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Abstract

Inverse Gaussian is a popular distribution especially in the reliability and
life time modelling, and thus the estimation of its unknown parameters has
received considerable interest. This paper aims to obtain the Bayes estimators
for the two parameters of the inverse Gaussian distribution under varied
loss functions (squared error, general entropy and linear exponential). In
Bayesian procedure, we consider commonly used non-informative priors
such as the vague and Jeffrey’s priors, and also propose using the extension of
Jeffrey’s prior. In the case where the two parameters are unknown, the Bayes
estimators cannot be obtained in the closed-form. Hence, we employ two
approximation methods, namely Lindley and Tierney Kadane (TK) approx-
imations, to attain the Bayes estimates of the parameters. In this paper. the
effects of considered loss functions, priors and approximation methods on
Bayesian parameter estimation are also presented. The performance of Bayes
estimates is compared with the corresponding classical estimates in terms
of the bias and the relative efficiency throughout an extensive simulation
study. The results of the comparison show that Bayes estimators obtained
by TK method under linear exponential loss function using the proposed
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prior outperform the other estimators for estimating the parameters of inverse
Gaussian distribution most of the time. Finally, a real data set is provided to
illustrate the results.

Keywords: Inverse Gaussian distribution, Bayes estimator, extension of
Jeffrey’s prior, Lindley approximation, Tierney Kadane approximation.

1 Introduction

The Inverse Gaussian (IG) distribution arises as the distribution of the passage
time in Brownian motion with positive drift. Initial studies on the statistical
properties of IG distribution was conducted by Tweedie (1957). The theory of
IG distribution and its statistical properties were also studied by Chhikara and
Folks (1975). For more details on the IG distribution, the readers can referred
to Chhikara and Folks (1989), Johnson et al. (1994) and Seshadri (1999).

The probability density function (pdf) of two parameter IG distribution is

f(x;µ, λ) =

(
λ

2πx3

)1/2

exp

(
−λ(x− µ)2

2µ2x

)
, x > 0 (1)

with µ > 0, λ > 0. We denote the IG distribution by IG(µ, λ). The
expected value and variance of the IG distribution are given as µ and µ2/λ,
respectively. The cumulative distribution function (cdf) is given as follows

F (x;µ, λ) = Φ

[√
λ

x

(
x

µ
− 1

)]
+ exp

(
2λ

µ

)
Φ

[
−
√
λ

x

(
x

µ
+ 1

)]
(2)

where Φ is the cdf for the standard normal distribution.
Iyengar and Patwardhan (1988) suggested the IG distribution as an alter-

native to log-normal, gamma, Weibull and generalized gamma distributions
where the initial failure rate is high. Lemeshko et al. (2010) proposed the IG
distribution as a competitor of the families of generalized Weibull, log-normal
and log-logistic distributions since its hazard function has∩ shape. Therefore,
many authors have shown interest in the classical and Bayesian estimation of
parameters of the IG distribution. For instance, the maximum likelihood esti-
mators (MLEs) of µ and λ were obtained by Tweedie (1957). Chhikara and
Folks (1989) derived the minimum variance unbiased estimators (MVUEs) of
parameters. Banarjee and Bhattacharyya (1979) obtained the Bayes estima-
tors of the parameters and reliability function of IG(1/µ, λ) under the vague
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prior, π(µ|λ) ∝ constant and π(λ) = 1/λ. Sinha (1986) used Lindley
approximation to obtain Bayes estimates of the unknown parameters as well
as the reliability function using under the squared error loss function (SELF)
with a vague prior. Ahmad and Jaheen (1995) used Lindley and Tierney
and Kadane (TK) approximations to compute the Bayes estimators for the
parameters and reliability function of IG(µ, λ) considering the conjugate
prior under SELF. Recently, Singh et al. (2008) obtained Bayes estimators
using Lindley’s approximation under SELF and the general entropy loss
function (GELF). Pandey and Bandyopadhyay (2012) used Markov Chain
Monte Carlo method and Lindley approximation to compute Bayes estima-
tors using gamma prior under SELF. In addition, many authors have studied
the Bayesian estimation of the parameters of IG distribution using censored
data, see for example, Basak and Balakrishnan (2012), Jia et al. (2017),
Rostamian and Nematollahi (2019).

The purpose of this study is to derive Bayes estimators for the unknown
parameters of IG(µ, λ) based on a class of non-informative priors: the vague
prior, Jeffrey’s prior, and the proposed extension of Jeffrey’s prior, under sym-
metric (SELF) and asymmetric (linear exponential and GELF) loss functions.
It is noticed that the Bayes estimators of the parameters cannot be expressed
in explicit forms. Thus, we use two approximation methods, Lindley and
TK, to compute the Bayes estimates. A comprehensive simulation study is
conducted to evaluate the performance of the proposed Bayes estimators,
MLEs and MVUEs in terms of bias and the mean squared error.

The rest of this study is set as follows: In Section 2, the MLEs and
MVUEs of the two-parameter IG distribution are given. Section 3 presents
the non-informative priors, the posterior distributions and the considered loss
functions. Bayes estimation using Lindley and TK approximation methods
is also outlined in this section. By using the approximation methods, the
approximate Bayes estimates under the proposed extension of Jeffrey’s prior
are derived in Section 4. The results of simulation study are provided in
Section 5. An application to real data set is given in Section 6. We conclude
the study in Section 7.

2 Classical Estimation Methods

Let X = (X1, X2, · · · , Xn) be a random sample of size n from the IG(µ, λ)
distribution, then the likelihood and log-likelihood functions are respectively
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as follows:

L(µ, λ|x) =

(
λ

2π

)n
2

n∏
i=1

xi
−3/2 exp

(
−λ
(
2µ2
)−1

n∑
i=1

zi(µ)

)
, (3)

`(µ, λ|x) = n/2(lnλ− ln2π)− 3/2
n∑
i=1

lnxi − λ(2µ2)
−1

n∑
i=1

zi(µ). (4)

where zi(µ) = (xi−µ)2

xi
. By differentiating (5) with respect to the parameters

and setting to zero, we have

∂`

∂µ
=

n∑
i=1

(
xi
µ
− 1

)
λ

µ2
= 0, (5)

∂`

∂λ
=

n

2λ
− 1

2µ2

n∑
i=1

zi(µ) = 0. (6)

From (6) and (7), the MLEs of µ and λ are obtained as follows,
respectively:

µ̂MLE =

∑n
i=1 xi
n

= X and λ̂MLE =
n∑n

i=1

(
1
xi
− 1

X

) . (7)

According to Chhikara and Folks [5], the MVUEs of µ and λ are given as

µ̂MV UE = X and λ̂MV UE =
n− 3∑n

i=1

(
1
xi
− 1

X

) (8)

3 Bayesian Estimation

The property that distinguishes the Bayesian estimation approach from classi-
cal estimation is that the model parameter is considered as a random variable.
It has a certain model named as the prior distribution. The prior represents any
knowledge or beliefs about the parameter. In case that the prior knowledge
about the parameters is available, informative priors are used for Bayesian
estimation. However, in many real cases, it is very difficult to know in
advance information about the parameters.

