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Abstract

In the analysis of survival data, cause specific quantities of competing risks
get considerable attention as compared to latent failure time approach. This
article focuses on parametric regression analysis of survival data using cause
specific hazard function with Burr type XII distribution as a baseline model.
We obtained maximum likelihood and Bayes estimates of cumulative cause
specific hazard functions under competing risk setup. For Bayesian point of
view we proposed a class of informative priors for parameters to observe
the comprehensive compatibility and their effectiveness under two different
loss functions. The appropriateness of model is measured by the simulation
study. Finally, we illustrate the proposed methodologies using bone marrow
transplant data from the Princess Margaret Hospital Ontario, Canada.
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1 Introduction

The situation of competing risks occurs when the failure of individuals may
be attributed to more than one causes of failure. The analysis of lifetime data
in the presence of competing is based on two approaches, one is latent failure
time approach and another is cause specific quantities. The former approach
is not adequate in survival analysis because of its independence assumption
is not verifiable in real life. In survival analysis, the cause specific quanti-
ties such as cumulative incidence function (CIF) and cause specific hazard
function are popular because of their use and interpretation. Competing risks
problem occurs in different fields such as medical sciences, engineering and
social sciences. For example in bone marrow transplant when a patient goes
for transplant, investigator is interested to observe the time to relapse, time
to chronic graft versus host disease (CGVHD) and time to death. More detail
on competing risk are available in (Beyersmann et al., 2012; Kalbfleisch and
Prentice, 2002).

The cause specific hazard function hj(t) (Prentice et al., 1978) is defined
the rate of failure due to cause C ∈ {1, 2, . . . , p} when the other causes also
acting on the individuals. Mathematically it can be written as follows

hj(t|X) = lim
∆t→0

{
P (t ≤ T < t+ ∆t, C = j|T > t, X)

∆t

}
;

j = 1, 2, . . . , p. (1)

and formulation of CIF is given as,

Fj(t|X) = P (T ≤ t, C = j|X); j = 1, 2, . . . , p (2)

where, the triplet (T,C = j,X) represents the survival time, cause of failure
and vector of explanatory variables related to subject/individual under study
respectively. The quantity j is the realization of causes of failure. Mostly,
medical sciences practitioners prefer to use semiparametric or nonparametric
methods of survival analysis because they require less assumption compared
to parametric methods. Parametric methods gives more precise result of the
quantities of interest when they provide good fit to data (Lawless, 2014). In
this article we consider parametric cause specific hazard regression model
instead of semiparametric Cox proportional hazard regression model (Cox,
1972) by parameterizing the baseline cause specific hazard function.
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In fact number of works based on classical parametric analysis of cause
specific hazard function are cited in the literature. Benichou & Gail (1990)
proposed the exponential or piecewise exponential model for estimating
the CIF of event of interest. Bryant & Dignam (2004) are used constant
cause specific hazard function for event of interest. Weibull cause specific
hazard function is considered by Jeong & Fine (2006) for estimating CIF
and compared with direct likelihood estimation of CIF by assuming the
underlying time variable follow an improper Gompertz distribution. The idea
of parametric reverse cause specific hazard function under left censoring is
utilized by Anjana & Sankaran (2015) and they considered inverse Weibull
distribution as a baseline model. Lee (2019) utilized the quantile method for
estimating the CIF with the Weibull cause specific hazard function.

Most of the used distributions for modelling of cause specific hazard func-
tion are exponential and Weibull distributions. However, these distributions
are capable to accommodate monotonically increasing or decreasing shape of
the hazard function, they are incapable to analyse the nonmonotone behaviour
of the hazard. In real life sometimes situation arise when the failure rates are
not to be monotone, i.e., mortality reaches up to some extent or peak and
then start slowly declines. So, in the light of these issues, we consider Burr
type XII distribution (Burr, 1942; Gupta et al., 1996) as a baseline model for
cause specific hazard function in Cox proportional hazards model. For the
recent contribution on Burr type XII family of distribution one could refer to
(Kehinde et al., 2018; Okasha and Shrahili, 2017).

In the context of Bayesian approach, Sen et al. (2010) considered
Bayesian method of estimation for semiparametric survival analysis of breast
cancer data with masked cause of failure. Sreedevi and Sankaran (2012)
analysed the semiparametric cause specific hazard function through Bayesian
approach by assuming gamma process prior for cumulative cause specific
hazard function. Ge and Chen (2012) utilized the Bayesian method of estima-
tion for fully specified subdistribution hazard model by considering piecewise
exponential model with Jeffrey’s and gamma priors using Gibbs sampling
algorithm. These are the very few works in literature revealed the Bayesian
scenario pertaining to cause specific quantities in competing risks analysis.

