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Abstract

The estimation of R(t) and R = Pr(Y > X) for the Positive Exponential
Family of Distribution (PEFD) is considered. The UMVUES, MLES and
Confidence Interval are derived. These estimators are derived through the
method of Transformation. The α = Pr(X > γ), which is termed as
probability of disaster is also derived when random stress X follows PEFD
and finite strength follows Power function distribution.

Keywords: Positive exponential family of distribution, uniformly mini-
mum variance unbiased estimator, maximum likelihood estimator, confidence
interval, probability of disaster, stress-strength reliability.

1 Introduction

Reliability measureR = Pr(X > t), which defines the failure free operation
of items / components until time ‘t’ and the measure R = Pr(Y > X)
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commonly represents the reliability of items / components, where the random
variable X and Y are the random stress and random strength. Another
measure of Reliability, α = Pr(X > γ) which represents the probability
of disaster, where the random variable X represents the stress and γ is the
maximum strength of the items / components.

In the literature of reliability, lot of work has been done since last few
decades. For a brief review of literature, the most popular article on the related
study are Pugh (1963) [12], Basu (1964) [3], Church and Harris (1970) [7],
Enis and Geisser (1971) [9], Downton (1973) [8], Tong (1974) [19], Kelly
et al. (1976) [10], Sinha and Kale (1980) [15], Sathe and Shah (1981) [14],
Chao (1982) [4], Awad and Gharraf (1986) [2], Chaturvedi and Surinder
(1999) [6], Kotz et al. (2003) [11], Rezaei and Mahmoodi (2010) [13],
Chaturvedi and Pathak (2012) [5], Surinder and Mukesh (2015) [16] and
Surinder and Mukesh (2016) [17]. In the present study, we have considered
a positive exponential family of distribution, which covers various lifetime
distributions as their specific cases.

2 Set Up of the Problem

Liang (2008)[18] proposed a positive exponential family of distributions,
which covers gamma distribution as specific case. Let the random variable
X has positive exponential family of distribution, then the pdf is given by

f(x; Θ) =
ρxρν−1exp

(−xρ
θ

)
Γνθν

;x > 0, θ, ν, ρ > 0 (1)

where, Θ = (ρ, ν, θ) and θ is assumed to be unknown and ρ, ν are known
constants. On assigning different values to ν and ρ, this family distribution
covers following pdfs as

(1) For ρ = ν = 1, we get one parameter exponential distribution.
(2) For ρ = 1, we get gamma distribution.
(3) For ν=1, we get Weibull distribution.
(4) For ν > 0, ρ = 1, we get Erlang distribution.
(5) For ν > 1/2, ρ = 2, we get half – normal distribution.
(6) For ν > m/2, ρ = 2, we get Chi-distribution.
(7) For ν = 1, ρ = 2, we get Rayleigh distribution.
(8) For ν = p+ 1, ρ = 2, we get Generalized Rayleigh distribution.
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Let the random variable Y considered as strength follows Power function
distribution whose cdf and pdf is

G(y;µ, γ) =

(
y

γ

)µ
(2)

and

g(y;µ, γ) =
µ

γ

(
y

γ

)µ−1
; 0 < y < γ, µ > 0 (3)

3 MLE and UMVUE of R = Pr(Y > X) for PEFD

The MLE and UMVUE of R = Pr(Y > X) for PEFD by using the
transformation method are evaluated in the following theorems.

Theorem 3.1: The MLE of R = Pr(Y > X) is given by

R̃ =

(
ν1η

ν2ξ + ν1η

)ν1 1

B(ν1, ν2)
2F1

(
ν1, 1− ν2; ν1;

ν1η

ν2ξ + ν1η

)
(4)

where, ξ = 1
n1

∑n1
i=1X

ρ1
i = TX and η = 1

n2

∑n2
j=1 Y

ρ2
j = T Y

Proof: In order to transform the given pdf (1), let us assume xρ1 = ξ, we get

f(ξ;λ1, ν1) =
ξν1−1e

−
(
ξ
λ1

)
Γν1λ1

ν1
; ξ, λ1, ν1 > 0 (5)

Similarly, for η = yρ2

f(η;λ2, ν2) =
ξν1−2e

−
(
η
λ2

)
Γν2λ2

ν2
; η, λ2, ν2 > 0 (6)

where λ1 = θ1 and λ2 = θ2
Let ξ and η are two independent random variables with gamma pdfs given

at (5) and (6). Thus,

R = Pr(η > ξ)

= Pr

(
η

ξ
> 1

)
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= Pr

(
η/λ2
ξ/λ1

>
λ1
λ2

)
= Pr

(
η/λ2
ξ/λ1

+ 1 >
λ1
λ2

+ 1

)
R = Pr

(
ξ/λ1

ξ/λ1 + η/λ2
>

λ2
λ2 + λ1

)
Since, we know that, if ξ and η be two independent random variables

which follow gamma distribution with parameters (λ1, ν1) and (λ2, ν2) then
z = ξ/λ1