Therefore, using non-informative priors is the more suitable alternative to
informative priors. For this reason, in this study, we assume the absence of
the prior knowledge about the parameters, and obtain Bayes estimators under
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three different non-informative priors: the vague prior, Jeffrey’s prior, and the
proposed extension of Jeffrey’s prior.

3.1 Posterior Distribution Under the Vague Prior

First, we consider the vague prior for µ and λ given as follows

π(µ, λ) ∝ 1/λ, (10)

which also used by Banarjee and Bhattacharyya (1979), and Sinha (1986).
Thus, the joint posterior distribution of (µ, λ) is derived as follows

π(µ, λ|x) =
L(µ, λ|x)π(µ, λ)∫∞

0

∫∞
0 L(µ, λ|x)π(µ, λ)dµdλ

, (11)

Substituting the vague prior (10) in (11), the posterior distribution
becomes as the following

π(µ, λ|x) =

1
λ

(
λ
2π

)n
2
∏n
i=1 xi

−3/2exp
(
−λ
(
2µ2
)−1∑n

i=1 zi (µ)
)

∫∞
0

∫∞
0

1
λ

(
λ
2π

)n
2
∏n
i=1xi

−3/2exp
(
−λ (2µ2)−1∑n

i=1zi (µ)
)
dµdλ

.

(12)
or

π(µ, λ|x) = A1λ
n/2−1exp

(
−λ
(
2µ2
)−1

n∑
i=1

zi (µ)

)
, (13)

where A−1
1 =

∫∞
0

∫∞
0 λn/2−1exp

(
−λ
(
2µ2
)−1∑n

i=1 zi (µ)
)
dµdλ is the

normalizing constant.

3.2 Posterior Distribution Under Jeffrey’s Prior

One of the commonly used non-informative priors was suggested by Jeffrey

(1961) as π(θ) ∝
√
|I(θ)|, where I(θ) = −E

(
∂2 logL(θ)

∂θ2

)
is the Fisher

Information matrix. For two parameter IG distribution, the joint Jeffrey’s
prior of (µ, λ) is given as

π(µ, λ) ∝ 1√
µ3λ

. (14)

Substituting the Jeffrey’s prior (14) in (11), we obtain

π(µ, λ|x) = A2µ
−3/2λ(n−1)/2exp

(
−λ
(
2µ2
)−1

n∑
i=1

zi (µ)

)
, (15)
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where A−1
2 =

∫∞
0

∫∞
0 µ−3/2λ(n−1)/2exp

(
−λ
(
2µ2
)−1∑n

i=1 zi (µ)
)
dµdλ

is the normalizing constant.

3.3 Posterior Distribution Under Extended Jeffrey’s Prior

Al-Kutubi and Ibrahim (2009) suggested an extension of Jeffrey’s prior for

exponential distribution as π(θ) ∝
(√
|I(θ)|

)c
, c ∈ R+. Following the simi-

lar path, we propose to use the extended Jeffrey’s prior for two parameters of
IG distribution which can be express as the following form

π(µ, λ) ∝
(
1/
√
µ3λ
)c
, c > 0. (16)

This is also a generalisation of the non-informative priors in this study.
For instance, the extended Jeffrey’s prior in (16) yields Jeffrey’s prior in (16)
when c = 1. If c = 2 and µ is constant, (18) becomes the vague prior in (12).

The posterior distribution of (µ, λ) is derived by using the proposed prior
in (16) as follows

π(µ, λ|x) = A3µ
−3c/2λ(n−c)/2exp

(
−λ
(
2µ2
)−1

n∑
i=1

zi (µ)

)
, (17)

where A−1
3 =

∫∞
0

∫∞
0 µ−3c/2λ(n−c)/2exp

(
− λ

2µ2
∑n

i=1 zi (µ)
)
dµdλ is the

normalizing constant.

3.4 Loss Functions

In this subsection, we briefly present various loss functions used to drive
Bayes estimators of the IG parameters in this study.

3.4.1 Squared error loss function
One of the widely used loss functions is SELF, which has the symmetry
property. SELF is defined as follows

L(θ̂; θ) = (θ̂ − θ)2. (18)

Let u(θ) be an arbitrary function of θ. The Bayes estimator of u(θ) under
SELF, denoted by ûSELF , that equals to the posterior mean is given as

ûSELF = E [u(θ)|X] =

∫
Θ u(θ)L(θ|x)π(θ)dθ∫

Θ L(θ|x)π(θ)dθ
. (19)
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SELF is widely used due to the simplicity of its algebraic calculations.
However, as SELF is symmetric, it may not be appropriate for many esti-
mation problems especially where overestimation or underestimation of a
parameter is important. Therefore, asymmetric loss functions are suggested
as more appropriate alternatives.

3.4.2 Linear exponential loss function
Varian (1975) defined an asymmetric loss function, called linear exponential
(LINEX) loss function, as an alternative to the symmetric loss functions
where overestimation is more serious than underestimation. LINEX loss
function is defined as follows

L(θ̂; θ) = exp(k(θ̂ − θ))− k(θ̂ − θ)− 1, k 6= 0, (20)

where k is the loss parameter. The sign and the magnitude of k represent the
direction and the degree of symmetry, respectively.

The Bayes estimator of u(θ) under (20), denoted by ûLINEX , was
obtained by Zellner (1986) as following

ûLINEX = −1

k
lnE [ exp(−ku(θ))|X] . (21)

3.4.3 General entropy loss function
General entropy loss function (GELF) introduced by Calabria and Pulcini
(1994) was defined as the following

L(θ̂; θ) =

(
θ̂

θ

)k
− k ln

(
θ̂

θ

)
− 1, k 6= 0, (22)

where k is the loss parameter and its magnitude shows the degree of
symmetry.

The Bayes estimator of u(θ) under GELF, denoted by ûGELF , is given
by

ûGELF =
(
E
[
(u(θ))−k

∣∣∣X])−1/k
. (23)

Note that if k = −1 in (25), the Bayes estimator under GELF, ûGELF ,
coincides with ûSELF .

We would like to emphasize that Bayes estimators under the considered
loss functions contain the ratio of the integrals which cannot be simplified
in close forms. Therefore, Lindley and TK approximations are employed to
obtain the approximate Bayes estimates of IG(µ,λ).
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3.5 Lindley Approximation

Lindley (1980) suggested an approximation for the integrals of the form∫
Θ g (θ)h(θ) exp (`(θ)) dθ∫

Θ h(θ) exp (`(θ)) dθ
, (24)

where g(θ) and h(θ) are any functions of θ and `(θ) is the log-likelihood
function. If h(θ) is assumed to be the prior distribution of θ, then (24)
becomes the expectation of g(θ) as in the following form

E [g(θ)|X] =

∫
Θ g(θ) exp (τ (θ)) dθ∫

Θ exp (τ (θ) + `(θ)) dθ
, (25)

where τ is the logarithm of the prior.
Applying Lindley’s approximation method for two parameter case, say

θ = (θ1, θ2), E [g(θ)|X] can be asymptotically obtained as

E(g(θ)|X) = u+
1

2

2∑
i=1

2∑
j=1

(uij + 2uiτj)σij

+
1

2

2∑
i=1

2∑
j=1

2∑
k=1

2∑
l=1

Lijkσijσklul, (26)

where all terms are evaluated at the MLEs of θ = (θ1, θ2), u = g, σij =

[−Lij ]−1, ui = ∂g
∂θi

, uij = ∂2g
∂θi∂θj

, Lijk = ∂3`
∂θi∂θj∂θk

and τj = ∂τ
∂θj

.