The purpose of this article is to estimate the unknown parameters and
cumulative cause specific hazard function through frequentist and Bayesian
approach. For Bayesian point of view, we proposed a class of informative pri-
ors which consists Gamma, Weibull and lognormal priors for baseline param-
eters and standard normal prior for regression parameters under symmetric
squared error loss function (SELF) (Sinha, 1998) as well as asymmetric
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LINEX loss function (LLF) (Soliman et al., 2006) for a comprehensive
comparison study.

Recently, Burr type-XII distribution has attracted due to considerable
amount of use in lifetime data analysis with respect to Bayesian estimation
particularly for gamma informative prior. Soliman et al., (2011) considered
the Bayesian analysis of the Burr type XII distribution based on record values.
Byrnes et al., (2019) presented the Bayesian inference for the randomly
censored Burr type XII distribution with the proportional hazards.

The key features of this article are as follows; we considered the com-
peting risks analysis based on cause specific hazard approach because it
completely determine competing risks process. Cause specific quantities
provides the useful measure for observing the effect of covariates on different
types of failure. We utilize the parametric model for the analysis of cause
specific hazard function. Parametric models provide efficient and robust esti-
mates if they correctly specified the data. We have employed both maximum
likelihood and Bayesian methods for estimation of cumulative cause specific
hazard function.

The rest of the article is organized is as follows. Section 2 deals with
model formulation of Burr type XII cause specific hazard regression. We
discuss the maximum likelihood and Bayesian method of estimation of cumu-
lative cause specific hazard function in Section 3 and Section 4 respectively.
To observe the finite sample behaviour of the model we conduct a simulation
study in Section 5. Parametric cause specific hazard analysis is applied to
the bone marrow transplant data in Section 6. Finally, Section 7 gives the
conclusion of the study.

2 Model Formulation of Cause Specific Hazard
Function

The Cox proportional hazards model can be extend in terms of cause specific
hazard function by considering

hj(t|X) = h0j(t) exp(β′jX), j = 1, 2, . . . , p (3)

where X is m × 1 vector of covariates, βj is a m × 1 vector of regression
constants, hoj(t) is the baseline cause specific hazard rate and hj(t|X) is the
cause specific hazard function in the presence of covariate X. For parame-
terizing the cause specific hazard function we assumed that baseline cause
specific hazard corresponding to Burr type XII distribution as h0j(t,Θj)
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Figure 1 Probability density function (a) and hazard function (b).

where, Θj = (αj , λj , aj ,βj) is a vector of parameters. Therefore, cause
specific hazard function, overall survival function and cumulative cause
specific hazard function are obtained as follows

hj(t|X) =
αjλjt

αj−1eβ
′
jX

ajαj
(

1 +
(
t
aj

)αj) , (4)

S(t|X) = exp

− p∑
j=1

log

[
1 +

(
t

aj

)αj]λj
eβ
′
jX

 , (5)

Hj(t|X) = log

[
1 +

(
t

aj

)αj]λj
eβ
′
jX (6)

where αj(> 0) and λj(> 0) are shape parameters and aj(> 0) is the scale
parameter of the Burr type XII distribution. The above Figure 1 illustrate
graphs of various shape of the density and hazard function of the Burr type
XII distribution for the different values of the parameters.

3 Maximum Likelihood (ML) Estimation

We now determine the parameter estimation of cause specific hazard
approach through maximum likelihood estimation. Let we have n ∈ N
independent random samples of (ti, ji, δi,Xi), i = 1, 2, . . . , n of individuals.
Define Ti = min(T ∗i , Di), T ∗i ∈ R+, where T ∗i and Di are the failure time
and censoring time, respectively. We assume that the censoring and failure
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times are independent. The indicator variable δi = 0 or 1, it takes value
0 when individual is censored and 1 when individual die due to cause j. A
likelihood function based on cause specific hazard function is given as

L(Θ) =
n∏
i=1

 p∏
j=1

hj (ti|Xi)δi S(ti|Xi)

 (7)

where Θ = (Θ1,Θ2, . . . ,Θp), j = 1, 2, . . . , p. Now the likelihood function
under Burr type XII cause specific hazard function is obtained as follows

L(ti,Xi|αj , λj , aj ,βj)

