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Abstract

Principal Component Analysis is considered as a dimension-reduction tool
which may be used to reduce a large set of possibly correlated variables
to hopefully a smaller set of uncorrelated variables that still accounts for
most of the variation of the original large set. To understand the inner con-
structs of principal components, concepts of algebraic as well as geometric
basis of principal components are prerequisites. Hence, in the current study,
an attempt has been made to provide a step by step and vivid discussion of
the basis of principle components and its various important properties.

Keywords: Algebraic basis, basis of principal components, geometric basis,
principal components, properties of principal components.

1 Introduction

Principal component analysis (PCA) is a statistical method in which an
orthogonal transformation is used to convert a set of observations of pos-
sibly correlated variables into a (hopefully, smaller) set of observations of
linearly uncorrelated variables, called principal components (Jackson, 1991;
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Harris, 2001). The method of principal components was given by Karl
Pearson in the year of 1901 (Pearson, 1901), however the general procedure
being used nowadays is due to Harold Hotelling, whose pioneering paper
showed up later in 1933 (Hotelling, 1933). This transformation is defined
such that the first principal component has the largest possible variance
and accounts for as much of the variability present in the original data as
possible (Anderson, 2003; Johnson and Wichern, 2007). Each succeeding
principal component in turn has the next highest possible variance under the
constraint that it is orthogonal to the preceding principal component(s) so
that the resulting vectors become an uncorrelated orthogonal basis set (Hardle
and Simar, 2014). In regression analysis, a test without principal component
analysis may be ineffective or even impossible if the number of independent
variables is large compared to the number of observations (Timm, 2002).
Besides, substantially higher correlations among the independent variables
may lead to unstable estimates of regression coefficients (Gujarati et al.,
2011). In such cases, these variables can be reduced to a smaller number
of principal components resulting in a better test or more stable estimates of
regression coefficients (Rencher, 2012). In case of MANOVA, if p (number
of dimensions) is close to vg (error degrees of freedom) so that a test has a
low power, or that, p > v, making the determinants of Wilks’ A negative,
the dependent variables should be substituted with a smaller number of
principal components in order to carry out the analysis (Rencher, 2012).
In addition to these applications, depending on the fields, it is analogous
to the discrete Karhunen—Lo¢ve transform in signal processing (Ahmed
et al.,, 1974), proper orthogonal decomposition in mechanical engineering
(Chatterjee, 2000), singular value decomposition in linear algebra (Bunch and
Nielsen, 1978), Eckart—Young theorem in psychometrics (Johnson, 1963),
empirical orthogonal functions in meteorological sciences (Hannachi et al.,
2007) and so on. It should be noted that in the term principal compo-
nents, the adjective ‘principal’ is used to describe the kind of components
— main, primary, fundamental, major, and so on. The noun ‘principal’ as a
modifier for components, is not used (Rencher, 2012). To understand the
inner constructs of principal components, concepts of algebraic as well as
geometric basis of principal components are prerequisites. Hence, in the
current study, an attempt has been made to provide a step by step and vivid
discussion of the basis of principle components and its various important
properties.
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2 Algebraic Basis of Principal Components

Let X be an n-dimensional vector of variables and n is assumed to be very
large. Now the interest is emphasized on reducing this n number of vari-
ables (may be correlated) into m (m < n) number of uncorrelated variables
(Rencher, 2012).

—

X = (X1, X0, X3, .. Xons Xont 14+ 12 Xi)

In other words, (n-m) number of variables have to be deleted in order
to decrease redundancy. Now, if the first m number of variables are kept by
eliminating the last (n-m) number of variables, it will contribute sufficient
increase in error sum of squares, as here, the condition V(X;) > V(X3) >

. V(Xp) > V(Xpmy1) > ... V(X,,) is not ascertained. So, to ensure the
condition V(X;) > V(X2) > ... V(Xp) > V(Xpma1) > ... V(X,),
transformation of X vector is obvious. Now, a way of transformation of the
X vector has to be thought of in such a way that the aforesaid variability
condition is ascertained to ensure minimum increase in error sum of squares
if the last (n-m) variables are eliminated. In other words, the objective of this
transformation is to maximise the decrease of variance so that the last (n-m)
number of variables can be easily chopped off.