3.6 Tierney-Kadane Approximation

Lindley approximation method is often used to evaluate the integrals in
(25); however, this method requires the third derivatives of the log-likelihood
function. An alternative approximation method was derived by Tierney
and Kadane (1986). By defining the functions L = 1

n (`(θ) + τ(θ)) and
L∗ = 1

n (lnu+ `(θ) + τ(θ)), respectively, the expectation of the g(θ) can
be expressed as

E [g(θ)|X] =

∫
Θ e

nL∗dθ∫
Θ e

nLdθ
. (27)
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Then applying TK method, the approximate posterior expectation of the
g(θ) in (27) is obtained as following

E [g(θ)|X] ≈
[
detΣ∗

detΣ

]1/2

exp
{
n
[
L∗(θ̂L∗)− L(θ̂L)

]}
, (28)

where L∗ and L attain their maximum value at θ̂L∗ and θ̂L, respectively. Σ∗

and Σ are the inverses of the negatives Hessian matrices of L∗ and L at θ̂L∗
and θ̂L, respectively.

4 Bayes Estimators Under Extended Jeffrey’s Prior

In this section, the extended Jeffrey’s prior is taken into the consideration
as the prior distribution and Bayes estimators of the parameters of the IG
distribution are approximately computed by using Lindley and TK methods
under the considered loss functions.

4.1 Bayes Estimators Using Lindley Approximation

For our estimation problem with θ = (µ, λ), we derive the following expres-
sions by using the log-likelihood function in (5) and the extension of Jeffrey’s
prior in (18) as

L111 =6nλ̂/µ̂4, L112 =−n/µ̂3, L121 =L122 =L211 =L221 =0, L222 =n/λ̂3

σ11 = µ̂3/nλ̂, σ12 = σ21 = 0, σ22 = 2λ̂2/n, τ1 = −3c/2µ̂, τ2 = −c/2λ̂,

where µ̂ = µ̂MLE and λ̂ = λ̂MLE given in (8).
Substituting the above expressions into (28), the approximate posterior

expectation of g(µ, λ) can be expressed as in the following form

E [g(µ, λ)|X] = û+
1

2
(û11 + 2û1τ1)σ11 +

1

2
(û22 + 2û2τ2)σ22

+
1

2
(L111σ11

2û1 + L112σ11σ22û2 + L222σ22
2û2).

(29)

4.1.1 Bayes estimators under LINEX loss function
• Let g(µ, λ) = e−kµ, (u1 = −ke−kµ, u11 = k2e−kµ, u2 = u12 =
u21 = u22 = 0) then the approximate posterior expectation of g(µ, λ) is
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obtained as

E
[
e−kµ|X

]
= e−kµ̂ + (kµ̂+ 3c− 6)

ke−kµ̂µ̂2

2nλ̂
.

The approximate Bayes estimator of µ under LINEX loss function,
µ̂L−LINEX , is

µ̂L−LINEX = −1

k
ln
[
E(e−kµ|X)

]
. (30)

• Let g(µ, λ) = e−kλ, (u2 = −ke−kλ, u22 = k2e−kλ, u1 = u11 =
u12 = u21 = 0) then the approximate posterior expectation of u(µ, λ)
is obtained as

E(e−kλ|X) = e−kλ̂ + (kλ̂+ c− 1)
ke−kλ̂λ̂

n
.

The approximate Bayes estimator of λ under LINEX loss function,
λ̂L−LINEX , is

λ̂L−LINEX = −1

k
ln
[
E(e−kλ|X)

]
. (31)

4.1.2 Bayes estimators under general entropy loss function
• Let g(µ, λ) = µ−k, (u1 = −kµ−k−1, u11 = (k2 + k)µ−k−2, u2 =
u12 = u21 = u22 = 0), then

E(µ−k|X) = µ̂−k + (k + 3c− 5)
kµ̂1−k

2nλ̂
.

The approximate Bayes estimator of µ under GELF, µ̂L−GELF , is

µ̂L−GELF =
[
E(µ−k|X)

]−1/k
. (32)

• Let g(µ, λ) = λ−k, (u2 = −kλ−k−1, u22 = (k2 + k)λ−k−2, u1 =
u11 = u12 = u21 = 0), then

E(λ−k|X) = λ̂−k +
(k2 + ck)λ̂−k

n
.

The approximate Bayes estimator of λ, under GELF, λ̂L−GELF , is

λ̂L−GELF =
[
E(λ−k|X)

]−1/k
. (33)
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We note that the approximate Bayes estimators of µ and λ under SELF,
denoted by µ̂L−SELF and λ̂L−SELF , respectively, are obtained from
µ̂L−GELF and λ̂L−GELFwith k = −1.

4.2 Bayes Estimators Using TK Approximation

For our case with θ = (µ, λ), we observe the following expression by using
the log-likelihood function in (5) and the extended Jeffrey’s prior in (18) as

L(µ, λ) =
1

n

[
n

2
ln

(
λ

2π

)
− 3

2

n∑
i=1

lnxi −
λ

2µ2

n∑
i=1

zi (µ)

−3c

2
lnµ− c

2
lnλ

]
. (34)

Then, (µ̂L, λ̂L) are obtained by solving the following equations:

∂L
∂µ

=
λ

nµ3

n∑
i=1

xi −
λ

µ2
− 3c

2nµ
= 0

∂L
∂λ

=
n− c
2nλ

− 1

2nµ2

n∑
i=1

(xi − µ)2

xi
= 0.

(35)

Further, we obtain the second order derivatives of L(µ, λ) with respect to
µ and λ as

∂2L
∂µ2

=
3c

2nµ2
+

2λ

µ3
− 3λ

nµ4

n∑
i=1

xi,

∂2L
∂λ2

=
c− n
2nλ2

,

∂2L
∂µ∂λ

=
∂2L
∂λ∂µ

=
1

nµ3

n∑
i=1

xi −
1

µ2
.

(36)

Next, using the expressions in (36), we compute the inverse of negatives
hessian matrix of L(µ, λ) at (µ̂L, λ̂L) as follows

Σ =

[
−∂2L
∂µ2

− ∂2L
∂µ∂λ

− ∂2L
∂λ∂µ −∂2L

∂λ2

]−1

µ=µ̂L,λ=λ̂L

. (37)
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4.2.1 Bayes estimators under LINEX loss function
Let g(µ, λ) = e−kµ, then Lµ∗ function is defined

Lµ∗(µ, λ) = −kµ
n

+ L(µ, λ), (38)

and (µ̂L∗ , λ̂L∗) are obtained by solving the following equations:

∂Lµ∗

∂µ
=
∂L
∂µ
− k

n
= 0,

∂Lµ∗

∂λ
=
∂L
∂λ

= 0.