=

n∏
i=1

p∏
j=1

(
αjλjaj

−αj t
αj−1
i

(
1 +

(
ti
aj

)αj)−1

eβ
′
jXi

)δi

× exp

− p∑
j=1

λj log

[
1 +

(
ti
aj

)αj]
eβ
′
jXi

. (8)

The log likelihood function is given as

l =

p∑
j=1

nj logαj +

p∑
j=1

nj log λj −
p∑
j=1

njαj log aj +

p∑
j=1

(αj − 1)

nj∑
i=1

log ti

−
p∑
j=1

nj∑
i=1

log

(
1 +

(
ti
aj

)αj)
+

p∑
j=1

nj∑
i=1

β′jXi

−
n∑
i=1

p∑
j=1

λj log

(
1 +

(
ti
aj

)αj)
eβ
′
jXi . (9)

The likelihood equations for the parameters αj , λj , aj and βj are
obtained as

∂l

∂αj
=
nj
αj
− nj log aj +

nj∑
i=1

log ti −
nj∑
i=1

(
ti
aj

)αj
log ti

aj

1 +
(
ti
aj

)αj
−

n∑
i=1

λj

(
ti
aj

)αj
log
(
ti
aj

)
1 +

(
ti
aj

)αj eβ
′
jXi = 0 (10)

∂l

∂λj
=
nj
λj
−

n∑
i=1

log

(
1 +

(
ti
aj

)αj)
eβ
′
jXi = 0 (11)
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∂l

∂aj
= −njαj

aj
+

nj∑
i=1

αjt
αj
i(

1 +
(
ti
aj

)αj)
a
αj+1
j

+

n∑
i=1

αjλjt
αj
i e

β′jXi(
1 +

(
ti
aj

)αj)
a
αj+1
j

= 0 (12)

∂l

∂βj
=

nj∑
i=1

Xi −
n∑
i=1

λjXi log

(
1 +

(
ti
aj

)αj)
eβ
′
jXi = 0. (13)

It is realized that the likelihood equations (10)–(13) are not in explicit
form and cannot be solved analytically. The maximum likelihood estimate of
the parameters are determined by using numerical method. Standard error of
the parameters is the square root of the diagonal element of variance covari-
ance matrix which is nothing but the inverse of Fisher information matrix.
Whereas, the Θ̂ ∼ N(Θ, I−1(Θ)) asymptotically and Fisher information
matrix is given by

I(Θ) = −E



∂2l

∂α2
j

. . .
∂2l

∂αj∂βj

...
. . .

...
∂2l

∂βj∂αj
· · · ∂2l

∂β2
j

.

Once the parameters estimates are obtained, the cumulative cause spe-
cific hazard estimates can be obtained through invariance property of ML
estimates in equation (6) as follows

Ĥj(t|X) = log

[
1 +

(
t

âj

)α̂j]λ̂j
eβ̂
′
jX.

4 Bayesian Method of Estimation

In this section we provide the Bayes estimates of cumulative cause spe-
cific hazard function under two different loss function. We proposed a
class of informative priors, which consists gamma, Weibull and lognornal
distributions. We assume, αj , λj and aj are independent random variables
having the gamma density i.e. αj ∼ G(qαj , rαj ), λj ∼ G(qλj , rλj ) and
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aj ∼ G(qaj , raj ). The random variable βj is assumed to follow a standard
normal distribution i.e. βj ∼ N(0, 1). Therefore, the joint prior distribution
of αj , λj , aj and βj is equivalent to

π1(αj , λj , aj ,βj)∝ α
qαj−1

j λ
qλj−1

j a
qaj−1

j e
−
(
rαjαj+rλjλj+rajaj+

1
2
β2
j

)
;

(αj , λj , aj) > 0, −∞ < βj <∞, (14)

where q and rare positive hyper-parameters respect to αj , λj and aj which
will responsible for the prior knowledge of the parameters. Now the joint
posterior distribution of the random variables αj , λj , aj and βj given the
observed data ti,Xi obtained by

p1(αj , λj , aj ,βj |ti,Xi)∝ α
nj+qαj−1

j λ
nj+qλj−1

j a
njαj+qaj−1

j

nj∏
i=1

t
αj−1
i

×
(

1 +

(
ti
aj

)αj)−1

e
∑p
j=1

∑nj
i=1 β

′
jXi

× e
−
(∑n

i=1

∑p
j=1 λj log

[
1+

(
ti
aj

)αj ]
e
β′jXi

)

× e−
(
rαjαj+rλjλj+rajaj+

1
2
β2
j

)
. (15)

