)
1

βC21−1

exp
(
−D22

β

)
exp (D32)∫∞

0

∫∞
0

∫ 1
−1 α

C11−1

exp (−αD12)
1

βC21−1

exp
(
−D22

β

)
exp (D32) dλdαdβ

α, β > 0, |λ| ≤ 1

(11)

Where

C12 = r + a,D12 = b +
∑

log
1

xj
,C22 = r + c,D22 = d +

∑
xαj

and

D32 =
r∑
j=1

log

{
1− λ+ 2λ exp

(
−
xαj
β

)}
+ (n− r) log

×
[
1− exp

(
−T

α

β

){
1− λ+ λ exp

(
−T

α

β

)}]
.
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The marginal posterior densities of parameters α, β and λ for uncensored
and censored data are obtained by integrating out the nuisance parameters,
i.e., g(α|x) =

∫
β

∫
λ g(α, β, λ|x )dβdλ and vice versa.

In the next section, we derive the Bayes estimators under different loss
functions.

3 Bayes Estimators (BEs) and Posterior Risks (PRs) Under
Different Loss Functions

To estimate the unknown parameter in Bayesian, we need to specify a loss
function. The choice of a loss function depends on the considered problem;
however, there are no rules how to select an appropriate loss function. There
are two types of loss functions; symmetric and asymmetric. A loss function is
called symmetric if it gives an equal weightage to over and under estimation
otherwise non-symmetric. A loss function L(β, d) ≥ 0 represents a loss
incurred when we estimate the unknown parameters α, β and λ by α̂, β̂ and
λ̂ respectively for making a decision d. The worth of a decision is measured
by the expected loss, which is known as the posterior risk. If d̂ is a Bayes
estimator, then ρ(d̂) is called the posterior risk (Ali et al., 2012).

ρ(d̂) = Eθ|x{L(β, d̂)} =

∫
L(β, d̂)p(β|x )dβ (12)

In this section, the Bayes estimators (BEs) and their respective pos-
terior risk (PR) are computed under squared error loss function (SELF),
precautionary loss function (PLF) and quadratic loss function (QLF). The
square error loss function is a symmetric loss function which assigns equal
losses to overestimation and underestimation. Norstrom (1996) discussed
an alternative asymmetric precautionary loss function (PLF). The third loss
function is QLF, which is another asymmetric loss function which approaches
to infinity near the origin to avoid underestimation, and produces conservative
estimators especially when underestimation may lead to serious consequence
(Ali et al., 2013). The expressions of Bayes estimators under different loss
functions with their respective posterior risk are given in Table 1.

We refer to Ali (2015) for the derivation of Bayes estimators and posterior
risks under these loss functions.

3.1 Posterior Summaries by Markov Chain Monte Carlo (MCMC)

From Equation (7), we observe that the expression of the posterior density is
intractable form, and one needs a technique to solve it numerically for finding
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Table 1 Bayes estimators and posterior risks of different loss functions
Loss Function Expression Bayes Estimators Posterior Risks
SELF L(β, d) = (β − d)2 d̂ = Eβ|x(β) ρ(d̂) = E(β2|x)− {E(β|x)}2

PLF L(β, d) = (β−d)2

d
d̂ = {E(β2|x)}

1
2 ρ(d̂) = 2{E(β2|x}

1
2 − 2E(β|x)

QLF L(β, d) =
(
β−d
β

)2

d̂ = E(β−1|x)
E(β−2|x) ρ(d̂) = 1− {E(β−1|x)}2

E(β−2|x)

different posterior summaries. Thus, we adopt a Markov Chain Monte Carlo
(MCMC) technique as have been used by Ali (2015) and Yousaf et al. (2018).
To apply MCMC, the posterior densities assuming uniform and informative
priors can be written as:

gUP (α, β, λ|x)

∝ fα

(
n+ 1,

n∑
i=1

log
1

xi

)
fβ|α

(
n+ 1,

n∑
i=1

xαi

)

fλ

(
exp

(
n∑
i=1

log

{
1− λ+ 2λ exp

(
xαi
β

)}))
gIP (α, β, λ|x)

