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Abstract

This article is devoted to a new Marshall-Olkin distribution by using a recent
modification of the Lindley distribution. Mathematical features of the new
model are described. Utilizing maximum likelihood method, the parameters
of the new model are estimated. Performance of the estimation approach is
discussed by means of a simulation procedure. Moreover, applications of the
new distribution are presented which reveal its superiority over other three
competing Marshall-Olkin extended distributions of the literature.
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1 Background

The Lindley distribution (Lindley 1958, 1965) has pointed out various statis-
ticians to construct new distributions due to its desirable properties. In the
past few decades, numerous research papers dealing with this distribution
have subsequently appeared in the statistics literature, for instance, Ghitany
et al. (2008), Krishna and Kumar (2011), Deniz and Ojeda (2011), Al-Mutairi
et al. (2013), Shanker et al. (2015), and Sharma et al. (2015). Moreover, wide
varieties of Lindley distributions was also derived and studied, such as, gener-
alized Poisson-Lindley by Mahmoudi and Zakerzadeh (2010), quasi Lindley
distribution by Shanker and Mishra (2013), transmuted Lindley distribution
by Merovci (2013), transmuted Lindley-geometric distribution by Merovci
and Elbatal (2014), beta-Lindley distribution by Merovci and Sharma (2014),
Harris extended two-parameter Lindley distribution by Tomy et al. (2019) and
discrete Harris extended Lindley distribution by Thomas et al. (2019). Tomy
(2018) provides a comprehensive review study on the Lindley distribution.

More recently, a new modified Lindley (ML) distribution has been pro-
posed by Chesneau et al. (2019a). According to Chesneau et al. (2019a)
“the survival function (sf) and probability density function (pdf) of the ML
distribution are defined by

F̄ (x, θ) =

[
1 +

θx

1 + θ
e−θx

]
e−θx; x, θ > 0 (1)

and

f(x, θ) =
θ

1 + θ
e−2θx

[
(1 + θ)eθx + 2θx− 1

]
; x, θ > 0, (2)

respectively”. An eminent feature of the ML model is that f(x, θ) can be rep-
resented as a weighted sum of exponential and gamma pdfs. It also reveals to
be an intermediary distribution between the exponential and former Lindley
distribution, in the first stochastic ordering sense. Recently, two extensions
for the ML distribution such as the inverse ML (see, Chesneau et al., 2020)
and the wrapped ML (see, Chesneau et al., 2019b) distributions have been
proposed.

In addition, the statistical distribution theory involves many flexible
models which have been built using the Marshall-Olkin extended (MOE)
scheme introduced by Marshall and Olkin (1997). The resulting new models
are known to give more versatility to model numerous types of data sets.
The early researches employing this technique by Lam and Leung (2001),
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Economou and Caroni (2007), Rao et al. (2009), Nanda and Das (2012),
Rubio and Steel (2012), Cordeiro et al. (2014) and Castellares and Lemonte
(2016). According to Marshall and Olkin (1997), “the sf and pdf of the MOE
class are defined, by

Ḡ(x, γ) =
γF̄ (x)

1− γ̄F̄ (x)
; x ∈ R, γ > 0, γ̄ = 1− γ (3)

and

g(x, γ) =
γf(x)

[1− γ̄F̄ (x)]2
; x ∈ R, γ > 0, (4)

respectively. The corresponding hazard rate function (hrf) is defined by

h(x, γ) =
r(x)

1− γ̄F̄ (x)

where f(x) and r(x) are the pdf and hrf corresponding to the sf of the
baseline distribution F̄ (x), respectively.”

In this work, we explore an extension of the ML model through the MOE
approach. The main interest for pioneering the new model is that it is an
extended form providing various features. Also, its pdf and hrf are quite
simple. The proposed model has only two parameters. Further, the grandness
of the proposed model lies in its skill to fit different real data sets. Thus,
we introduce this distribution with hope that the related model may provide
better fit in certain practical contexts than other Marshall-Olkin models.

The outline of the paper is described as follows. The relevant statistical
functions associated with the proposed distribution are stated Section 2.
The statistical properties are inspected in Section 3. Maximum likelihood
estimation of the unknown parameters is presented in Section 4, completed
by a simulation procedure. Utilizations of the newly developed model is
discussed in Section 5. Eventually, summary is addressed in Section 6.