Similarly, we assumed the Weibull and lognormal priors for baseline
parameters and standard normal prior for regression parameters. Then the
joint prior distributions of the random variables are obtained as follows

π2(αj , λj , aj ,βj) ∝ α
kαj−1

j λ
kλj−1

j a
kaj−1

j

× e
−
(

(θαjαj)
kαj +(θλjλj)

kλj +(θajaj)
kaj + 1

2
β2
j

)
;

× (αj , λj , aj) > 0, −∞ < βj <∞, (16)

π2 (αj , λj , aj ,βj) ∝
1

αjλjaj

× e
− 1

2

((
logαj−µαj

σαj

)2

+

(
log λj−µλj

σλj

)2

+

(
log aj−µaj

σaj

)2

+ 1
2
β2
j

)
;

(αj , λj , aj) > 0, −∞ < βj <∞, (17)
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where (k, θ) > 0,−∞ < µ < ∞ and σ > 0 are the hyper-parameters.
Thus, the joint posterior distributions of the random variables αj , λj , aj and
βj under the above joint prior distributions (16) and (17) turn out to have the
following forms.

p2(αj , λj , aj ,βj |ti,Xi)

∝ α
nj+kαj−1

j λ
nj+kλj−1

j a
njαj+kaj−1

j

×
nj∏
i=1

t
αj−1
i

(
1 +

(
ti
aj

)αj)−1

e
∑p
j=1

∑nj
i=1 β

′
jXi

× e
−
(∑n

i=1

∑p
j=1 λj log

[
1+

(
ti
aj

)αj ]
e
β′jXi

)

× e
−
(

(θαjαj)
kαj +(θλjλj)

kλj +(θajaj)
kaj + 1

2
β2
j

)
, (18)

p3(αj , λj , aj ,βj |ti,Xi)

∝ αnj−1
j λ

nj−1
j a

njαj−1
j

×
n∏
i=1

t
αj−1
i

(
1 +

(
ti
aj

)αj)−1

e
∑p
j=1

∑nj
i=1 β

′
jXi

× e
−
(∑n

i=1

∑p
j=1 λj log

[
1+

(
ti
aj

)αj ]
e
β′jXi

)

× e
− 1

2

((
logαj−µαj

σαj

)2

+

(
log λj−µλj

σλj

)2

+

(
log aj−µaj

σaj

)2

+ 1
2
β2
j

)
. (19)

It is observed under each assumed priors, the joint posterior densities in
equations (15), (18) and (19) are not in any explicit form and cannot be solved
analytically. So, it is difficult to obtain marginal posterior densities due to
ratio of multiple integrals. Therefore, as an alternative, numerical approxi-
mation algorithm such as Markov Chain Monte Carlo (MCMC) (Robert et al.
(2010)) have been used to evaluate the expressions. Next, we obtained the
Bayes estimates of cumulative cause specific hazard function under SELF as
well as LLF. Thus, the Bayes estimates of cumulative cause specific hazard
functionHj(t|X) from equation (6), using the considered priors, under SELF
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and LLF are respectively, given by

Ĥself
j (t|X) =

1

N

N∑
l=1

[Ĥj(t|X)]αj=αl,λj=λl,aj=al,βj=βl ,

Ĥ llf
j (t|X) = −1

p
log

(
1

N

N∑
l=1

e
−p[Ĥj(t|X)]αj=αl,λj=λl,aj=al,βj=βl

)
where αl, λl, al and βl, l = 1, 2, . . . , N are the random sample drawn from
the marginal posterior distributions of αj , λj , aj and βj respectively through
MCMC algorithm and, p is the hyper-parameter of LLF which is assumed to
be known.

5 Simulation Study

We performed Monte Carlo simulation study to observe the finite sample
behaviour of the proposed estimates of cumulative cause specific hazard
function. We consider different choice of sample size n such as n = 20,
50, 100 and 200. For the sack of simplicity, we considered two causes of
failure i.e. j = 1, 2 and one single covariate X. Comparison of estimates
are made on the basis of average estimate and empirical mean square error
(MSE) of cumulative cause specific hazard function of both the causes. The
whole process is repeated 500 times.

For generating the survival time form Burr type XII distribution through
inverse transformation, we adopt the procedure given in Beyersmann et al.
(2012). Let the true values of model parameter are given as α1 = 1.5, λ1 =
1.6, a1 = 5, β1 = 0.1 and α2 = 1.7, λ2 = 1.6, a2 = 7, β2 = 0.2 for cause 1
and cause 2 respectively. The covariate X is generated from standard normal
distribution. Further, we generate the two causes of failure from the binomial
distribution. The censoring time Di is generated from U(0, di), where di is
imposing the percentage of censoring around 20%. We assume that parameter
aj is known for mathematically convenient while estimating the parameters.