∝ fα

(
a+ n,

n∑
i=1

log
1

xi

)
fβ|α

(
b+ n,

n∑
i=1

xαi

)

fλ

(
e+ exp

(
n∑
i=1

log

{
1− λ+ 2λ exp

(
xαi
β

)}))

where fα and fβ|α denote the probability density functions of the gamma
and the inverse gamma distributions while fλ is the probability density
functions of transmuted parameter. To obtain the Bayes estimates, their
respective posterior risks and the associated Bayesian Credible intervals
(BCI), we proceed as follows: Firstly, we generate a random sample from
transmuted Weibull distribution, by using inverse integral transformation, i.e.

ui = (1− e−
xi
α

β )(1− λ+ λe
−xi

α

β ). After simplification we obtain

xi =

[
−β ln

{
1−

(
1 + λ−

√
(1 + λ)2 − 4λui
2λ

)}] 1
α

.
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where ui ∼ U(0, 1) and i = 1, 2, . . . , n. Thus, by providing the parameters’
values, one can obtain the desired random sample. To generate the censored
data, one needs to fix time T and record units that are less than equal to
censoring time. The number of units that are greater than censoring time
would be considered censored observations.

Next, to implement the MCMC for obtaining the posterior summaries, we
repeat the following steps of Gibbs sampling with Metropolis-Hasting step:

Algorithm 1.
1. Generateα ∼ fα, β ∼ fβ|α and λ ∼ fλ.
2. Let Y is called candidate distributions. Take Y ∼ Uniform(0, 1).
3. Generate U ∼ Uniform(0, 1).
4. Suppose λ∗ ∼ Uniform(−1, 1).
5. Let

f
(i)
1 = exp

[∑
log

{
1− λ∗(i−1) + 2λ∗(i−1) exp

(
−x

α
i

β

)}]
f
(i)
2 = exp

[∑
log

{
1−Y∗(i−1) + 2Y∗(i−1) exp

(
−x

α
i

β

)}]

ρ(i) = min

[
f
(i)
1 {dunif (λ∗(i−1 )), 0 , 1 )}

f
(i)
2 {dunif (λ∗(i−1 )), 0 , 1 )}

]
6.

λ(i) = λ∗(i)
{
λ∗(i) = λ∗(i−1) if ρ(i) > U (i) Accept the proposal
λ∗(i) = Y ∗(i−1) otherwise, reject it

7. Repeat steps 1–2 N-times to find (α1, β1, λ1), (α2, β2, λ2), . . .
(αN , βN , λN ).

8. The approximate values of α̂, β̂ and λ̂ are:

α̂ =
N∑
i=1

αig(αi|x), β̂ =
N∑
i=1

βig(βi|x) and λ̂ =
N∑
i=1

λig(λi|x)

Note that after step 3, M observations can be discarded as the burn-in
observations to get more precise estimates of the parameters, i.e.,

α̂ =
N∑

i=M+1

αig(αi|x),
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β̂ =

N∑
i=M+1

βig(βi|x) and

λ̂ =
N∑

i=M+1

λig(λi|x)

To compute the credible intervals, first we order (α(M+1), α(M+2),
. . . , α(N )), (β(M+1), β(M+2 ), . . . , β(N )) and (λ(M+1), λ(M+2 ), . . . , λ(N )).
Denoting [.] as the greatest integer less than or equal to x, the
100(1 − γ)% symmetric credible intervals for α, β and λ become
(α[(N/100 )∗(γ/2)], α[(N/100 )∗(1−γ/2 )]), (β[(N/100 )∗(γ/2)], β[(N/100 )∗(1−γ/2 )])
and (λ[(N/100 )∗(γ/2)], λ[(N/100 )∗(1−γ/2 )]) respectively.

4 A Simulation Study of BEs and the PRs

In this section, a simulation study has been carried out to investigate the
performance of the Bayes estimators assuming different sample sizes and
censoring rates. Sample of sizes n = 20, 40, 60 and 100 have been generated
by the inverse transformation method from the transmuted Weibull distri-
bution with (α, β, λ) ∈ {(2.0, 1.2, 0.6), (2.5, 1.3, 0.5), (1.5, 1.6, 0.7)}. After
generating the required samples, we used the aforementioned algorithm and
the Bayes estimates (BEs), posterior risks (PRs) and their associated BCIs
were computed using the UP and the IP under the SELF, PLF and QLF for
uncensored and censored data. It is worth mentioning that right censoring was
carried out using different censoring rates to evaluate the impact of censoring
rate on the Bayes estimates. The choice of the censoring time, in each case,
was made in such a way that the censoring rate in the resulting sample was
to be approximately 20% and 40%. As one iteration does not help to clarify
performance of the estimator, we repeated the algorithm mentioned in the
previous section N=10,000 times to compute the average Bayes estimates
along the corresponding posterior risks and Bayesian credible intervals using
R software, R (2013), and the results have been presented in Tables 2–13,
where the posterior risks have been tabulated in the parentheses below the
Bayes estimates. The numerical results of the simulation study, presented
in Tables 2–10, reveal interesting properties of the Bayes estimators for
the transmuted Weibull distribution. The estimated values of the parameters
converge to the true values of the parameters, and posterior risks decrease
by increasing the sample size for fixed censoring rate. This pattern is not
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Table 11 95% Bayesian Credible Intervals of TWD using UP and IP with hyper- parameters
a = 1.5, b = 2, c = 1 & d = 2