ξ/λ1+η/λ2
is a beta (ν1, ν2) random variable with the pdf

f(z, ν1, ν2) = [B(ν1, ν2)]
−1zν1−1 (1− z)ν2−1

or,
R = I( λ2

λ2+λ1

)(ν1, ν2) (7)

which is the incomplete beta function. Using the relation between the
incomplete beta function and the hypergeometric series, we rewrite (7) as

R =

(
λ2

λ2 + λ1

)ν1 1

B (ν1, ν2)
2F1

(
ν1, 1− ν2; ν1;

λ2
λ2 + λ1

)
(8)

The reliability R = Pr(Y > X)

R =
(

θ2
θ2+θ1

)ν1
1

B(ν1,ν2) 2
F1

(
ν1, 1− ν2; ν1; θ2

θ2+θ1

)
Substituting the MLE’s i.e. λ̃1 = ξ

ν1
and λ̃2 = η

ν2
in place of λ1 and λ2 in (8).

The MLE of R = Pr(η > ξ) is

R̃ =
(

ν1η

ν2ξ+ν1η

)ν1
1

B(ν1,ν2) 2
F1

(
ν1, 1− ν2; ν1; ν1η

ν2ξ+ν1η

)
where, ξ = 1

n1

∑n1
i=1X

ρ1
i = TX and η =

1

n2

∑n2
j=1 Y

ρ2
j = T Y

Hence, the theorem follows.

Corollary 1.
1. MLE of R = Pr(Y > X) for one parameter exponential distribution
(ρ = ν = 1)

R̃ = TY
TX+TY
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where, T Y = 1
n2

∑n2
j=1 Yj and TX = 1

n1

∑n1
i=1Xi

2. MLE of R = Pr(Y > X) for gamma Distribution (ρ = 1)

R̃ =
(

ν1Y
ν2X+ν1Y

)ν1
1

B(ν1,ν2) 2
F1

(
ν1, 1− ν2; ν1; ν1Y

ν2X+ν1Y

)
where, T Y = 1

n2

∑n2
j=1 Y

ρ2
j and TX = 1

n1

∑n1
i=1X

ρ1
i

3. MLE of R = Pr(Y > X) for Weibull Distribution (ν = 1)

R̃ = TY
TX+TY

where, T Y = 1
n2

∑n2
j=1 Y

ρ2
j and TX = 1

n1

∑n1
i=1X

ρ1
i

4. MLE of R = Pr(Y > X) for Erlang distribution (ν > 0, ρ = 1)

R̃ =
(

ν1Y
ν2X+ν1Y

)ν1
1

B(ν1,ν2) 2
F1

(
ν1, 1− ν2; ν1; ν1Y

ν2X+ν1Y

)
where, T Y = 1

n2

∑n2
j=1 Yj and TX = 1

n1

∑n1
i=1Xi

5. MLE of R = Pr(Y > X) for half – normal distribution (ν = 1/2, ρ = 2)

R̃ =
(

TY
TX+TY

)1/2
1
π2 2F1

(
1
2 ,

1
2 ; 1

2 ; TY
TX+TY

)
where, T Y = 1

n2

∑n2
j=1 Y

2
j and TX = 1

n1

∑n1
i=1X

2
i

6. MLE of R = Pr(Y > X) for Chi-distribution (ν > m/2, ρ = 2)

R̃ =
(

TY
TX+TY

)m/2
1

B(m2 ,
m
2 )2

F1

(
m
2 , 1−

m
2 ; m2 ; TY

TX+TY

)
where, T Y = 1

n2

∑n2
j=1 Y

2
j and TX = 1

n1

∑n1
i=1X

2
i

7. MLE of R = Pr(Y > X) for Rayleigh distribution (ν = 1, ρ = 2)

R̃ = TY
TX+TY

where, T Y = 1
n2

∑n2
j=1 Y

2
j and TX = 1

n1

∑n1
i=1X

2
i

8. MLE of R = Pr(Y > X) for Generalized Rayleigh distribution (ν =
p+ 1, ρ = 2)

R̃ =
(

TY
TX+TY

)p+1
1

B(p+1,p+1)2F1

(
p+ 1,−p; p+ 1; TY

TX+TY

)
where, T Y = 1

n2

∑n2
j=1 Y

2
j and TX = 1

n1

∑n1
i=1X

2
i
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Theorem 3.2: The UMVUE of R = Pr(Y > X) is given by

R̂ =



ρ1ρ2B[(n2−1)ν2+i+1,ν1+j]
B[ν1,(n1−1)ν1]B[ν2,(n2−1ν2]

∞∑
i=0

(−1)i
(n2−1)ν2+i(

ν2−1
i

)∑∞
j=0(−1)j

(
(n1−1)ν1−1

j

) (
TY
TX

)ν1+j
; TY < TX

∀ 0 ≤ i ≤ ν1 − 1 <∞ & 0 ≤ j ≤ (n1 − 1)ν1 − 1 <∞

ρ1ρ2B[(n1−1)ν1,ν1+j]
B[ν1,(n1−1)ν1]B[ν2,(n2−1ν2]