ML estimates and standard error of the unknown parameter αj , λj , aj
and βj are obtained based on log likelihood function in equation (9) through
optim function in R. Invariance property of ML estimate is utilized for
obtaining the estimates of cumulative cause specific hazard function. It is
noticed that the expressions of joint posterior densities under considered
informative priors are not in explicit form and cannot be solved analytically
and the marginal posterior also not obtained. In such situations the well
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known MCMC techniques namely, Gibbs sampling (Geman and Geman,
1984), Metropolis–Hastings algorithm (Hastings, 1970) etc. are popular for
generating the posterior samples. Therefore, we used BUGS software in R
through OpenBUGS interface (Lunn et al., 2012) for drawing the MCMC
samples.

The hyper-parameters of the assumed informative priors are calculated
based on 1,000 random samples. Now, for each considered sample, first
we obtain the ML estimate of each parameter and compute the mean and
empirical variance and compare with the mean and variance of assumed
priors. Calculated hyper-parameters of gamma, Weibull and lognormal priors
given below.

Priors Parameters
Gamma qα1 = 41.64, rα1 = 26.57, qλ1 = 20.26, rλ1 = 12.17,

qα2 = 27.52, rα2 = 15.43, qλ2 = 9.41, rλ2 = 5.5
Weibull kα1 = 7.64, θα1 = 0.02, kλ1 = 5.17, θλ1 = 0.05,

kα2 = 6.11, θα2 = 0.02, kλ2 = 3.39, θλ2 = 0.11
Lognormal µα1 = 0.44, σα1 = 0.02, µλ1 = 0.49, σλ1 = 0.05,

µα2 = 0.56, σα2 = 0.04, µλ2 = 0.49, σλ2 = 0.01

For obtaining the Bayes estimates we generated 10,000 MCMC samples,
in which 4,000 samples were used in burn-in period for reducing the effect of
initial values. We used every second equally spaced outcome i.e. thin=2 for
minimizing the autocorrelation state of Markov chain. By the visualization
of the convergence diagnostics plots it is realized that chains are converging
nicely. The simulation code is implemented in R software which is available
upon request by reader.

The comparison among the proposed estimators of the cumulative cause
specific hazard function were carried out based on MSE at different time
points with fixed value of covariate X = −0.3. The findings of simulation
study are presented in Tables 1– 4 for varying sample sizes n = 20, 50, 100,
and 200 respectively with the fixed parameters values corresponding to cause
1 and cause 2. The average estimates and MSE of ML and Bayes estimates
of cumulative cause specific hazard function are tabulated in these Tables.

• As expected, the MSE of all the estimators of cumulative cause specific
hazard function for both the causes is decreases as sample size increases.

• For sample size 20, it is observed that the performance of Bayes esti-
mates under both the loss functions are better as compared to ML
estimates in terms of average estimates and MSE values for both the
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Table 1 ML, Bayes estimates and their MSEs for cumulative cause specific hazard function
for cause-1 and cause-2 with n = 20 at X = −0.3 when α1 = 1.5, λ1 = 1.6, a1 = 5, β1 =
0.1, α2 = 1.7, λ2 = 1.6, a2 = 7, β2 = 0.2

n = 20 Cause 1 Cause 2
Time Points 0.5 1 1.5 0.5 1 1.5
True Value 0.04834 0.13302 0.23622 0.01687 0.05415 0.10602