(39)

Then, we obtain the inverse of negatives hessian matrix of L∗µ(µ, λ) at

(µ̂L∗ , λ̂L∗) as

Σ∗µ =

−∂2Lµ∗
∂µ2

−∂2Lµ∗
∂µ∂λ

−∂2Lµ∗
∂λ∂µ −∂2Lµ∗

∂λ2

−1

µ=µ̂L∗ ,λ=λ̂L∗

. (40)

Thus, the approximate Bayes estimator of µ, denoted by µ̂TK−LINEX , is
derived as

µ̂TK−LINEX = −1

k
ln

([
detΣ∗µ
detΣ

] 1
2

exp
{
n
[
Lµ∗

(
µ̂L∗ , λ̂L∗

)
− L

(
µ̂L, λ̂L

)]})
. (41)

We obtain the approximate Bayes estimator of λ under LINEX loss
function likewise.

4.2.2 Bayes estimators under GELF
Let g(µ, λ) = µ−k, then Lµ∗ function is defined

Lµ∗(µ, λ) = −k
n

lnµ+ L(µ, λ) (42)

We obtain (µ̂L∗ , λ̂L∗) by solving the following equations:

∂Lµ∗

∂µ
=
∂L
∂µ
− k

nµ
= 0,

∂Lµ∗

∂λ
=
∂L
∂λ

= 0.

(43)
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Taking the second order derivatives of Lµ∗(µ, λ), we compute the inverse
of negatives hessian matrix of L∗µ(µ, λ) at (µ̂L∗ , λ̂L∗) as

Σ∗µ ==

−∂2Lµ∗
∂µ2

−∂2Lµ∗
∂µ∂λ

−∂2Lµ∗
∂λ∂µ −∂2Lµ∗

∂λ2

−1

µ=µ̂L∗,λ=λ̂L∗

. (44)

Hence, the approximate Bayes estimator of µ, denoted by µ̂TK−GELF , is
obtained as follows

µ̂TK−GELF =

([
detΣ∗µ
detΣ

] 1
2

exp
{
n
[
Lµ∗

(
µ̂L∗ , λ̂L∗

)

−L
(
µ̂L, λ̂L

)]})−1/k

. (45)

Similarly, we derive the approximate Bayes estimator of λ under GELF.
It is noted that the approximate Bayes estimators of µ and λ under SELF,

µ̂TK−SELF and λ̂TK−SELF , respectively, are derived from µ̂TK−GELF and
λ̂TK−GELF with k = −1. Besides, the same procedure in Section 4 is
repeated for the vague prior and Jeffrey’s prior.

5 Simulation Study

We conduct a comprehensive simulation study to investigate the perfor-
mances of the classical and Bayesian estimators of the parameters in terms
of bias and relative efficiency (RE). In the simulation study, we consider a
sample of sizes n = 25, 50, 100 to illustrate the effect of small, moderate and
large samples on the estimators. The true values of (µ, λ) are taken as (1, 2),
(1, 4),(3, 2) and (3, 4). The constant values for the extended Jeffrey’s prior
are considered as c = (2, 3). The loss parameter for LINEX loss function and
GELF is taken as k = ±0.75.

For 5000 repetitions, the performance of the classical and Bayesian
estimators is measured with different criteria such as bias and RE (see Usta
(2013)), given as follows:

Bias =
1

5000

5000∑
i=1

(θ̂i − θ),
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Table 1 Bias values of estimates for µ
Lindley Tierney-Kadane

c µ̂MLE µ̂MV UE µ̂BS µ̂BL µ̂BL µ̂BG µ̂BG µ̂BS µ̂BL µ̂BL µ̂BG µ̂BG

k K
n=25 −.75 .75 −.75 .75 −.75 .75 −.75 .75

− .007 .007 .067 .073 .061 .065 .052 .078 .086 .060 .074 .053
1 .007 .007 .037 .044 .030 .035 .020 .035 .042 .022 .032 .015
2 .007 .007 .007 .015 −.001 .005 −.010 .001 .007 −.010−.001−.017
3 .007 .007 −.023−.015−.030−.025−.038 −.031−.026−.040−.033−.048µ

=
1

− .004 .004 .034 .037 .030 .033 .026 .038 .042 .031 .036 .027

1 .004 .004 .019 .023 .015 .018 .010 .019 .022 .013 .017 .009

2 .004 .004 .004 .008 .000 .003 −.005 .002 .005 −.003 .001 −.008

3 .004 .004 −.011−.007−.015−.012−.019 −.015−.012−.020−.017−.024µ
=

1
λ
=

4

− −.002 −.002 .539 .571 .369 .528 .438 .792 .382 .216 .714 .403

1 −.002 −.002 .268 .399 .043 .249 .115 .215 .319 −.064 .184 .026

2 −.002 −.002 −.002 .198 −.203−.025−.152 −.088 .099 −.276−.109−.223

3 −.002 −.002 −.273−.047−.404−.291−.377 −.318−.169−.458−.334−.425µ
=

3
λ
=

2

− .014 .014 .281 .336 .186 .273 .216 .345 .502 .148 .324 .216

1 .014 .014 .147 .231 .041 .137 .071 .134 .283 −.001 .120 .043

2 .014 .014 .014 .115 −.088 .003 −.062 −.018 .098 −.127−.030−.095

3 .014 .014 −.120−.013−.203−.130−.184 −.153−.061−.245−.163−.222µ
=

3
λ
=

4

n=50
− .005 .005 .035 .038 .031 .034 .026 .037 .041 .031 .036 .027

1 .005 .005 .020 .024 .016 .019 .011 .019 .023 .014 .018 .010

2 .005 .005 .005 .009 .001 .004 −.004 .003 .006 −.002 .002 −.006

3 .005 .005 −.010−.007−.014−.012−.019 −.013−.009−.017−.014−.021µ
=

1
λ
=

2

− .000 .000 .015 .017 .013 .014 .011 .016 .018 .013 .015 .011

1 .000 .000 .007 .009 .006 .007 .003 .007 .009 .005 .007 .003

2 .000 .000 .000 .002 −.002−.001−.004 −.001 .001 −.003−.001−.005

3 .000 .000 −.007−.006−.009−.008−.012 −.008−.007−.011−.009−.013µ
=

1
λ
=

4

− −.013 −.013 .257 .313 .163 .249 .191 .303 .474 .121 .285 .184

1 −.013 −.013 .122 .206 .016 .112 .044 .108 .251 −.024 .094 .018

2 −.013 −.013 −.013 .089 −.114−.024−.090 −.041 .069 −.146−.052−.116

3 −.013 −.013 −.148−.042−.232−.158−.213 −.168−.082−.256−.178−.233µ
=

3
λ
=

2

− −.008 −.008 .125 .164 .077 .121 .089 .139 .211 .067 .132 .090

1 −.008 −.008 .059 .105 .008 .053 .020 .056 .115 −.005 .049 .013

2 −.008 −.008 −.008 .043 −.058−.013−.046 −.017 .037 −.071−.022−.056

3 −.008 −.008 −.074−.023−.120−.080−.110 −.085−.037−.134−.090−.121µ
=

3
λ
=

4

(Continued)
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Table 1 (Continued)
Lindley Tierney-Kadane