∞∑
i=0

(−1)i
(n2−1)ν2+i(

ν2−1
i

)∑∞
j=0(−1)j

(
(n2−1)ν1+i

j

) (
TX
TY

)j
; TY > TX

∀ 0 ≤ i ≤ ν2 − 1 <∞ & 0 ≤ j ≤ (n2 − 1)ν2 + i <∞
(9)

where, TX =
∑n1

i=1Xi
ρ1 and TY =

∑n2
i=1 Yj

ρ2

Proof: Let ξ and η be two independent gamma distributions with pdfs (5)
and (6). In order to obtain Pr(η > ξ), we have to obtain the UMVUE
of f(ξ; ν, ρ, λ) i.e. f̂(ξ; ν, ρ, λ) and f(η; ν, ρ, λ) i.e. f̂(η; ν, ρ, λ) which is
given by

f̂(ξ; ν1, ρ1, λ1) =
ρ1

B[ν1, (n1 − 1)ν1]

{
ξν1−1(
n1ξ
)ν1
}{

1− ξ

n1ξ

}(n1−1)ν1−1
;

if 0 < ξ < n1ξ (10)

and

f̂(η; ν2, ρ2, λ2) =
ρ2

B[ν2, (n2 − 1)ν2]

{
ην2−1

(n2η)ν2

}{
1− η

n2η

}(n2−1)ν2−1
;

if 0 < η < n2η (11)

The Reliability is

R̂ = Pr(η > ξ) =

∫ ∞
0

∫ ∞
ξ

f̂(η; ν2, ρ2, λ2)f̂(ξ; ν1, ρ1, λ1)dηdξ

=
ρ1ρ2

B[ν1, (n1 − 1)ν1]B[ν2, (n2 − 1)ν2]
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0

∫ n2η

ξ

ην2−1

(n2η)ν2

{
1− η

n2η

}(n2−1)ν2−1

{
ξν1−1

(n1ξ)ν1

}{
1− ξ

n1ξ

}(n1−1)ν1−1
dηdξ

Let 1− η
n2η

= w

=
ρ1ρ2

B[ν1, (n1 − 1)ν1]B[ν2, (n2 − 1)ν2]∫ n1ξ

0

∫ 1− ξ
n2η

0
(1− w)ν2−1w(n2−1)ν2−1

{
ξν1−1

(n1ξ)ν1

}{
1− ξ

n1ξ

}(n1−1)ν1−1
dwdξ

=
ρ1ρ2

B[ν1, (n1 − 1)ν1]B[ν2, (n2 − 1)ν2]

∞∑
i=0

(−1)i

(n2 − 1)ν2 + i(
ν2 − 1

i

)∫ min(n1ξ,n2η)

0

{
ξν1−1

(n1ξ)ν1

}
{

1− ξ

n1ξ

}(n1−1)ν1−1
dwdξ

=
ρ1ρ2

B[ν1, (n1 − 1)ν1]B[ν2, (n2 − 1)ν2]

∞∑
i=0

(−1)i

(n2 − 1)ν2 + i(
ν2 − 1

i

)∫ min(n1ξ,n2η)

0

{
ξν1−1

(n1ξ̄)ν1

}
{

1− ξ

n1ξ

}(n1−1)ν1−1{
1− ξ

n2η

}(n2−1)ν2+i
dξ

Now, we consider the case when n1ξ > n2η and let 1− ξ
n2η

= w

=
ρ1ρ2

B[ν1, (n1 − 1)ν1]B[ν2, (n2 − 1)ν2]

∞∑
i=0

(−1)i

(n2 − 1)ν2 + i
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ν2 − 1

i

)∫ 1

0
z(n2−1)ν2+i

{
1− n2ν2

n1ξ
(1− z)

}(n1−1)ν1−1(n2η̄
n1ξ

)ν1
(1− z)ν1−1 dz

Using the Binomial expansion. we get,

=
ρ1ρ2

B[ν1, (n1 − 1)ν1]B[ν2, (n2 − 1)ν2]

∞∑
i=0

(−1)i

(n2 − 1)ν2 + i(
ν2 − 1

i

)∫ 1

0

∞∑
j=0

(−1)j
(

(n1 − 1)ν1 − 1

j

)
(
n2η

n1ξ

)ν1+j
(1− z)ν1+j−1 z(n2−1)ν2+i dz

=
ρ1ρ2B[(n2 − 1)ν2 + i+ 1, ν1 + j]

B[ν1, (n1 − 1)ν1]B[ν2, (n2 − 1ν2]