ML Estimate 0.05338 0.14087 0.25164 0.01769 0.05081 0.09756

MSE 0.18103 0.75786 1.81967 0.03872 0.19796 0.54976

Gamma Estimate 0.05144 0.13837 0.24541 0.01844 0.05563 0.10712

SELF MSE 0.02797 0.1228 0.28261 0.008 0.04601 0.12638

Gamma p = 1.5 Estimate 0.05099 0.13663 0.24175 0.01829 0.05491 0.10533

LLF MSE 0.02702 0.11705 0.26574 0.00778 0.04419 0.12058

Gamma Estimate 0.05191 0.14018 0.24926 0.01859 0.05638 0.10903

LLF p = −1.5 MSE 0.02900 0.12956 0.30365 0.00824 0.04808 0.13344

Weibull Estimate 0.05071 0.13636 0.24232 0.01868 0.05598 0.10775

SELF MSE 0.03322 0.13158 0.28777 0.00995 0.0512 0.13392

Weibull Estimate 0.05018 0.13452 0.23865 0.01849 0.05518 0.10587

LLF p = 1.5 MSE 0.03166 0.12444 0.2713 0.00954 0.04852 0.12633

Weibull Estimate 0.05126 0.13829 0.24619 0.01887 0.05682 0.10976

LLF p = −1.5 MSE 0.03498 0.14016 0.30872 0.01039 0.05431 0.14325

Lognormal Estimate 0.05064 0.13759 0.24503 0.01874 0.05612 0.10759

SELF MSE 0.02231 0.10637 0.25872 0.00846 0.048 0.13029

Lognormal Estimate 0.05025 0.136 0.24155 0.0186 0.05539 0.10578

LLF p = 1.5 MSE 0.02168 0.10171 0.24287 0.00823 0.04614 0.1244

Lognormal Estimate 0.05103 0.13924 0.24867 0.01889 0.05688 0.1095

LLF p = −1.5 MSE 0.02301 0.11186 0.27844 0.0087 0.0501 0.13746

causes. Behaviour of Bayes estimates under lognormal prior performed
satisfactory under both loss function for cause 1.

• It is observed that the applicability of the Bayesian method is observed
for sample size 50, 100 and 200 in terms of magnitude of MSE of
cumulative cause specific hazard function for both causes.

• As expected, it is seen that for higher value of scale parameter of LLF
i.e. p = 1.5, Bayes estimates leads to smaller estimates as compared to
smaller value of LLF i.e. p = −1.5.
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Table 2 ML, Bayes estimates and their MSEs for cumulative cause specific hazard function
for cause-1 and cause-2 with n = 50 at X = −0.3 when α1 = 1.5, λ1 = 1.6, a1 = 5, β1 =
0.1, α2 = 1.7, λ2 = 1.6, a2 = 7, β2 = 0.2

n = 50 Cause 1 Cause 2
Time Points 0.5 1 1.5 0.5 1 1.5
True Value 0.04834 0.13302 0.23622 0.01687 0.05415 0.10602

ML Estimate 0.0525 0.14117 0.25051 0.01737 0.05376 0.1053

MSE 0.07667 0.31333 0.71655 0.01538 0.08362 0.22294

Gamma Estimate 0.05125 0.13834 0.24525 0.01785 0.05502 0.10683

SELF MSE 0.02759 0.12129 0.27994 0.00641 0.03849 0.10789

Gamma Estimate 0.05097 0.13728 0.24306 0.01777 0.05461 0.10581

LLF p = 1.5 MSE 0.02702 0.1179 0.27025 0.00631 0.03767 0.1052

Gamma Estimate 0.05154 0.13943 0.2475 0.01793 0.05543 0.10788

LLF p = −1.5 MSE 0.02819 0.12503 0.29101 0.00651 0.03937 0.11094

Weibull Estimate 0.04986 0.13555 0.24163 0.01748 0.05437 0.10629

SELF MSE 0.03036 0.12549 0.28064 0.0067 0.03885 0.10758

Weibull Estimate 0.04956 0.13448 0.23948 0.0174 0.05396 0.10528

LLF p = 1.5 MSE 0.02964 0.12197 0.27214 0.00658 0.03793 0.10469

Weibull Estimate 0.05016 0.13666 0.24384 0.01757 0.0548 0.10734

LLF p = −1.5 MSE 0.03113 0.12942 0.29046 0.00682 0.03985 0.11085

Lognormal Estimate 0.0507 0.13773 0.24478 0.01816 0.05555 0.10738

SELF MSE 0.02338 0.10906 0.26163 0.00665 0.03915 0.1082

Lognormal Estimate 0.05045 0.13674 0.24268 0.01808 0.05514 0.10636

LLF p = 1.5 MSE 0.02297 0.10626 0.2527 0.00655 0.03831 0.1055

Lognormal Estimate 0.05096 0.13874 0.24693 0.01824 0.05597 0.10844

LLF p = −1.5 MSE 0.02382 0.11216 0.27183 0.00675 0.04004 0.11124

• From the Tables 1–3 it is observe that both the estimates are performing
well i.e. the estimates value of the cumulative cause specific hazard
function for both the causes converging to the true value.