First of all, let ¢ be an n-dimensional unit vector. So, by definition,
Euclidian norm of ¢ vector, ||| = 1.

Now, a projection of X vector onto the n-dimensional unit vector ¢ has
been made.

.. Projection of X onto 7, C=XTg= (j’TX' (Stark and Yang, 1998),
which is subjected to ||7|| = (q”Tq_)l/2 =1.

Again, V(C) = §7'S¢, where S is the sample variance-covariance matrix
of variables of X vector. This matrix S is beyond researchers’ control. So
what can be done is that this n-dimensional unit vector ¢ can be utilised as a
search to get the desired form.

Let variance probe,

U (7)=q"8q=0o? (1)

Now, as a corollary to Rolle’s Mean Value theorem (Riedel and Sahoo,
1998), for a very small change d¢q , ¥(q') can be approximated to ¥(q' + dq),
1e.

W (q) = ¥(q+dq) (2)
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S, 7 o2\ To L 7
From (1), ¥(7+ 0q) = (7+ 0q) S(7+ dq)
- T T =
= qTSq+20q Sq+dq Siq
T
= ¢7Sq+20q S7 3)
(As the quantity bY qTS gq is infinitely small)
Putting the value of (1) and (3) in (2),
- T
§"Sq=q"Sq+2%q ST
Or,
> T
0q SG=0 4)

Now, as ¢'is an unit vector, even after perturbation, (¢4 dq) also remains as
an unit vector.

H(cf—i- gq)” =1

Squaring both sides, it can be obtained that

o2
‘(q”réq)H =1
Or,
— < T — s
<q+5q) <q+6q>:1
Or,
T - T
GTqd+26¢ ¢+dq dg=1
Or,

ST
6g ¢=0 )
ST
(As the quantity 6¢ dq is infinitely small and ¢7 ¢ = 1 for ¢ being an unit

vector).
Now, using Lagrangian multiplier A (Bertsekas, 2014), from (4) and (5),

54 ST— A (Schj) —0

=T
dq [ST—A) =0
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=T
As this g is certainly a non-zero quantity, so
[ST—Aq] =0

Or,
S—INg=0 (©)

where I is nxn identity matrix.

Now, this Equation (6) is a well-known form in linear algebra (Zhang,
2011), more specifically in matrix theory, where A is the eigen value of S
matrix and ¢'is the corresponding eigen vector (Searle and Khuri, 2017). As
S is a square matrix of order n, there will be n number of eigen values and n
corresponding eigen vectors. Arranging eigen values in the decreasing order
(le. A\1 > A2 > ...\ > A1 > ... Ay), it can be obtained (Johnstone,
2001),

Sq; = N\jq; (where, j=1,2,...,n) 7

Now, two matrices Q and A are defined as Q = [G1, 2,5, - - -, @n) and
A = diag (A1, A2, A3, ..., An), respectively. Compacting the n number of
Equations (7) in a single equation, it can be obtained,

SQ=0QA ®)

Again, ¢1,@2,q3,...,q, are eigen vectors of S matrix. As variance-
covariance matrix S is a symmetric matrix, its eigen vectors are orthogonal to
each other. Hence, matrix Q, consisting of n-orthogonal eigen vectors, is an
orthogonal matrix, satisfying

G g=1 for i=j
=0, for i#j

and
QTQ=1 ie Q"=Q"
Pre-multiplying Q7 to both the sides of (8),
QTSQ=A )
and an expanded form of this Equation (9) will be
4TS = Nj, for k=j (10)
=0, for k#j
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As the left hand side of the Equation (9) is similar to the Equation (1) as
mentioned earlier, Variance-Covariance matrix of transformed vector C will
be

(i)’ Y =A (11)

From equality property of matrices (Aitken, 2016), the following properties
can be obtained,

(ii) Oij = )\i, for = ] (12)
=0, for i#j,
(i) Y o= A (13)
=1 =1
and
i

(iv)  proportion of variability explained by i*! PC = (14)

Z?:l Ai

3 Geometric Basis of Principal Component

Suppose for 2 variables X; and Xo, the following scatterplot has been
obtained (Figure 1).