∞∑
i=0

(−1)i

(n2 − 1)ν2 + i(
ν2 − 1

i

) ∞∑
j=0

(−1)j
(

(n1 − 1)ν1 − 1

j

)
(
n2η

n1ξ

)ν1+j
; if n2η < n1ξ

Similarly, we can take the case n2η > n1ξ, we get

=
ρ1ρ2B[(n1 − 1)ν1, ν1 + j]

B[ν1, (n1 − 1)ν1]B[ν2, (n2 − 1ν2]

∞∑
i=0

(−1)i

(n2 − 1)ν2 + i

(
ν2 − 1

i

)
∞∑
j=0

(−1)j
(

(n2 − 1)ν+i

j

)(
n2ξ

n1η

)j
For obtaining the value of UMVUE substituting n1ξ =

∑n1
i=1Xi

ρ1 = TX
and n2η =

∑n2
j=1 Y

ρ2
j = TY . Hence, the theorem follows.
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Corollary 2.
1. UMVUE of R for one parameter exponential distribution is

R̂ =



B[(n2+i,1+j]
B[1,(n1−1)]B[1,(n2−1)]

∞∑
j=0

(−1)j
(
n1 − 2

j

)(
TY
TX

)1+j
;TY < TX

B[(n1−1,1+j]
B[1,(n1−1)]B[1,(n2−1)]

∞∑
j=0

(−1)j
(
n2 − 1 + i

j

)(
TX
TY

)j
;TY > TX

where, TY =
∑n2

j=1 Yj and TX =
∑n1

i=1Xi

2. UMVUE of R for gamma distribution is

R̂ =



B[(n2−1)ν2+i+1,ν1+j]
B[ν1,(n1−1)ν1]B[ν2,(n2−1)ν2]

∞∑
i=0

(−1)i
(n2−1)ν2+i

(
ν2 − 1

i

) ∞∑
j=0

(−1)j

(
(n1 − 1)ν1 + i

j

)(
TY
TX

)ν1+j
; TY < TX

B[(n1−1)ν1,ν1+j]
B[ν1,(n1−1)ν1]B[ν2,(n2−1)ν1]

∞∑
i=0

(−1)i
(n2−1)ν2+i

(
ν2 − 1

i

) ∞∑
j=0

(−1)j

(
(n2 − 1)ν2 + i

j

)(
TX
TY

)j
; TY > TX

where, TY =
∑n2

j=1 Yj and TX =
∑n1

i=1Xi

3. UMVUE of R for Weibull distribution is

R̂ =



B[(n2+i,1+j]
B[1,(n1−1)]B[1,(n2−1)]

∞∑
j=0

(−1)j
(
n1 − 2

j

)(
TY
TX

)1+j
;TY < TX

B[(n1−1,1+j]
B[1,(n1−1)]B[1,(n2−1)]

∞∑
j=0

(−1)j
(
n2−1+i

j

) (
TX
TY

)j
;TY > TX

where, TY =
∑n2

j=1 Yj and TX =
∑n1

i=1Xi
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4. UMVUE of R for Erlang distribution is

R̂ =



B[(n2−1)ν2+i+1,ν1+j]
B[ν1,(n1−1)ν1]B[ν2,(n2−1)ν2]

∞∑
i=0

(−1)i
(n2−1)ν2+i

(
ν2 − 1

i

) ∞∑
j=0

(−1)j

(
(n1 − 1)ν1 + i

j

)(
TY
TX

)ν1+j
; TY < TX

B[(n1−1)ν1,ν1+j]
B[ν1,(n1−1)ν1]B[ν2,(n2−1)ν1]

∞∑
i=0

(−1)i
(n2−1)ν2+i

(
ν2 − 1

i

) ∞∑
j=0

(−1)j

(
(n2 − 1)ν2 + i

j

)(
TX
TY

)j
; TY > TX

where, TY =
∑n2

j=1 Yj and TX =
∑n1

i=1Xi

5. UMVUE of R for half-normal distribution is

R̂ =



4B[(n2−1) 12+i+1, 1
2
+j]

B[ 1
2
,(n1−1) 12 ]B[ 1

2
,(n2−1) 12 ]

∞∑
i=0

(−1)i
(n2−1) 12+i

( 1
2
− 1

i

) ∞∑
j=0

(−1)j

(
(n1 − 1) 1

2
− 1

j

)(
TY
TX

) 1
2
+j

; TY < TX

4B[(n1−1) 12 ,
1
2
+j]

B[ 1
2
,(n1−1) 12 ]B[ 1

2
,(n2−1) 12 ]

∞∑
i=0

(−1)i
(n2−1) 12+i

( 1
2
− 1

i

) ∞∑
j=0

(−1)j

(
(n2 − 1) 1

2
+ i

j

)(
TX
TY

)j
; TY > TX

where, TY =
∑n2

j=1 Y
2
j and TX =

∑n1
i=1X

2
i

6. UMVUE of R for Chi-distribution is

R̂ =



4B[(n2−1)m2 +i+1,m
2
+j]

B[m
2
,(n1−1)m2 ]B[m

2
,(n2−1)m2 ]