6 Real Life Application

We analysed the data of bone marrow transplant which comes from the
Princess Margaret Hospital Ontario, Canada in between January 1996 to
February 2000. During this study period 228 patients was enrolled up to
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Table 3 ML, Bayes estimates and their MSEs for cumulative cause specific hazard function
for cause-1 and cause-2 with n = 100 atX = −0.3 when α1 = 1.5, λ1 = 1.6, a1 = 5, β1 =
0.1, α2 = 1.7, λ2 = 1.6, a2 = 7, β2 = 0.2

n = 100 Cause 1 Cause 2
Time Points 0.5 1 1.5 0.5 1 1.5
True Value 0.04834 0.13302 0.23622 0.01687 0.05415 0.10602

ML Estimate 0.05072 0.13839 0.24626 0.01811 0.05595 0.10846

MSE 0.03659 0.15759 0.37248 0.0098 0.0509 0.12839

Gamma Estimate 0.05043 0.13727 0.24397 0.01799 0.05555 0.10764

SELF MSE 0.02081 0.09377 0.22189 0.00556 0.0314 0.08356

Gamma Estimate 0.05026 0.13663 0.24266 0.01794 0.05531 0.10704

LLF p = 1.5 MSE 0.02055 0.0922 0.21722 0.00551 0.03098 0.08227

Gamma Estimate 0.0506 0.13792 0.2453 0.01804 0.0558 0.10825

LLF p = −1.5 MSE 0.02107 0.09546 0.22702 0.00561 0.03184 0.08496

Weibull Estimate 0.04905 0.13478 0.24104 0.01753 0.05469 0.10674

SELF MSE 0.02159 0.09428 0.21832 0.00571 0.03183 0.08414

Weibull Estimate 0.04888 0.13414 0.23975 0.01748 0.05444 0.10614

LLF p = 1.5 MSE 0.02132 0.09283 0.21442 0.00565 0.03139 0.08281

Weibull Estimate 0.04922 0.13544 0.24236 0.01758 0.05494 0.10735

LLF p = −1.5 MSE 0.02187 0.09585 0.22265 0.00577 0.03229 0.08559

Lognormal Estimate 0.05008 0.13678 0.24342 0.01826 0.05602 0.10813

SELF MSE 0.01861 0.08721 0.21198 0.0058 0.03208 0.084

Lognormal Estimate 0.04993 0.13616 0.24214 0.01821 0.05577 0.10753

LLF p = 1.5 MSE 0.01841 0.08587 0.20765 0.00575 0.03165 0.08267

Lognormal Estimate 0.05024 0.1374 0.24471 0.01831 0.05627 0.10874

LLF p = −1.5 MSE 0.01882 0.08866 0.21672 0.00586 0.03254 0.08543

February 2000 and followed up to 2001. The aim of this study is to observe
the behaviour of two methods of cell collection from the donor, first was
the traditional method for harvested the cells from the pelvic bone of the
donor (BM), second was the newer technique in which the cells are collected
from the peripheral blood of the donor (PB). The primary endpoint for
which the study was designed is time to neutrophil recovery and secondary
endpoints of the study includes time to platelet recovery, outcomes related
to hematologic recovery, acute graft versus host disease (GVHD), chronic
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Table 4 ML, Bayes estimates and their MSEs for cumulative cause specific hazard function
for cause-1 and cause-2 with n = 200 atX = −0.3 when α1 = 1.5, λ1 = 1.6, a1 = 5, β1 =
0.1, α2 = 1.7, λ2 = 1.6, a2 = 7, β2 = 0.2

n = 200 Cause 1 Cause 2
Time Points 0.5 1 1.5 0.5 1 1.5
True Value 0.04834 0.13302 0.23622 0.01687 0.05415 0.10602