UP IP
Data Size Parameters Lower Limit Upper Limit Lower Limit Upper Limit
Complete 20 α = 2 1.5861 2.7601 1.3579 2.3342

β = 1.2 1.2051 2.1052 1.2067 2.0087

λ = 0.6 0.2552 0.9311 0.3456 1.0086

20 % Censoring α = 2 1.6378 2.8410 1.4184 2.5566

β = 1.2 1.2486 2.1689 1.2218 2.1661

λ = 0.6 0.2662 0.9346 0.3901 1.0578

40 % Censoring α = 2 1.6429 2.9020 1.4755 2.8602

β = 1.2 1.2825 2.5238 1.2573 2.3716

λ = 0.6 0.2999 0.9685 0.5173 1.0811

Complete 40 α = 2 1.5789 2.2128 1.3293 2.2991

β = 1.2 1.1815 1.9961 1.1978 1.7808

λ = 0.6 0.2486 0.9300 0.3113 1.0043

20 % Censoring α = 2 1.5167 2.3772 1.3601 2.3256

β = 1.2 1.1929 2.0570 1.2328 1.8022

λ = 0.6 0.2520 0.9342 0.3556 1.0352

40 % Censoring α = 2 1.5958 2.8159 1.4570 2.6807

β = 1.2 1.1924 2.4032 1.2489 1.9622

λ = 0.6 0.2664 0.9633 0.3895 1.0775

Complete 60 α = 2 1.5062 2.1616 1.3141 2.0483

β = 1.2 1.1668 1.9252 1.1870 1.7755

λ = 0.6 0.2412 0.9248 0.3019 1.0027

20 % Censoring α = 2 1.5063 2.3697 1.3256 2.1890

β = 1.2 1.1793 1.9676 1.2028 1.7838

λ = 0.6 0.2460 0.9317 0.3271 1.0267

40 % Censoring α = 2 1.5493 2.3786 1.4454 2.3889

β = 1.2 1.1807 2.0785 1.2427 1.8706

λ = 0.6 0.2586 0.9416 0.3480 1.0615

Complete 100 α = 2 1.5002 2.0775 1.2784 2.0398

β = 1.2 1.1265 1.7771 1.1681 1.7734

λ = 0.6 0.2248 0.8406 0.2959 1.0023

20 % Censoring α = 2 1.5031 2.1566 1.3068 2.0449

β = 1.2 1.1446 1.8789 1.1701 1.7740

λ = 0.6 0.2410 0.9289 0.3007 1.0210

40 % Censoring α = 2 1.5283 2.2224 1.4302 2.1314

β = 1.2 1.1618 1.9737 1.1948 1.8072

λ = 0.6 0.2465 0.9334 0.3250 1.0602
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Table 12 95% Bayesian Credible Intervals of TWD using UP and IP with hyper-parameters
a = 0.5, b = 1, c = 1 & d = 2

UP IP
Data Size Parameters Lower Limit Upper Limit Lower Limit Upper Limit
Complete 20 α = 2.5 2.5003 3.9488 2.2990 3.9825