∞∑
i=0

(−1)i
(n2−1)m2 +i

( m
2
− 1

i

) ∞∑
j=0

(−1)j

(
(n1 − 1)m

2
− 1

j

)(
TY
TX

)m
2
+j

; TY < TX

4B[(n1−1)m2 ,
m
2
+j]

B[m
2
,(n1−1)m2 ]B[m

2
,(n2−1)m2 ]

∞∑
i=0

(−1)i
(n2−1)m2 +i

( m
2
− 1

i

) ∞∑
j=0

(−1)j

(
(n2 − 1)m

2
+ i

j

)(
TX
TY

)j
; TY > TX

where, TY =
∑n2

j=1 Y
2
j and TX =

∑n1
i=1X

2
i
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7. UMVUE of R for Rayleigh distribution is

R̂ =



B[(n2+i,1+j]
B[1,(n1−1)]B[1,(n2−1)]

∞∑
j=0

(−1)j
(
n1 − 2

j

)(
TY
TX

)1+j
;TY < TX

B[(n1−1,1+j]
B[1,(n1−1)]B[1,(n2−1)]

∞∑
j=0

(−1)j
(
n2 − 1 + i

j

)(
TX
TY

)j
;TY > TX

where, TY =
∑n2

j=1 Y
2
j and TX =

∑n1
i=1X

2
i

8. UMVUE of R for Generalized Rayleigh distribution is

R̂ =



B[(n2−1)(p+1)+i+1,(p+1)+j]
B[(p+1),(n1−1)(p+1)]B[(p+1),(n2−1)(p+1)]

∞∑
i=0

(−1)i
(n2−1)(p+1)+i

(
(p+ 1)− 1

i

) ∞∑
j=0

(−1)j
(
(n1 − 1)(p+ 1) + i

j

)(
TY
TX

)(p+1)+j

;TY < TX

B[(n1−1)(p+1),(p+1)+j]
B[(p+1),(n1−1)(p+1)]B[(p+1),(n2−1)(p+1)]

∞∑
i=0

(−1)i
(n2−1)(p+1)+i

(
(p+ 1)− 1

i

)
∞∑
j=0

(−1)j
(
(n2 − 1)(p+ 1) + i

j

)(
TX
TY

)j
; TY > TX

where, TY =
∑n2

j=1 Y
2
j and TX =

∑n1
i=1X

2
i

4 Confidence Interval of R = Pr(Y > X)

Theorem 4.1: The confidence interval for R = Pr(Y > X) is

Pr

I( (ν1TY /ν2TX)F1−σ2
(ν1TY /ν2TX)F1−σ2+1

)(ν1, ν2) < R < I( (ν1TY /ν2TX)Fσ1
(ν1TY /ν2TX)Fσ1+1

)(ν1, ν2)


= 1− σ (12)

where, TX = 1
n1

∑n1
i=1Xi

ρ1 and T Y = 1
n2

∑n2
j=1 Yj

ρ2
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Proof: It follows from the above theorems that ξ and η be two independent
random variables with Gamma (ν1, λ1) and Gamma (ν2, λ2) respectively,
then

λ =
λ2
λ1

; λ̃ =
ν1η

ν2ξ

where, λ1 = ξ
ν1

and λ2 = η
ν2

. As we know that,

2n1ξ

λ1
∼ Gamma(n1ν1, 2) ≡ χ2

2n1ν1

Similarly,
2n2η

λ1
∼ Gamma(n2ν2, 2) ≡ χ2

2n2ν2

where, χ2
α is the pdf of chi-squared distribution with α degree of freedom.

Hence,

λ̃

λ
=

2n2η/n2ν2λ2

2n1ξ/n1ν1λ1

=
χ2
2n2ν2

/2n2ν2

χ2
2n1ν1

/2n1ν1
∼ F (2n1ν1, 2n2ν2)

(13)

where, F (ε1, ε2) denotes Snedecor’s F-distribution with ε1 and ε2 degree of
freedom.

λ̃

λ
∼ F (2n1ν1, 2n2ν2)

For any δ denoted by Fδ = Fδ(2n1ν1, 2n2ν2), then the relation to Fδ and
1− δ quantile of Fδ(2n1ν1, 2n2ν2) distribution is

Fδ(2n1ν1, 2n2ν2) = [F1−δ(2n1ν1, 2n2ν2)]
−1

Let σ1 and σ2 be non-negative numbers such that σ1 + σ2 = σ. Then

Pr(λ̃F1−σ2 < λ < λ̃Fσ1) = 1− σ (14)

Since R = I( λ
λ+1)(ν1, ν2) and IZ(a, b) is an increasing function of z for any

a, b. So, I( λ
λ+1)(ν1, ν2) as the function of λ . Hence (14) become

Pr

I( λ̃F1−σ2
λ̃F1−σ2+1

)(ν1, ν2) < R < I( λ̃Fσ1
λ̃Fσ1+1

)(ν1, ν2)