ML Estimate 0.05079 0.13947 0.24823 0.01735 0.05552 0.10909

MSE 0.02096 0.09785 0.2434 0.00412 0.02566 0.07376

Gamma Estimate 0.05065 0.13855 0.24635 0.01744 0.0553 0.10831

SELF MSE 0.01555 0.0737 0.18265 0.00321 0.02068 0.06041

Gamma Estimate 0.05055 0.13818 0.2456 0.01742 0.05516 0.10798

LLF p = 1.5 MSE 0.01543 0.07285 0.17994 0.00319 0.02052 0.05982

Gamma Estimate 0.05074 0.13892 0.2471 0.01747 0.05543 0.10865

LLF p = −1.5 MSE 0.01568 0.07459 0.18549 0.00323 0.02085 0.06104

Weibull Estimate 0.04943 0.13647 0.24404 0.01694 0.05433 0.1072

SELF MSE 0.01561 0.07311 0.17962 0.00314 0.02041 0.05981

Weibull Estimate 0.04933 0.1361 0.2433 0.01692 0.0542 0.10687

LLF p = 1.5 MSE 0.01549 0.07236 0.1773 0.00313 0.02027 0.05928

Weibull Estimate 0.04953 0.13684 0.2448 0.01697 0.05446 0.10753

LLF p = −1.5 MSE 0.01572 0.07389 0.18208 0.00316 0.02056 0.06036

Lognormal Estimate 0.0504 0.13811 0.24576 0.01765 0.05564 0.10865

SELF MSE 0.01463 0.07098 0.17863 0.00331 0.02096 0.06051

Lognormal Estimate 0.05031 0.13775 0.24503 0.01762 0.0555 0.10831

LLF p = 1.5 MSE 0.01453 0.0702 0.17606 0.00329 0.02079 0.05989

Lognormal Estimate 0.05049 0.13847 0.2465 0.01767 0.05578 0.10898

LLF p = −1.5 MSE 0.01474 0.0718 0.18134 0.00332 0.02113 0.06115

GVHD, relapse and survival. For the detail study one may refer to Couban
et al. (2002).

In order to illustrate our methodology, we used a subset of data of 100
patients with three types of endpoints: time to relapse, time to chronic graft
versus host disease (CGVHD) and time to death (Pintilie, 2006). Survival
for these patients was measured in years from the date of transplant to death
of each specific event. For mathematically convenience we only use the two
end points, one is CGVHD known as cause 1 and cause 2 is the combination
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Table 5 Baseline parameters estimate and goodness of fit statistics for CGVHD event
Model MLE Loglikelihood AIC BIC
Burr Type XII α=16.25, λ =0.137, a=0.299 37.5849 −69.1699 −61.3543
Weibull Shape=1.66, Scale=0.596 −16.4583 36.9166 42.1269
Gamma Shape=4.166, Rate=8.004 −1.3529 6.7058 11.9162
Lognormal Meanlog=-0.781, Sdlog=0.44 13.6107 −23.2214 −18.0110
MWeibull Shape 1=3.0714, Shape

2=-1.4954, Rate=14.3886
8.3458 −10.6918 −2.8762
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Figure 4 Baseline cumulative cause specific hazard for CGVHD event.
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of time to relapse and time to death. It is seen that out of 100 patients 86
patients experienced with CGVHD, and 10 patients experienced relapse and
death, and 4 patients were right censored. The effect of two covariates such
as treatments (BM, PB) and age is observed.

First, we characterize the shape of the cause specific hazard of CGVHD
by nonparametrically and compared with proposed model. We found that
shape of the cause specific hazard of CGVHD under both procedures are
very close and it is initially increasing and then decreasing i.e. nonmonotone
in nature (see, Figure 2). We therefore, compared the goodness of fit of the
model with Weibull, gamma, modified Weibull distribution (MWeibull) (Lai
et al., 2003) and lognormal distributions based on Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC). The fitting summary of
the CGVHD are reported in Table 5. It is also observed that the AIC and
BIC for CGVHD of Burr type XII distribution are least among the other
distributions. The graphs of the empirical and fitted models are shown in
Figure 3. Which shows that cumulative distribution function of Burr type
XII distribution is very close to empirical other than the Weibull, gamma,
modified Weibull and lognormal distributions.

Further, we also analyse the proposed model for competing events by
applying both the estimation procedures. The estimates of baseline parame-
ters and regression parameters with their standard error are given in Table 6.
Figures 4 and 5 shows the estimated baseline cumulative cause specific
hazard function for both the competing causes under proposed model and
compared with nonparametric estimates. The nonparametric estimates are
obtained without considering the situation of competing risks.

7 Conclusion

In this article, we consider the problem of competing risk estimation via
cause specific hazard function using Burr type XII distribution as baseline
model. The flexibility of the distribution has been demonstrated through
the behaviour of probability density function and hazard function. It is also
observed that it gives good fit for bone marrow transplant data. We utilized
both classical and Bayes estimators under class of informative types of priors
under SELF (symmetric) and LLF (asymmetric). Choice of lognormal and
Weibull prior is satisfactory under SELF as well as LLF(p = ±1.5). Appro-
priate convergence and identifiability of the model is observed in simulation
study. In real data example, the estimates of cumulative cause specific hazard
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function for CGVHD cause and other causes very close to nonparametric esti-
mates at the initial failure time points. It is observed that CGVHD has larger
cumulative cause specific hazard compared to other causes. The treatments
(BM, PB) and age have not any significant effect on CGVHD. But on other
causes the effect of age is significant under Bayes estimates and treatments
are significant under likelihood estimates.
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