c µ̂MLE µ̂MV UE µ̂BS µ̂BL µ̂BL µ̂BG µ̂BG µ̂BS µ̂BL µ̂BL µ̂BG µ̂BG

k K
n=100 −.75 .75 −.75 .75 −.75 .75 −.75 .75

− −.001 −.001 .014 .016 .012 .014 .010 .015 .017 .012 .014 .010

1 −.001 −.001 .007 .009 .005 .006 .002 .007 .008 .004 .006 .002

2 −.001 −.001 −.001 .001 −.003−.002−.005−.001 .001 −.004−.002−.006

3 −.001 −.001 −.008−.007−.010−.009−.013−.009−.007−.011−.010−.013µ
=

1
λ
=

2

− −.001 −.001 .007 .007 .006 .006 .004 .007 .008 .006 .006 .004

1 −.001 −.001 .003 .004 .002 .002 .001 .003 .004 .002 .002 .001

2 −.001 −.001 −.001 .000 −.002−.001−.003−.001 .000 −.002−.002−.003

3 −.001 −.001 −.005−.004−.006−.005−.007−.005−.004−.006−.005−.007µ
=

1
λ
=

4

− −.006 −.006 .131 .170 .081 .126 .094 .141 .212 .070 .134 .092

1 −.006 −.006 .062 .109 .010 .057 .023 .059 .119 −.003 .052 .016

2 −.006 −.006 −.006 .046 −.057−.012−.045−.014 .039 −.069−.020−.053

3 −.006 −.006 −.074−.022−.121−.080−.110−.081−.034−.131−.086−.118µ
=

3
λ
=

2

− .015 .015 .083 .106 .058 .081 .064 .087 .117 .055 .083 .064

1 .015 .015 .049 .074 .023 .046 .029 .048 .076 .019 .045 .027

2 .015 .015 .015 .041 −.011 .012 −.005 .012 .039 −.015 .009 −.008

3 .015 .015 −.019 .007 −.044−.022−.039−.022 .003 −.049−.025−.042µ
=

3
λ
=

4

MSE =
1

5000

5000∑
i=1

(θ̂i − θ)
2
,

RE =
MSE(θ̂)

MSE(θ̂MV UE)
,

where θ̂i(= µ̂i, λ̂i) is the estimate of θ(= µ, λ) for the ith simulated sample.
All programs and random number generation are accomplished in MATLAB
(2019a).

Simulation results are given in Tables 1-4 for all combinations of
n, µ, λ, c and k. Tables 1-2 show the biases for the estimates of µ and λ.
Tables 3-4 present the REs of the estimates. It is to be noted that, in these
tables, c = “ − ” and c = 1 stand for the vague and Jeffrey’s priors,
respectively.

Based on the results in Table 1, MLE and MVUE of µ have the smallest
bias values in most of the considered cases as expected, since the classical
estimators are unbiased for µ, while Bayes estimators perform well for the
large sample size according to bias. Among Bayes estimates of µ, ones
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Table 2 Bias values of estimates for λ
Lindley Tierney-Kadane

c λ̂MLE λ̂MV UE λ̂BS λ̂BL λ̂BL λ̂BG λ̂BG λ̂BS λ̂BL λ̂BL λ̂BG λ̂BG

k k
n=25 −.75 .75 −.75 .75 −.75 .75 −.75 .75

− .255 −.016 .164 .327 .024 .143 .028 .164 .345 .019 .141 .006

1 .255 −.016 .255 .409 .101 .232 .106 .261 .451 .111 .239 .104

2 .255 −.016 .164 .327 .024 .143 .028 .170 .353 .027 .148 .013

3 .255 −.016 .074 .240 −.048 .054 −.044 .072 .247 −.066 .050 −.086µ
=

1
λ
=

2

− .477 −.060 .298 .862 −.144 .255 .028 .297 1.135 −.228 .252 −.016

1 .477 −.060 .477 .985 −.031 .432 .182 .484 1.358 −.063 .439 .171

2 .477 −.060 .298 .862 −.144 .255 .028 .304 1.144 −.220 .260 −.008

3 .477 −.060 .119 .726 −.248 .079 −.116 .117 .922 −.385 .073 −.196µ
=

1
λ
=

4

− .296 .020 .204 .372 .059 .182 .065 .203 .626 .053 .181 .043

1 .296 .020 .296 .455 .136 .273 .144 .313 .553 .158 .291 .154

2 .296 .020 .204 .372 .059 .182 .065 .216 .416 .067 .194 .056

3 .296 .020 .112 .284 −.014 .091 −.009 .102 .285 −.041 .079 −.060µ
=

3
λ
=

2

− .595 .044 .412 1.000 −.048 .367 .134 .410 1.431 −.140 .365 .089

1 .595 .044 .595 1.125 .066 .549 .292 .615 1.590 .043 .570 .295

2 .595 .044 .412 1.000 −.048 .367 .134 .428 1.353 −.121 .383 .108

3 .595 .044 .228 .862 −.153 .186 −.014 .220 1.107 −.306 .175 −.102µ
=

3
λ
=

4

n=50
− .123 −.004 .081 .151 .015 .070 .012 .081 .153 .015 .070 .006

1 .123 −.004 .123 .192 .055 .113 .051 .125 .199 .058 .114 .051

2 .123 −.004 .081 .151 .015 .070 .012 .083 .155 .017 .072 .008

3 .123 −.004 .038 .109 −.023 .028 −.026 .038 .110 −.026 .028 −.036µ
=

1
λ
=

2

− .259 .003 .173 .440 −.063 .152 .035 .173 .479 −.081 .152 .024

1 .259 .003 .259 .512 .005 .237 .114 .260 .573 .001 .239 .111

2 .259 .003 .173 .440 −.063 .152 .035 .175 .481 −.079 .154 .026

3 .259 .003 .088 .364 −.127 .068 −.041 .088 .388 −.160 .067 −.061µ
=

1
λ
=

4

− .127 −.001 .084 .155 .018 .074 .015 .084 .168 .018 .073 .010

1 .127 −.001 .127 .195 .058 .116 .054 .132 .208 .064 .121 .058

2 .127 −.001 .084 .155 .018 .074 .015 .089 .162 .022 .078 .014

3 .127 −.001 .042 .112 −.020 .031 −.023 .040 .112 −.024 .030 −.034µ
=

3
λ
=

2

− .278 .022 .193 .462 −.046 .172 .054 .192 .503 −.065 .171 .043

1 .278 .022 .278 .534 .022 .257 .133 .284 .601 .022 .262 .134

2 .278 .022 .193 .462 −.046 .172 .054 .198 .509 −.059 .177 .048

3 .278 .022 .107 .387 −.110 .087 −.023 .107 .412 −.145 .086 −.043µ
=

3
λ
=

4

(Continued)
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Table 2 (Continued)
Lindley Tierney-Kadane