 = 1− σ (15)

After the substituting i.e. λ̃ = ν1η

ν2ξ
and λ1 = θ1, λ2 = θ2
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Then R = I( λ2
λ1+λ2

)(ν1, ν2) = I( θ2
θ1+θ2

)(ν1, ν2). The confidence interval

for R is

Pr

I( (ν1η/ν2ξ)F1−σ2
(ν1η/ν2ξ)F1−σ2+1

)(ν1, ν2) < R < I( (ν1η/ν2ξ)Fσ1
(ν1η/ν2ξ)Fσ1+1

)(ν1, ν2)

 = 1−σ

where, TX = 1
n1

∑n1
i=1Xi

ρ1 = ξ and T Y = 1
n2

∑n2
j=1 Yj

ρ2 = η
Hence, the theorem follows.

Corollary 3.
1. Confidence interval for one parameter exponential distribution (ρ = ν = 1)

Pr

I( λF1−σ2
λF1−σ2+1

) < R < I( λFσ1
λFσ1+1

)
 = 1− σ

where λ = Y
X

and R = I( θ2
θ1+θ2

)(1, 1)

2. Confidence interval for gamma Distribution (ρ = 1)

Pr

I( λF1−σ2
λF1−σ2+1

)(ν1, ν2) < R < I( λFσ1
λFσ1+1

)(ν1, ν2)

 = 1− σ

where λ = Y
X

and R = I θ2
θ1+θ2

(ν1, ν2)

3. Confidence interval for Weibull Distribution (ν = 1)

Pr

I( λF1−σ2
λF1−σ2+1

)(1, 1) < R < I( λFσ1
λFσ1+1

)(1, 1)

 = 1− σ

where λ = Y
X

and R = I θ2
θ1+θ2

(1, 1)

4. Confidence interval for Erlang Distribution (ν > 0, ρ = 1)

Pr

I( λF1−σ2
λF1−σ2+1

)(ν1, ν2) < R < I( λFσ1
λFσ1+1

)(ν1, ν2)

 = 1− σ

where λ = ν1η

ν2ξ
and R = I θ2

θ1+θ2

(ν1, ν2)
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5. Confidence interval for half-normal Distribution (ν > 1/2, ρ = 2)

Pr

I( λF1−σ2
λF1−σ2+1

)(1

2
,
1

2

)
< R < I( λFσ1

λFσ1+1

)(1

2
,
1

2

) = 1− σ

where λ = Y
X

and R = I θ2
θ1+θ2

(
1
2 ,

1
2

)
6. Confidence interval for Chi-distribution (ν > m/2, ρ = 2)

Pr

I( λF1−σ2
λF1−σ2+1

) (m
2
,
m

2

)
< R < I( λFσ1

λFσ1+1

) (m
2
,
m

2

) = 1− σ

where λ = Y
X

and R = I θ2
θ1+θ2

(
m
2 ,

m
2

)
7. Confidence interval for Rayleigh distribution (ν = 1, ρ = 2)

Pr

I( λF1−σ2
λF1−σ2+1

) (1, 1) < R < I( λFσ1
λFσ1+1

) (1, 1)

 = 1− σ

where λ = Y
X

and R = I θ2
θ1+θ2

(1, 1)

8. Confidence interval for Generalized Rayleigh distribution (ν = p+ 1, ρ =
2)

Pr

I( λF1−σ2
λF1−σ2+1

) (p+ 1, p+ 1) < R < I( λFσ1
λFσ1+1

) (p+ 1, p+ 1)

 = 1−σ

where λ = Y
X

and R = I θ2
θ1+θ2

(p+ 1, p+ 1)

5 Probability of Disaster Pr(Y > γ)

Theorem 5.1: If the stress and finite strength are denoted by the random
variables X and Y which follows PEFD and Power function distribution,
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that are shown in (1) and (2), respectively. Then probability of disaster
α = Pr(Y > γ) is given by

α = Pr(Y > γ) =
1

Γν

∫ ∞
k

uν−1e−udu (16)

where, k = γρ

θ

Proof: From (1),

α = Pr(Y > γ)

=

∫ ∞
γ

ρxρν−1e
−xρ
θ

Γνθν
dx

=
ρ

Γνθν

∫ ∞
γ

xρν−1e
−xρ
θ dx

Let x
ρ

θ = u

α =
1

Γν

∫ ∞
γρ

θ

uν−1e−udu

= Γ(ν, k)

which is the upper incomplete gamma function, where, k = γρ

θ .

6 Numerical Analysis

From (16) the probability of disaster Pr(Y > γ) can be measured. The
numerical values are obtained for different values of ν which is presented
in Table 1. It can be easily interpreted from Table 1 that the probability of
disaster decreases with an increase in the value of k. In order to overcome the
problem of disaster (i.e. to attain the smallest value of α = Pr(X > γ), the
values of k = γρ

θ , where ρ and θ is the parameter of PEF-distribution and γ is
the scale parameter of the power function distribution, should be considered
in such a manner that the value of α tends to zero.