β = 1.3 1.2698 1.6183 1.1878 1.4428

λ = 0.5 0.3327 0.9541 0.4415 1.0121

20 % Censoring α = 2.5 2.5035 4.7733 2.3804 3.9924

β = 1.3 1.2932 1.6295 1.1975 1.4919

λ = 0.5 0.4002 0.9542 0.5042 1.0610

40 % Censoring α = 2.5 2.5633 5.3831 2.3938 4.5038

β = 1.3 1.3043 1.7236 1.2014 1.5187

λ = 0.5 0.4146 0.9565 0.5157 1.6450

Complete 40 α = 2.5 2.4944 3.5588 2.1585 3.2110

β = 1.3 1.2457 1.4699 1.1819 1.4269

λ = 0.5 0.3292 0.9391 0.4329 0.9712

20 % Censoring α = 2.5 2.4960 3.5974 2.2647 3.5174

β = 1.3 1.2699 1.5003 1.1951 1.4320

λ = 0.5 0.4028 0.9400 0.4393 1.0082

40 % Censoring α = 2.5 2.5041 3.7077 2.2703 3.5248

β = 1.3 1.3653 1.7153 1.1939 1.4532

λ = 0.5 0.4153 0.9464 0.4999 1.0808

Complete 60 α = 2.5 2.4346 3.3096 2.1392 2.9665

β = 1.3 1.1962 1.3786 1.1369 1.3280

λ = 0.5 0.3272 0.9374 0.4266 0.9572

20 % Censoring α = 2.5 2.4665 3.5894 2.2302 3.5012

β = 1.3 1.2028 1.4137 1.1545 1.4220

λ = 0.5 0.3998 0.9384 0.4314 1.0065

40 % Censoring α = 2.5 2.4965 3.6075 2.2557 3.5160

β = 1.3 1.2760 1.5416 1.1770 1.4376

λ = 0.5 0.4018 0.9414 0.4415 1.0137

Complete 100 α = 2.5 2.3962 3.1038 2.1225 2.8699

β = 1.3 1.1806 1.3165 1.1074 1.3018

λ = 0.5 0.3225 0.9338 0.4248 0.9432

20 % Censoring α = 2.5 2.4575 3.3448 2.1319 3.0870

β = 1.3 1.1960 1.3685 1.1328 1.3576

λ = 0.5 0.3932 0.9343 0.4312 0.9947

40 % Censoring α = 2.5 2.4669 3.4321 2.2182 3.1369

β = 1.3 1.2307 1.4609 1.1783 1.3745

λ = 0.5 0.3974 0.9399 0.4400 1.0085



Bayesian Estimation of Transmuted Weibull Distribution 311

Table 13 95% Bayesian Credible Intervals of TWD using UP and IP with hyper-parameters
a = 0.5, b = 1, c = 1 & d = 1.5

UP IP
Data Size Parameters Lower Limit Upper Limit Lower Limit Upper Limit
Complete 20 α = 1.5 1.4857 2.5228 1.3228 2.1013