c λ̂MLE λ̂MV UE λ̂BS λ̂BL λ̂BL λ̂BG λ̂BG λ̂BS λ̂BL λ̂BL λ̂BG λ̂BG

k k
n=100 −.75 .75 −.75 .75 −.75 .75 −.75 .75

− .052 −.010 .031 .063 .000 .026 −.004 .031 .064 .000 .026 −.005

1 .052 −.010 .052 .083 .020 .046 .016 .052 .085 .020 .047 .016

2 .052 −.010 .031 .063 .000 .026 −.004 .032 .064 .000 .026 −.004

3 .052 −.010 .011 .043 −.020 .006 −.023 .011 .043 −.020 .005 −.025µ
=

1
λ
=

2

− .083 −.039 .042 .167 −.075 .032 −.026 .042 .175 −.079 .032 −.029

1 .083 −.039 .083 .205 −.038 .073 .013 .084 .217 −.039 .074 .012

2 .083 −.039 .042 .167 −.075 .032 −.026 .043 .175 −.078 .033 −.029

3 .083 −.039 .002 .128 −.111 −.008 −.065 .002 .133 −.118 −.009 −.070µ
=

1
λ
=

4

− .043 −.019 .022 .054 −.009 .017 −.012 .022 .054 −.009 .017 −.014

1 .043 −.019 .043 .074 .011 .037 .007 .044 .077 .013 .039 .008

2 .043 −.019 .022 .054 −.009 .017 −.012 .023 .056 −.008 .018 −.012

3 .043 −.019 .002 .034 −.028 −.003 −.032 .002 .034 −.029 −.004 −.034µ
=

3
λ
=

2

− .097 −.026 .056 .182 −.062 .046 −.013 .056 .189 −.066 .046 −.016

1 .097 −.026 .097 .220 −.025 .087 .027 .099 .233 −.025 .089 .027

2 .097 −.026 .056 .182 −.062 .046 −.013 .058 .191 −.064 .048 −.014

3 .097 −.026 .015 .143 −.098 .005 −.052 .016 .147 −.105 .005 −.056µ
=

3
λ
=

4

obtained under the proposed prior with c = 2 perform better than the other
Bayes estimates in terms of bias. Furthermore, the Bayes estimators under
asymmetric loss functions show a good performance to estimate µ in most
cases especially when the loss parameter k is 0.75. We also observed that, in
general, Bayes estimates of µ obtained using Lindley method have smaller
bias as compared to TK method.

The results from Table 2 show that the MVUEs of the shape parameter λ
outperforms the MLEs and Bayes estimators in terms of bias for n = 25, 50.
However, for n = 100, the Bayes estimators have the smallest biases in most
of the cases. On the other hand, once the loss parameter k = 0.75, indicating
overestimation, the Bayes estimators of λ under LINEX loss function and
GELF again using the proposed prior with c = 2 provide smaller biases
than the other Bayes estimators. Moreover, the approximate Bayes estimators
obtained using Lindley method is preferable to the estimators based on TK
method.

We observe from Table 3 that as the sample size n increases, the MSEs
of all estimates of µ decrease. The results for µ also show that all Bayes
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Table 3 The relative efficiency of estimators for µ
Lindley Tierney-Kadane

c µ̂MV UE µ̂MLE µ̂BS µ̂BL µ̂BL µ̂BG µ̂BG µ̂BS µ̂BL µ̂BL µ̂BG µ̂BG

k k
n=25 −.75 .75 −.75 .75 −.75 .75 −.75 .75

− 1.00 1.00 1.483 1.562 1.394 1.463 1.320 1.635 1.773 1.374 1.581 1.330

1 1.00 1.00 1.187 1.266 1.113 1.172 1.069 1.167 1.241 1.054 1.143 1.034

2 1.00 1.00 1.000 1.054 0.951 0.990 0.936 0.970 1.005 0.916 0.961 0.921

3 1.00 1.00 0.911 0.941 0.897 0.911 0.911 0.906 0.921 0.901 0.906 0.926µ
=

1
λ
=

2

− 1.00 1.00 1.245 1.294 1.196 1.235 1.157 1.294 1.363 1.206 1.275 1.167

1 1.00 1.00 1.098 1.137 1.069 1.088 1.039 1.098 1.137 1.049 1.088 1.029

2 1.00 1.00 1.000 1.029 0.980 1.000 0.971 0.990 1.020 0.961 0.990 0.961

3 1.00 1.00 0.961 0.971 0.941 0.951 0.951 0.951 0.961 0.941 0.951 0.961µ
=

1
λ
=

4

− 1.00 1.00 2.446 2.425 1.677 2.421 2.146 4.167 1.507 1.159 3.547 1.941

1 1.00 1.00 1.542 1.935 0.902 1.493 1.194 1.366 1.533 0.802 1.292 1.007

2 1.00 1.00 1.000 1.484 0.749 0.971 0.860 0.887 1.327 0.767 0.872 0.832

3 1.00 1.00 0.822 1.116 0.847 0.824 0.866 0.846 1.006 0.897 0.852 0.912µ
=

3
λ
=

2

− 1.00 1.00 1.691 1.893 1.301 1.664 1.478 2.000 2.953 1.153 1.899 1.465

1 1.00 1.00 1.269 1.548 0.966 1.243 1.096 1.224 1.960 0.902 1.189 1.032

2 1.00 1.00 1.000 1.256 0.843 0.984 0.916 0.949 1.268 0.833 0.937 0.892

3 1.00 1.00 0.884 1.041 0.859 0.882 0.888 0.883 0.989 0.888 0.885 0.910µ
=

3
λ
=

4

n=50

− 1.00 1.00 1.240 1.279 1.192 1.231 1.154 1.269 1.327 1.192 1.250 1.154

1 1.00 1.00 1.096 1.135 1.058 1.087 1.038 1.096 1.125 1.048 1.077 1.029

2 1.00 1.00 1.000 1.029 0.981 1.000 0.971 0.990 1.019 0.962 0.990 0.962

3 1.00 1.00 0.952 0.971 0.942 0.952 0.952 0.952 0.962 0.942 0.952 0.952µ
=

1
λ
=

2

− 1.00 1.00 1.106 1.128 1.085 1.106 1.064 1.128 1.149 1.085 1.106 1.064

1 1.00 1.00 1.043 1.064 1.021 1.043 1.000 1.043 1.064 1.021 1.043 1.000

2 1.00 1.00 1.000 1.000 0.979 1.000 0.979 1.000 1.000 0.979 1.000 0.979

3 1.00 1.00 0.979 0.979 0.979 0.979 0.979 0.979 0.979 0.979 0.979 0.979µ
=

1
λ
=

4

− 1.00 1.00 1.686 1.895 1.288 1.658 1.468 1.918 2.950 1.136 1.828 1.430

1 1.00 1.00 1.258 1.538 0.961 1.232 1.089 1.210 1.877 0.905 1.177 1.030

2 1.00 1.00 1.000 1.247 0.861 0.986 0.931 0.957 1.259 0.862 0.947 0.914

3 1.00 1.00 0.913 1.048 0.915 0.913 0.938 0.917 1.004 0.942 0.921 0.957µ
=

3
λ
=

2

− 1.00 1.00 1.302 1.455 1.124 1.287 1.195 1.355 1.753 1.086 1.328 1.194

1 1.00 1.00 1.117 1.264 0.985 1.105 1.041 1.106 1.330 0.963 1.093 1.025

2 1.00 1.00 1.000 1.116 0.927 0.994 0.965 0.987 1.112 0.921 0.980 0.957

3 1.00 1.00 0.953 1.020 0.937 0.952 0.958 0.952 1.006 0.947 0.952 0.964µ
=

3
λ
=

4

(Continued)
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Table 3 (Continued)
Lindley Tierney-Kadane