Alternatively, we may also obtain the numerical values of k for fixed
values ν from equation (16). These values are used to obtain the optimum
cost for manufacturing of item at desired tolerance level.
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Table 1 Numerical Values for the Probability of disaster α = Pr(X > θ) and k for different
values of ν

k ν = 0.001 ν = 0.01 ν = 0.5 ν = 1.05 ν = 1.5 ν = 2

0.8 0.000311 0.003132 0.205903 0.472619 0.659390 0.808792

1.0 0.000219 0.002216 0.157299 0.389400 0.572407 0.735759

1.2 0.000158 0.001603 0.121335 0.320603 0.493635 0.662627

1.5 0.000064 0.001013 0.083264 0.239233 0.391625 0.557825

1.8 0.000032 0.000065 0.057779 0.178339 0.308022 0.462837

2.3 0.000016 0.000331 0.031972 0.109131 0.203542 0.330854

2.8 0 0.000172 0.017961 0.066687 0.132778 0.231078

3.4 0 0.000081 0.009116 0.036880 0.078555 0.146842

4.1 0 0.000034 0.004189 0.018454 0.042054 0.084521

5.1 0 0.000012 0.001404 0.006851 0.016940 0.037190

6.2 0 0 0.000429 0.002300 0.006131 0.014612

7.6 0 0 0.000087 0.000572 0.000165 0.004304

9.3 0 0 0.000016 0.000105 0.000331 0.000942

11.4 0 0 0 0.000013 0.000044 0.000138

13.9 0 0 0 0 0 0.000014

17.0 0 0 0 0 0 0

Table 2 Values of m at different tolerance level α for ν = 2

α 0.05 0.02 0.01 0.001 0.0001 0.00001
k 2.996020 3.912310 4.605460 6.908040 9.210630 11.513200

7 Stress – Strength Reliability

Theorem 7.1: The Stress – Strength model Pr(Y > X), where X follows
PEFD and Y follows power function distribution, respectively is given as

Pr(Y > X) =
1

Γν

∫ k

0
uν−1e−udu− 1

Γνkµ/α

∫ k

0
u( µα+ν−1)e−udu (17)

where, x
ρ

θ = u

Proof: From (1) and (3), we have

Pr(Y > X) =

∫ γ

0

∫ γ

x
f(x,Θ)g(y, µ)dydx
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where, Θ = (ρ, ν, θ)

Pr(Y > X) =

∫ γ

0

ρxρν−1e
−xρ
θ

Γνθν

[∫ γ

x

µ

γ

(
y

γ

)µ−1
dy

]
dx

=

∫ γ

0

ρxρν−1e
−xρ
θ

Γνθν

[
1

γµ
{γµ − xµ}

]
dx

=

∫ γ

0

ρxρν−1e
−xρ
θ

Γνθν
dx−

∫ γ

0

ρxρν+µ−1e
−xρ
θ

Γνθνγµ
dx

Taking xρ

θ = u and solving the above integrals we finally get,

Pr(Y > X) =
1

Γν

∫ k

0
uν−1e−udu− 1

Γνkµ/α

∫ k

0
u( µα+ν−1)e−udu

where k =
γρ

θ
, Hence, the theorem follows.

Table 3 The Strength reliability of an item for ν = 2, ρ = 2, and varying values of k and µ
and varying values of k and µ

k µ = 2 µ = 5 µ = 10 µ = 15 µ = 20 µ = 30

0.8 0.072651 0.116730 0.145622 0.158460 0.165680 0.173507

1.0 0.103638 0.164995 0.204307 0.221481 0.231046 0.241332

1.2 0.136518 0.215358 0.264713 0.285899 0.297582 0.310045

1.5 0.187304 0.291463 0.354377 0.380661 0.394936 0.409972

1.8 0.237853 0.365149 0.439257 0.469359 0.485451 0.502181

2.3 0.317875 0.477318 0.564419 0.598102 0.615615 0.633416

2.8 0.389960 0.573140 0.666799 0.701180 0.718538 0.735769

3.4 0.464769 0.666495 0.761480 0.794106 0.809972 0.825255

4.1 0.536852 0.749440 0.840064 0.868720 0.882015 0.894349

5.1 0.616331 0.831032 0.910101 0.932106 0.941591 0.949892

6.2 0.680103 0.887158 0.951925 0.967406 0.973505 0.978478

7.6 0.737474 0.928900 0.977654 0.987122 0.990404 0.992822

9.3 0.785057 0.956229 0.990580 0.995696 0.997186 0.998139

11.4 0.824575 0.973529 0.996360 0.998797 0.999357 0.999650

13.9 0.856116 0.983855 0.998620 0.999695 0.999878 0.999951

17.0 0.882353 0.990239 0.999493 0.999930 0.999981 0.999995



380 S. Kumar et al.

8 The Stress-Strength Reliability R = Pr(Y > X) when
both follows PEFD

Theorem 8.1: Let X and Y be two independent random variables from PEFD,
where X and Y are the stress and the strength, respectively. Reliability R =
Pr(Y > X) is

R =
ρ1

θ1
ν1Γν1

∫ ∞
x=0

xρ1ν1−1e(−x
ρ1/θ1)e(

−xρ2/θ2)
ν2−1∑
k=0

1

k!