β = 1.6 1.4468 2.0625 1.3544 1.9551

λ = 0.7 0.6138 0.9574 0.5399 1.0546

20 % Censoring α = 1.5 1.4881 2.8687 1.3405 2.2564

β = 1.6 1.4732 2.5033 1.3793 1.9577

λ = 0.7 0.6148 0.9751 0.5476 1.0594

40 % Censoring α = 1.5 1.4959 3.0239 1.3566 2.7385

β = 1.6 1.5432 2.6923 1.3839 1.9665

λ = 0.7 0.6224 0.9774 0.5597 1.0505

Complete 40 α = 1.5 1.4774 2.0544 1.3181 1.9502

β = 1.6 1.4254 1.7872 1.3499 1.8390

λ = 0.7 0.6103 0.9497 0.5275 1.0119

20 % Censoring α = 1.5 1.4791 2.2799 1.3299 2.0117

β = 1.6 1.4346 1.8255 1.3567 1.8786

λ = 0.7 0.6223 0.9721 0.5391 1.0484

40 % Censoring α = 1.5 1.4887 2.3093 1.3329 2.0201

β = 1.6 1.4566 1.9298 1.3743 1.9644

λ = 0.7 0.6378 0.9836 0.5684 1.0492

Complete 60 α = 1.5 1.4684 1.9894 1.3077 1.8810

β = 1.6 1.3919 1.6927 1.3465 1.7117

λ = 0.7 0.6094 0.9485 0.5013 1.0051

20 % Censoring α = 1.5 1.4777 1.9951 1.3256 1.9002

β = 1.6 1.4059 1.7299 1.3533 1.7569

λ = 0.7 0.6283 0.9689 0.5352 1.0404

40 % Censoring α = 1.5 1.4861 1.9959 1.3260 1.9557

β = 1.6 1.4271 1.7511 1.3562 1.8182

λ = 0.7 0.6368 0.9799 0.5591 1.0472

Complete 100 α = 1.5 1.4521 1.8275 1.3046 1.8245

β = 1.6 1.3826 1.6676 1.3420 1.6616

λ = 0.7 0.6085 0.9389 0.5002 1.0037

20 % Censoring α = 1.5 1.4559 1.9261 1.3050 1.8493

β = 1.6 1.4011 1.6990 1.3445 1.6972

λ = 0.7 0.6294 0.9726 0.5301 1.0356

40 % Censoring α = 1.5 1.4771 1.9809 1.3131 1.8903

β = 1.6 1.4201 1.7082 1.3490 1.7426

λ = 0.7 0.6343 0.9760 0.5475 1.0468
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restricted to any specific loss function or prior but observed for all the con-
sidered loss functions. It is observed from these results that Bayes estimators
perform well under informative prior than UP for all the considered loss
functions. From Tables 2–10, it can also be observed that the convergence
of Bayes estimates to the nominal value is faster in the case of IP than the
UP for all the considered loss functions. Therefore, in terms of posterior
risks, the estimates using IP are more preferable in almost all cases. It is
worth mentioning that there are a few exceptional cases where the IP did not
perform well, but we attribute that behavior to MCMC.

From Tables 2–4, we observed that the estimates of scale parameter
are under-estimated for uncensored data and over-estimated for censored
data under all loss functions while the estimate of shape and transmuted
parameters are over-estimated, especially for (2.0, 1.2, 0.6). However, for the
second set of parameter values (2.5, 1.3, 0.5), we noticed that BEs of the
shape parameter were over-estimated under SELF and under-estimated under
PLF for complete data and censored data. In case of QLF, the shape parameter
values were under-estimated for UP and over-estimated for IP. However, for
the third set of parameters, i.e., (1.5, 1.6, 0.7), overestimation was observed in
BEs of the scale parameter under SELF using UP and under-estimated under
IP, while its estimates were over-estimated under PLF and QLF for both the
censored and the uncensored data. From Tables 8–10, it is observed that the
BEs of the shape parameter were under-estimated for complete and censored
data. Also, the BEs of transmuted parameter was under-estimated under
SELF for the both priors. More specifically, in the case of non-informative
prior, its estimate was over-estimated while under-estimated for informative
prior under PLF and QLF. By comparing the censored and complete data
results, it is observed that the PRs for complete data were smaller than the
censored data and we explain this because the complete data have more
information than the censored data. Thus, for the uncensored data we have
smaller PRs. Furthermore, we also observed a direct effect of censoring rate
on the posterior risk, i.e., as the censoring rate increased, the posterior risk
also increased.

5 Bayesian Credible Interval

Bayesian credible intervals measure the degree of uncertainty about the
estimated parameter. The Bayesian credible interval is defined as: Let g(α|x)
be the posterior distribution of α given data then 100 (1 − k) % credible
intervals in any set C is such that Pg(α|x)(C) = 1 − k. Given the data, the
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95% credibility interval (µL, µU ) includes the true µ with probability 95%.
According to Eberly and Casella (2003) the 100 (1− k) % credible intervals
are: ∫ L

0
g(α|x)dα =

k

2
&

∫ ∞
U

g(α|x)dα =
k

2

where L and U are respectively the lower and upper limits of the credible
intervals k denotes the level of significance.

From the tables of credible intervals, Tables 11–13, it is observed that all
the credible intervals contain the true value of the respective unknown param-
eters. The trend of these intervals shows that as the sample size increases, the
intervals became narrow. The Bayes intervals were also observed narrow for
uncensored data than censored data. Furthermore the credible intervals for
20% censoring rate were narrower than the 40%, and we explain this behavior
because we lost less information in the case of a small censoring rate than a
large one.

6 A Real Life Applications

In this section, we analyze two data sets in order to show the practicality of
the transmuted Weibull distribution.

6.1 Bladder Cancer Data Set

The first data set is about the remission times (in months) of bladder cancer
patients (Lee and Wang, 2003). The data consist of a random sample of
128 bladder cancer patients given as: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66,
13.11, 23.63, 0.20, 2.23, 3.52,4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06,
7.09,9.22, 13.80, 25.74, 0.50, 2.46, 3.64,5.09, 7.26, 9.47, 14.24, 25.82, 0.51,
2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62,3.82, 5.32, 7.32, 10.06,
14.77, 32.15, 2.64, 3.88, 5.32, 7.39,10.34, 14.83, 34.26, 0.90 ,2.69, 4.18, 5.34,
7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 43.01, 1.19,
2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14,
16.62,79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93,
11.79, 18.10, 1.46,4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37,
12.02, 2.02, 3.31, 4.51, 6.54,8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73,
2.07, 3.36, 6.93, 8.65, 12.63 and 22.69.