Now, from the scatterplot (Figure 1), it can be clearly understood that X
and Xy are highly correlated. It can also be observed that variability across
X is higher than variability across X5, however both are substantial values
(Figure 2).

Keeping the origin rigid, if the axes are rotated 0° anti-clockwise
(Figure 3), the rotation will yield Z1, Z5 as new axes (Eisenhart, 2005).

X.‘.

3

o “e
T .
= °
efje oo

Figure 1 Scatterplot of X; and X5 variable.
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Figure 2 Variability across X; and X» axis in the scatterplot.

Figure 3 Rotated scatterplot of X; and X5 variable.

After rotation, it can be seen that variability across Z; is much higher
than Z5. In addition to that, Z; and Z5 are observed to be almost independent.
Now, if V(Z;) > V(Z3), then Z; dimension alone will be able to provide
sufficient information as much as available in the original data set.

Now, a particular point P is considered, whose coordinate is (z1, x2) in
X1X5 plane and (z1, 22) in Z7Z5 plane (Figure 4). From P, perpendicular
lines PM and PA have been drawn on Z; axis and Z5 axis respectively. From
P, another perpendicular line PL has been drawn on X axis. From the point
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P(zl,zj)
X P(x,x)
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Figure 4 Coordinates of point P with respect to unrotated and rotated axes.

M, two perpendicular line MQ and MN have been drawn on X; axis and PL
line, respectively.

Now,
OL=x; PL=u2x
OM =2 PM =2
Again,
OL = 0Q — LQ
= 0Q — MN
= OM COS6 — PM SIN6O
= z1 COSO — z, SINO (15)

(From AOMQ and APMN respectively)
and

PL = PN+ NL
= PN +MQ
= PM COS6 + OM SIN6
= 2z COSO + 2, SIN® (16)

(From APMN and AOMQ respectively)
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Solving Equation no. (15) and (16), it can be obtained,
z1 = ©1COS6 + z2SINO
z9 = £2COSH — z1SINO
In matrix form, which can be rewritten as (Aitken, 2016),

H - [cose sme] M

29 —SINO COS0| |xo
Or,
7=ATz
Or,
7= |aia3) ¥
Where,

. [cose _ [SIN®
’ 2= 10086

sollafl=1 and |l =1

So, it can be observed that @; s are unit vectors and ATA = T = AAT
i.e. transformation matrix A is an orthogonal matrix. Similarly, for n number
of variables also, this can be generalised as,

Z; =Y, aji X;, subjected to the condition d’jTa_; = 1.

As the ultimate objective of this transformation is to maximise the
decrease of variance in such a manner that the last few number of variables

can be easily chopped off, maximisation of V' (Z;) is required subjected to

the condition, 6]Tch =1.
Now,
V(Z;)=d, S d
here, S is the sample dispersion matrix of X;, Xo,..., X, variables.

In other words, maximisation of 6]TS a; is needed to be subjected to the

condition,

ST o .
a; a; — 1=0.

Using Lagrangian multiplier, a function has been defined as,

L =a;Sa; — \ajd; — 1)
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Partially differentiating L with respect to a; and equating it to zero, it can be
obtained, 5
L
—— _0
1) a;
Or,

25a; — 20d; = 0

Or,
(S—=A)a; =0 17)

Equation (17) is similar to the Equation (6) mentioned earlier, from which
in the same fashion, the same results can be obtained,

i) > =A,
(11) 055 = )\i, for 1 :j
=0, for i+#j7,
(i) D25y 0ij = D iy M
and
(iv) proportion of variability explained by it PC = ani =
i=1""

4 Conclusion

In this study, both algebraic and geometric basis of principal components
have been discussed thoroughly, which may considerably help in understand-
ing the inner constructs of principal components. From both the approaches,
it has been found that eigen values and elements of the corresponding eigen
vectors of sample dispersion matrix are the variances and the coefficients
of the original variables, respectively, of the corresponding newly formed
principal components.
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