(
xρ2

θ2

)k
dx (18)

Proof: Random variable X follows the PEF-distribution with pdf

f(x,Θ) =
ρ1x

ρ1ν1−1e(−x
ρ1/θ1)

Γν1θ
ν1
1

(19)

where, Θ = (ρ1, ν1, θ1)
Random variable Y follows the PEF-distribution with pdf

f(y,Θ) =
ρ2y

ρ2ν2−1e(−y
ρ2/θ2)

Γν2θ
ν2
2

(20)

where, Θ = (ρ2, ν2, θ2)
The Reliability R = Pr(Y > X)is

R =

∫ ∞
x=0

∫ ∞
y=x

f(x,Θ)f(y,Θ)dydx

=

∫ ∞
x=0

{
ρ1x

ρ1ν1−1e(−x
ρ1/θ1)

Γν1θ
ν1
1

}[∫ ∞
y=x

ρ2y
ρ2ν2−1e(−y

ρ2/θ2)

Γν2θ
ν2
2

dy

]
dx

Let y
ρ2

θ2
= t

R =

∫ ∞
0

{
ρ1x

ρ1ν1−1e(−x
ρ1/θ1)

Γν1θ
ν1
1

}∫ ∞xρ2
θ2

tν2−1

Γν2
e−tdt


which is the upper incomplete gamma after solving, we get

R =
ρ1

θ1
ν1Γν1

∫ ∞
x=0

xρ1ν1−1e(−x
ρ1/θ1)e(

−xρ2/θ2)
ν2−1∑
k=0

1

k!

(
xρ2

θ2

)k
dx

where r > 0 is any positive number. Hence, the theorem follows.
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9 Discussion

When an item/device is manufactured and if the strength of an item follows
Power function distribution, it is expected that the maximum feasible values
of γ may have an upper limit say γ0 . For example, the maximum accelerating
speed of a turbine must not be increased its permissible capacity. At a fixed
tolerance level α, suppose γα is the desired value of γ. In case γα < γ0, we
may obtain the required value of µ say µα, by using Table 3, so that the item
is manufactured with the strength distribution having parameters (µα, γα)
and consequently, the desired strength reliability can be achieved. However,
if γα > γ0, we will have to either adjust α or look for an alternate item.

10 Study of the Cost with an Example

Let us assume that the maximum feasible value of k is 12. When α ≤ 0.01
the value of m must be greater or equal to 5.1 i.e. m ≥ 5.1. As the value
of m cannot exceed 12 , then one needs to fix the item / device in a way
such that 5.1 ≤ k ≤ 12 i.e. 2.7 ≤ γ ≤ 4.1 and thus, the corresponding
values of µ leads to a maximum of Pr(Y > X). The cost factor of adjusting
the parameters may be taken into consideration here as the cost of varying
γ and µ may be different. Theoretically, the costs may be an increasing or
decreasing function of γ and µ depending upon the nature of the parameters.
Usually, Cost (Y) is an increasing function Y, if Y is the mean strength. In our
study, E(Y ) = µγ/(µ + 1), which implies that the mean strength increases
by increasing either of the two parameters. Hence, we may assume the two
costs to be an increasing function of the respective parameters. Assuming the
costs to be directly proportional to the required values of the parameters, the
problem may be further evaluated as follows:

Let C1 and C2 be the costs of adjusting one unit of γ and µ, respectively.
Minimize C = γC1 + µC2 subject to 2.7 ≤ γ ≤ 4.1 and Pr(Y > X) ≥
0.99.
Analytically, the problem may be simplified as follows:
On using Table 3 for k = 5.1, 6.2, 7.6, 9.3 and 11.4 i.e. γ = 2.76, 3.04, 3.37,
3.73 and 4.1, respectively and obtain those values of µ for which Pr(Y >
X) ≥ 0.99, the cost function for each pair of (γ, µ) is evaluated:

Table 4 depicts that the minimum cost lies at 3.37C1 + 20C2 depending
upon the numerical values of C1 and C2.
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Table 4 Table for optimum cost of manufactured items
γ µ γC1 + µC2

3.37 20 3.37C1 + 20C2

3.37 30 3.37C1 + 30C2

3.7 10 3.7C1 + 10C2

3.7 15 3.7C1 + 15C2

3.7 20 3.7C1 + 20C2

3.7 30 3.7C1 + 30C2

4.1 10 4.1C1 + 10C2

4.1 15 4.1C1 + 15C2

4.1 20 4.1C1 + 20C2

4.1 30 4.1C1 + 30C2
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