Mead and Afify (2017) used this data set to fit the Kumaraswamy Expo-
nentiated Burr XII distribution while Nofal et al. (2017) used it to assess the
goodness-of-fit of the generalized transmuted Weibull (GT-W) distribution
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and compared it with other competitive models like the McDonald Weibull
(McW) (Cordeiro et al., 2014), transmuted linear exponential (TLE) (Tian
et al., 2014), transmuted modified Weibull (TMW) (Khan and King, 2013),
modified beta Weibull (MBW) (Khan, 2015), transmuted additive Weibull
distribution (TAW) (Elbatal and Aryal, 2013), exponentiated transmuted
generalized Rayleigh (ETGR) (Afify et al., 2015) and Weibull (W) distribu-
tions. The authors used Akaike information criterion (AIC), corrected Akaike
information criterion (CAIC),−2l̂ (where l̂ is the maximized log-likelihood),
Anderson-Darling (A∗) and the Cramér-von Mises (W∗) statistics.

To estimate the unknown parameters, we adopted the same methodology
as discussed in the previous sections assuming different types of loss func-
tions and prior distributions. We used chi-square test to see whether the data
follow the transmuted Weibull distribution or not. To this end, we obtained
p-value as 0.2426 which indicates that the data are fit to transmuted Weibull
distribution at the 5% level of significance. The numerical results of BEs
along with corresponding PRs (in parenthesis) and the Bayesian credible
intervals of the parameters α, β and λ of the transmuted Weibull distribution
using UP and IP under SELF, PLF and QLF are tabulated in Tables 14–15.
From Table 14, it is clear that the BEs assuming UP and IP have a smaller
variance (posterior risks) for uncensored data as compared to censored data.
This is because of the loss of information during the censoring process.
Moreover, we observed that the width of credible intervals for uncensored
data was smaller than the censored data.

The graphical depiction of the marginal posterior densities under UP
and IP for the transmuted Weibull distribution using the bladder cancer
data assuming uncensored and censored environments, have been given in
Figures 1–2. respectively.

From Figures 1a and 2a, we observed that the graphs of the scale param-
eter (α) under UP and IP are symmetrical in shape but tend to be more
peaked for uncensored data than censored data. Similarly, the curves of the
shape parameter (β) are also symmetrical, but showed opposite behavior as
we observed previously in Figures 1b and 2b. From Figure 1c, we noticed
that the graph of the transmuted parameter under UP are identical in shape,
that is, symmetric with minor differences for uncensored and censored data.
Similarly, the transmuted parameter under IP also has a symmetric pattern
but tend to be more peaked for uncensored data than censored data (see
Figure 2c). Also, the graphs of the scale parameter (α) and shape parameter
(β) using UP and IP are more symmetrical in pattern than the transmuted
parameter.
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Table 15 95% Bayesian Credible Intervals of TWD using UP and IP with hyper-parameters
a = 0.5, b = 1, c = 1 & d = 0.5

UP IP
Data Parameters Lower Limit Upper Limit Lower Limit Upper Limit
Complete α = 2 0.5394 2.6790 0.5415 2.6786

β = 1.2 0.1172 1.1777 0.1177 1.1363

λ = 0.6 0.5451 0.9211 0.3225 0.9550

20% Censoring α = 2 0.6674 2.8604 0.6678 2.8610

β = 1.2 0.1218 1.2452 0.0258 1.1461

λ = 0.6 0.5730 0.9413 0.5003 1.0302

40 % Censoring α = 2 0.8330 3.1205 0.8314 3.1083

β = 1.2 0.1982 1.3365 0.0991 1.1682

λ = 0.6 0.6089 0.9640 0.5011 1.0341

Figure 1a: Posterior density of α using UP for uncen-
sored data, 20% censoring & 40% censoring

Figure 1b: Posterior density of β using UP for uncen-
sored data, 20% censoring & 40% censoring

Figure 1c: Posterior density of λ using UP for uncen-
sored data, 20% censoring & 40% censoring

Figure 1 Marginal Posterior for complete and censored data using UP.
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Figure 2a: Posterior density of α using IP for uncen-
sored data, 20% censoring & 40% censoring

Figure 2b: Posterior density of β using IP for uncen-
sored data, 20% censoring & 40% censoring

Figure 2c: Posterior density of λ using IP for uncensored
data, 20% censoring & 40% censoring

Figure 2 Marginal Posterior for complete and censored data using IP.