c µ̂MV UE µ̂MLE µ̂BS µ̂BL µ̂BL µ̂BG µ̂BG µ̂BS µ̂BL µ̂BL µ̂BG µ̂BG

k k
n=100 −.75 .75 −.75 .75 −.75 .75 −.75 .75

− 1.00 1.00 1.104 1.125 1.083 1.104 1.063 1.104 1.146 1.083 1.104 1.063

1 1.00 1.00 1.042 1.063 1.021 1.042 1.021 1.042 1.063 1.021 1.042 1.021

2 1.00 1.00 1.000 1.021 1.000 1.000 0.979 1.000 1.000 0.979 1.000 0.979

3 1.00 1.00 0.979 0.979 0.979 0.979 0.979 0.979 0.979 0.979 0.979 0.979µ
=

1
λ
=

2

− 1.00 1.00 1.042 1.083 1.042 1.042 1.042 1.042 1.083 1.042 1.042 1.042

1 1.00 1.00 1.042 1.042 1.000 1.000 1.000 1.042 1.042 1.000 1.000 1.000

2 1.00 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 1.00 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000µ
=

1
λ
=

4

− 1.00 1.00 1.328 1.495 1.137 1.311 1.210 1.372 1.768 1.096 1.344 1.203

1 1.00 1.00 1.124 1.283 0.986 1.112 1.043 1.114 1.345 0.964 1.098 1.026

2 1.00 1.00 1.000 1.121 0.926 0.993 0.963 0.986 1.114 0.921 0.980 0.956

3 1.00 1.00 0.952 1.017 0.942 0.952 0.961 0.951 1.003 0.949 0.951 0.964µ
=

3
λ
=

2

− 1.00 1.00 1.202 1.317 1.091 1.190 1.128 1.216 1.389 1.078 1.203 1.128

1 1.00 1.00 1.081 1.179 0.997 1.073 1.029 1.078 1.195 0.989 1.068 1.023

2 1.00 1.00 1.000 1.075 0.948 0.995 0.971 0.993 1.072 0.943 0.989 0.966

3 1.00 1.00 0.958 1.003 0.938 0.956 0.953 0.956 0.997 0.940 0.954 0.953µ
=

3
λ
=

4

estimators under the considered loss functions, except LINEX loss function
with k = −0.75, using the proposed prior outperform the others for all the
sample sizes. In particular, Bayes estimators under LINEX loss function with
k = 0.75 using the proposed prior with c = 3 are generally the best in
terms of RE. This is followed by the proposed prior with c = 2. Furthermore,
Bayes estimates obtained through TK method compete quite well with those
obtained through Lindley method.

The results from Table 4 show that for each estimator, the MSEs decrease
when the sample size increases. It is observed that MVUE performs better
than MLE in terms of RE. However, considering the REs, Bayes estimators
under LINEX loss function with k = 0.75 present the best result for all the
sample sizes. Among Bayes estimators of λ, the estimates under the proposed
prior, especially with c = 3, have generally lower RE. We further observed
that Bayes estimates computed by TK approximation method, in general,
provides smaller REs than Lindley’s approximation for estimating the shape
parameter.
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Table 4 The relative efficiency of estimators for λ
Lindley Tierney-Kadane