2 MOE Modified Lindley Distribution

Motivated by the advantages of ML distribution, we propose a new distribu-
tion, namely, MOE Modified Lindley (MOEML) distribution. By using two
Equations (1) and (3), the sf of the MOEML model is given by

Ḡ(x, γ, θ) =
γ
(
1 + θx

1+θe
−θx
)
e−θx

1− γ
(
1 + θx

1+θe
−θx
)
e−θx

; x, θ; γ > 0 (5)
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Also, the pdf of the MOEML distribution is

g(x, γ, θ) =
γθe−2θx

[
(1 + θ)eθx + 2θx− 1

]
(1 + θ)

[
1− γ̄

(
1 + θx

1+θe
−θx
)
e−θx

]2 ; x, θ, γ > 0 (6)

Remark that, for γ = 1, we obtain the ML distribution. In addition, the
hrf of the MOEML distribution becomes

h(x, γ, θ) =
θ(θx− 1) + θ(1 + θ)eθx + θ2x[

1− γ̄
(

1 + θx
1+θe

−θx
)
e−θx

]
[(1 + θ)eθx + θx]

; x, θ, γ > 0

(7)
Also, cumulative hazard rate function of MOEML distribution is

H(x, γ, θ) = − log[Ḡ(x, γ, θ)]

= − log(γ)− log

(
1 +

θx

1 + θ
e−θx

)
+ θx

+ log

[
1− γ̄

(
1 +

θx

1 + θ
e−θx

)
e−θx

]
The corresponding quantile function, is denoted as Q(u, γ, θ),

can be determined by solving the equation: G [Q (u, γ, θ) , γ, θ] =
Q [G (u, γ, θ) , γ, θ] = u, u ∈ (0, 1). It can not be presented analytically
but can be calculated numerically. The structures of pdf and hrf for selected
parameters of γ and θ are shown in Figures 1 and 2, respectively. From the

Figure 1 Pdf curves of the MOEML model.
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Figure 2 Hrf curves of the MOEML model.

plots, we also remark that the pdf has right skewed, left skewed, (more or
less) symmetrical and reverse J shapes. Further, the plot also shows MOEML
hrf can be decreasing, increasing, constant and upside down bathtub shape.

3 General Properties

3.1 Useful Expansions

In this subsection, general properties of the MOEML are derived and dis-
cussed. We now give pdf expansions of the MOEML distribution. The
distribution of generalized binomial formula ensuring that

(1− z)−r =
∑∞

i=0

(
r + i− 1
i

)
zi, |z| < 1, r > 0 (8)

Now, we must distinguish two cases. If 0 < γ < 1, then 1 − γ ∈ (0, 1),
hence using expansion (8) in (6), we get the representation for the pdf of
MOEML distribution as

g(x, γ, θ) =
∑∞

j=0

∑j

k=0
ωj,kx

k
[
(1 + θ)eθx + 2θx− 1

]
e−(2+k+j)θx

(9)
where

ωj,k =

(j + 1)

(
j
k

)
γ̄jγθk+1

(1 + θ)k+1
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If γ > 1, then γ̄/γ ∈ (0, 1), so we have

[1− γ̄(1− S)] = γ

[
1 +

γ̄

γ
S

]
(10)

where S = 1− F̄ (x, θ). Thus, from (10) and (6) the pdf of MOEML as

g(x, γ, θ)=
∑∞

i=0

∑i

j=0

∑∞

k=0
ω∗i,j,kx

k
[
(1 + θ)eθx + 2θx− 1

]
e−(2+k+j)θx

(11)
where

ω∗i,j,k =

(−1)i+j(i+ 1)

(
i
j

)(
j
k

)
γ̄iθk+1

γi+1(1 + θ)k+1

3.2 Moments and Related Quantities

Let X denote a random variable adopting the MOEML model.
Now, we know

µ
′
r = E(Xr) =

∫ ∞
0

xrg(x, γ, θ)dx

Hence, the rth moment of MOEML distribution, when 0 < γ < 1 is
given by

µ
′
r =

∞∑
j=0

j∑
k=0

ωj,k

∫ ∞
0

xk+r
[
(1 + θ)eθx + 2θx− 1

]
e−(2+k+j)θxdx

=
∑∞

j=0

∑j

k=0
ωj,kΓ(r + k + 1)%k,j

where

%k,j =

{
θ + 1

[θ(1 + j + k)]r+k+1
+

2θ(r + k + 1)

[θ(2 + j + k)]r+k+1
− 1

[θ(2 + j + k)]r+k+1

}
Similarly, when γ > 1

µ
′
r =

∞∑
i=0

i∑
j=0

∞∑
k=0

ω∗i,j,kΓ(r + k + 1)%k,j

where Γ(r + k + 1) = (r + k)!. We can calculate rth moments by using the
above expressions, for 0 < γ < 1 and γ > 1, respectively. Table 1 presents
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Table 1 Some characteristics of the of the MOEML distribution
(γ, θ) (γ, θ) (γ, θ) (γ, θ) (γ, θ) (γ, θ)
(5,5) (5,0.5) (0.5,5) (0.5,0.5) (2,2) (10,10)

µ
′
1 0.4100 4.3133 0.1461 1.7021 0.7352 9.1095
µ

′
2 0.0737 6.9557 0.0277 2.7693 0.3337 123.4979
µ

′
3 0.0214 19.6496 0.0115 10.6231 0.2863 4310.76
µ

′
4 0.0266 243.8674 0.0096 88.7936 0.72431 273038.1√
β1 1.0722 1.07112 2.5002 2.3052 1.4852 3.1410

β2 4.8963 5.04042 12.5791 11.5784 6.5045 17.9021

the first four moments,
√
β1 =

√
µ23/µ

3
2 and β2 = µ4/µ

2
2, where µr denotes

the rth central moment of X, of the MOEML model for adopted values of
γ and θ.