6.2 Tensile Fatigue Testing

Our second data set is about testing the tensile fatigue characteristics of
polyester/viscose yarn to study the problem of warp breakage during weav-
ing. The study consists of 100 centimeter yarn sampled at 2.3 percent strain
level. This data set was studied by Queensberry et al. (1982), which is given
as: 86, 364, 282, 40, 497, 55, 198, 146, 195, 224, 40,182, 61, 264, 251, 262,
149, 135, 423, 244, 105, 653, 88, 180, 597, 185, 20, 203, 98, 264, 325, 246,
229, 284, 124, 249, 157, 250, 211, 400, 393, 137, 400, 220, 196, 180, 338,
396, 135, 292, 42, 90, 93, 290, 203, 350, 131, 321, 229, 315, 398, 829,193,
169, 180, 166, 353, 71, 239, 188, 175, 198, 38, 571, 246, 236, 176, 38, 337,
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Figure 3a: Posterior density of α using UP & IP Figure 3b: Posterior density of β using UP & IP

Figure 3c: Posterior density of λ using UP & IP

Figure 3 A comparison of marginal posteriors densities using informative and non-
informative priors.

124, 185 , 286,76, 20, 65, 279, 188,194, 264, 61, 151, 81, 568, 277, 15, 121,
341, 186, 55 and 143.

The transmuted Weibull distribution (6) is fitted to the data and the
estimated parameters are given in Table 16.

In order to assess the goodness of fit data, we have computed p-value
(0.271) by using the chi-square test to show that the data follow transmuted
Weibull distribution at the 5% level of significance. It should be noted that
the Bayes estimates, i.e., Table 16, of the scale and transmuted parameters
are over-estimated while the shape parameter is under-estimated under the
considered loss functions assuming the UP and the IP. From Table 17, it is
noticed that the widths of 95% credible intervals decreased as the sample
size increased.
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Table 17 95% Bayesian Credible Intervals of TWD using UP and IP with hyper-parameters
a = 0.5, b = 1, c = 1 & d = 0.5

UP IP
Data Parameters Lower Limit Upper Limit Lower Limit Upper Limit
Complete α = 2 0.1825 2.2361 0.1843 2.2385

β = 1.2 0.0040 1.2153 0.0040 1.2148

λ = 0.6 0.5512 0.9614 0.4256 1.0369

20% Censoring α = 2 0.1887 2.2519 0.1913 2.2554

β = 1.2 0.0043 1.2560 0.0064 1.2157

λ = 0.6 0.5686 0.9724 0.5727 1.0585

40 % Censoring α = 2 0.1956 2.2738 0.1998 2.2771

β = 1.2 0.0048 1.2599 0.0143 1.2211

λ = 0.6 0.0.5954 0.9826 0.5891 1.0763

7 Conclusion

In this article, Bayesian analysis of the transmuted Weibull distribution has
been introduced assuming uniform and informative gamma priors under
SELF, PLF and QLF. We conducted comprehensive simulations and real
life studies to assess the relative performance of the Bayes estimators and
also how to deal with the problems of selecting appropriate priors and loss
functions at different sample sizes and test termination times under complete
and censored data environments. In particular, we considered two different
censoring rates, i.e., 20 and 40%. From Tables 2–10, it was noted that
generally our results followed the consistency property of estimation, i.e.,
the Bayes estimates converge to the assumed parameter value by increasing
the sample size. We also observed that the PRs for the censored data were
larger than the uncensored data. Also, the widths of 95% credible intervals
were observed decreased by increasing the sample size. Moreover, a same
pattern has also been observed in the cases of real-life applications, which
confirmed that the proposed MCMC algorithm is efficient to estimate the
unknown parameters in the Bayesian framework. In future, one can extend
the work using mixture of transmuted Weibull distribution (Aslam et al.,
2020). Also, Bayesian analysis of record values using transmuted Weibull
distribution may be considered.
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