C λ̂MV UE λ̂MLE λ̂BS λ̂BL λ̂BL λ̂BG λ̂BG λ̂BS λ̂BL λ̂BL λ̂BG λ̂BG

k k
n=25 −.75 .75 −.75 .75 −.75 .75 −.75 .75

− 1.00 1.460 1.260 1.862 0.919 1.218 1.047 1.259 2.013 0.889 1.217 1.022

1 1.00 1.460 1.460 2.096 0.996 1.406 1.155 1.470 2.379 0.997 1.415 1.145

2 1.00 1.460 1.260 1.862 0.919 1.218 1.047 1.266 2.029 0.891 1.223 1.024

3 1.00 1.460 1.106 1.647 0.878 1.079 0.976 1.106 1.724 0.828 1.076 0.953µ
=

1
λ
=

2

− 1.00 1.430 1.243 2.253 0.852 1.204 1.043 1.241 3.639 0.716 1.202 1.020

1 1.00 1.430 1.430 2.417 0.854 1.379 1.145 1.433 4.225 0.744 1.383 1.132

2 1.00 1.430 1.243 2.253 0.852 1.204 1.043 1.245 3.652 0.714 1.205 1.021

3 1.00 1.430 1.099 2.090 0.866 1.073 0.978 1.099 3.135 0.721 1.070 0.955µ
=

1
λ
=

4

− 1.00 1.501 1.289 1.937 0.917 1.245 1.054 1.288 2.960 0.876 1.243 1.026

1 1.00 1.501 1.501 2.174 0.999 1.444 1.176 1.532 2.669 1.000 1.473 1.177

2 1.00 1.501 1.289 1.937 0.917 1.245 1.054 1.309 2.216 0.887 1.262 1.037

3 1.00 1.501 1.122 1.716 0.868 1.091 0.971 1.120 1.841 0.806 1.086 0.943µ
=

3
λ
=

2

− 1.00 1.503 1.290 2.393 0.845 1.246 1.055 1.289 6.087 0.680 1.244 1.026

1 1.00 1.503 1.503 2.573 0.858 1.446 1.177 1.518 6.678 0.728 1.460 1.169

2 1.00 1.503 1.290 2.393 0.845 1.246 1.055 1.301 5.853 0.680 1.255 1.031

3 1.00 1.503 1.123 2.214 0.847 1.091 0.971 1.122 5.101 0.672 1.088 0.940µ
=

3
λ
=

4

n=50
− 1.00 1.219 1.124 1.371 0.958 1.104 1.016 1.124 1.388 0.954 1.104 1.010

1 1.00 1.219 1.219 1.493 0.997 1.193 1.071 1.222 1.534 0.995 1.195 1.068

2 1.00 1.219 1.124 1.371 0.958 1.104 1.016 1.126 1.392 0.954 1.106 1.011

3 1.00 1.219 1.051 1.265 0.928 1.037 0.981 1.051 1.272 0.918 1.036 0.976µ
=

1
λ
=

2

− 1.00 1.238 1.135 1.669 0.887 1.113 1.018 1.134 1.818 0.856 1.112 1.012

1 1.00 1.238 1.238 1.805 0.901 1.210 1.077 1.239 2.034 0.881 1.211 1.074

2 1.00 1.238 1.135 1.669 0.887 1.113 1.018 1.135 1.821 0.855 1.113 1.012

3 1.00 1.238 1.055 1.543 0.889 1.040 0.981 1.055 1.634 0.852 1.039 0.974µ
=

1
λ
=

4

− 1.00 1.222 1.127 1.374 0.960 1.107 1.017 1.127 1.400 0.955 1.106 1.011

1 1.00 1.222 1.222 1.496 0.999 1.196 1.073 1.230 1.544 0.994 1.204 1.074

2 1.00 1.222 1.127 1.374 0.960 1.107 1.017 1.133 1.401 0.958 1.112 1.013

3 1.00 1.222 1.053 1.267 0.929 1.038 0.981 1.053 1.274 0.920 1.039 0.976µ
=

3
λ
=

2

− 1.00 1.239 1.138 1.666 0.880 1.116 1.019 1.138 1.824 0.845 1.116 1.012

1 1.00 1.239 1.239 1.792 0.897 1.212 1.080 1.244 2.036 0.874 1.216 1.079

2 1.00 1.239 1.138 1.666 0.880 1.116 1.019 1.142 1.833 0.844 1.119 1.014

3 1.00 1.239 1.058 1.546 0.877 1.043 0.978 1.059 1.648 0.835 1.042 0.971µ
=

3
λ
=

4

(Continued)
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Table 4 (Continued)
Lindley Tierney-Kadane

C λ̂MV UE λ̂MLE λ̂BS λ̂BL λ̂BL λ̂BG λ̂BG λ̂BS λ̂BL λ̂BL λ̂BG λ̂BG

k k
n=100 −.75 .75 −.75 .75 −.75 .75 −.75 .75

− 1.00 1.093 1.053 1.158 0.977 1.044 1.006 1.053 1.160 0.976 1.043 1.005

1 1.00 1.093 1.093 1.214 1.000 1.082 1.029 1.094 1.221 1.000 1.082 1.029

2 1.00 1.093 1.053 1.158 0.977 1.044 1.006 1.053 1.161 0.976 1.044 1.005

3 1.00 1.093 1.022 1.111 0.964 1.016 0.993 1.022 1.112 0.962 1.016 0.992µ
=

1
λ
=

2

− 1.00 1.078 1.042 1.249 0.941 1.035 1.004 1.042 1.273 0.934 1.035 1.003

1 1.00 1.000 1.000 1.212 0.875 0.990 0.948 1.000 1.249 0.871 0.991 0.947

2 1.00 1.000 0.966 1.158 0.873 0.959 0.931 0.966 1.181 0.866 0.959 0.930

3 1.00 1.000 0.942 1.110 0.879 0.938 0.923 0.942 1.124 0.870 0.937 0.922µ
=

1
λ
=

4

− 1.00 1.080 1.043 1.139 0.975 1.036 1.004 1.043 1.142 0.975 1.036 1.004

1 1.00 1.080 1.080 1.190 0.994 1.069 1.023 1.081 1.199 0.995 1.071 1.023

2 1.00 1.080 1.043 1.139 0.975 1.036 1.004 1.044 1.144 0.975 1.036 1.002

3 1.00 1.080 1.017 1.098 0.967 1.012 0.995 1.017 1.099 0.964 1.012 0.994µ
=

3
λ
=

2

− 1.00 1.088 1.049 1.266 0.938 1.041 1.005 1.049 1.291 0.931 1.041 1.004

1 1.00 1.088 1.088 1.327 0.943 1.077 1.026 1.089 1.369 0.938 1.078 1.026

2 1.00 1.088 1.049 1.266 0.938 1.041 1.005 1.049 1.293 0.930 1.041 1.004

3 1.00 1.088 1.019 1.212 0.941 1.014 0.993 1.019 1.227 0.932 1.014 0.992µ
=

3
λ
=

4

6 An Application

In this section, a real data set is analyzed to verify how the considered
estimators perform in a real-life context. The data set is given in Table 6
taken from Chhikara and Folks (1989). It was also studied by Sinha (1986),
and Pandey and Bandyopadhyay (2012).

The estimates of the parameters and obtained by using the MVUE, MLE
and Bayes estimators under the vague prior and the proposed extension
of Jeffrey’s prior with c=3 are reported in Table 6. The results of the
Kolmogorov–Smirnov (K-S) test are also given in Table 6.

We observe from Table 6 that results obtained from the real data set are
compatible with the simulation results.

Table 5 Active repair times for an airborne communication
0.2, 0.3. 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5,
1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0,
7.5, 8.8, 9.0, 10.3, 22.0, 24.5.
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Table 6 Estimation of parameters and K-S statistics for the real data set
k µ̂ λ̂ K − S p

MVUE 3.6065 1,5507 0,0743 0,9451
MLE 3.065 1,6589 0,0682 0,9731
SELF 4.2423 1,6226 0,0804 0,9045

LINEX −0,75 4.3174 1,6683 0,1115 0,8777
LINEX 0,75 3.8057 1,5804 0,0686 0,9717
GELF −0,75 4.1984 1,6137 0,0782 0,9206
GELF 0,75 3.9784 1,5596 0,0690 0,9700V

ag
ue

Pr
io

r

SELF 3.3151 1,5839 0,0776 0,9242
LINEX −0,75 3.1538 1,5428 0,0898 0,8205
LINEX 0,75 3.4877 1,6288 0,0658 0,9809
GELF −0,75 3.2060 1,5208 0,0875 0,8427
GELF 0,75 3.2986 1,5749 0,0792 0,9130E

xt
.J

ef
fr

ey
Pr

io
r

c=
3

7 Conclusions

In this paper, we consider Bayesian estimation of the two-parameter inverse
Gaussian distribution under symmetric (squared error) and asymmetric (lin-
ear exponential and general entropy) loss functions. In Bayesian approach,
we consider commonly used non-informative priors: the vague and Jeffrey’s
priors, as well as propose using the extended Jeffrey’s prior.

However, Bayes estimators cannot be expressed analytically, because the
ratio of the integrals in the posterior expectations is not in closed forms.
For this reason, we employ Lindley and TK approximations to compute
the approximate Bayes estimators of parameters µ and λ. The comparison
between Bayesian estimates and the corresponding classical estimates (MLE
and MVUE) is carried out based on biases and REs with a simulation study.

The results of the simulation study show that the Bayes estimators of
parameters under LINEX with k = 0.75 using the proposed prior generally
outperform others according to REs. while the IG parameters are best esti-
mated by Bayes estimators under LINEX with k = 0.75 using the proposed
extension of Jeffrey’s prior according to REs. We also observed that Bayes
estimates using the proposed prior with c = 3 are superior to the other
considered priors in terms of RE. On the other hand, TK method competes
quite well with Lindley’s method to obtain the approximate Bayes estimates
of parameters. Based on all we recommend to use Bayes estimators obtained
by TK method under LINEX loss function (k = 0.75) using the proposed
extension of Jeffrey’s prior (c = 3) for estimating the parameters of IG
distribution.
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