From Table 1, we see that the MOEML distribution can be slightly or
highly right skewed. Also, it can be (near) mesokurtic and leptokurtic. Let us
now introduce the rth incomplete moment of X . For x > 0, it is given by

µ∗r(x) =

∫ x

0
trg(t, γ, θ)dt

Also, the incomplete mean (that is, when r = 1 and 0 < γ < 1) is
expressed by:

µ∗1(x) =
∞∑
j=0

j∑
k=0

ωj,k

[∫ x

0
tk+1[(1 + θ)eθt + 2θt− 1]e−(2+k+j)θtdt

]

=
∞∑
j=0

j∑
k=0

ωj,k

[
(1 + θ)

∫ x

0
tk+1e−(1+k+j)θtdt

+2θ

∫ x

0
tk+2e−(2+k+j)θtdt−

∫ x

0
tk+1e−(2+k+j)θtdt

]
=
∑∞

j=0

∑j

k=0
ωj,k%

∗
k,j (12)

where

%∗k,j =

[
(1 + θ)

γ(k + 2, (1 + k + j)θx)

[(1 + k + j)θ]k+2
+ 2θ

γ(k + 3, (2 + k + j)θx)

[(2 + k + j)θ]k+3

−γ(k + 2, (2 + k + j)θx)

[(2 + k + j)θ]k+2

]
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and γ(a, x) =
∫ x
0 t

a−1e−tdt is the incomplete gamma function.
Also, the incomplete mean, when γ > 1 is given by:

µ∗1(x) =
∑∞

i=0

∑i

j=0

∑∞

k=0
ω∗j,k%

∗
k,j (13)

Moment generating function is given by the following formula

MX(t) = E(etX) =
∑∞

r=0

tr

r!
E(Xr)

When 0 < γ < 1, it has following form

MX(t) =
∞∑
j=0

j∑
k=0

8∑
r=0

ωj,kt
rΓ(r + k + 1)

r!
%k,j

Similarly, when γ > 1

MX(t) =
∞∑
i=0

i∑
j=0

∞∑
k=0

∞∑
r=0

ω∗i,j,kΓ(r + k + 1)tr

r!
%k,j

3.3 Mean Deviation (MD), Bonferroni and Lorenz Curves

First of all, the MD (about the mean, denoted by µ) is defined by

MD =

∫ ∞
0
|x− µ|g(x, γ, θ)dx

which can be obtained as

MD = 2µG (µ, γ, θ)− 2µ∗1(µ)

where µ∗1(µ) denotes the incomplete mean already expressed in (12) or (13),
depending on the value of γ, taken with x = µ.

The graph of B [G (x, γ, θ)] across x is called Bonferroni curve, where

B[G (x, γ, θ)] =
1

µ1G(x, γ, θ)
µ∗1(x)

The plot ofL[G(x, γ, θ)] across x is Lorenz curve, whereL[G(x, γ, θ)] =
G(x, γ, θ)B[G(x, γ, θ)]. In economics, both curves play very critical role in
studying income and poverty.
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4 Estimation Method with Simulation

4.1 Estimation Method

Consider x1, x2, . . . , xn be n independent observations from the MOEML
model. For determining the maximum likelihood estimates (MLEs) of γ and
θ, we have following likelihood function

L(θ, γ) =

n∏
i=1

g(xi, γ, θ)

=
γnθn

(1 + θ)n
e−2θ

∑n
i=1 xi

n∏
i=1

[
(1 + θ)eθxi + 2θxi − 1

][
1− γ̄

(
1 + θxi

1+θe
−θxi

)
e−θxi

]2
Then, the log-likelihood function is specified as

L(θ, γ)=n log(γθ)−n log(1+θ)−2θ
n∑
i=1

xi+
n∑
i=1

log
[
(1+θ)eθxi+2θxi−1

]

− 2
n∑
i=1

log

[
1− γ̄

(
1 +

θxi
1 + θ

e−θxi
)
e−θxi

]
The MLE for θ and γ are accessed by solving ∂L(θ, γ)/∂θ = 0 and

∂L (θ, γ)/∂γ = 0, that is,

n

θ
− n

1 + θ
− 2

n∑
i=1

xi +
n∑
i=1

eθxi(θxi + xi + 1) + 2xi
(1 + θ)eθxi + 2θxi − 1

+ 2
n∑
i=1

γxie
−θxi

[
xi + 2x2i θ

e−θxi
1+θ + e−θxi

(1+θ)2

]
[
1− γ̄

(
1 + θxi

1+θe
−θxi

)
e−θxi

] = 0

and

n

γ
− 2

∑n

i=1

(
1 + θxi

1+θe
−θxi

)
e−θxi[

1− γ̄
(

1 + θxi
1+θe

−θxi
)
e−θxi

] = 0

There is no analytical solution for these equations, but the MLEs can be
determined at least numerically with any mathematical software.
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4.2 Simulation

In this subsection, the behaviors of the considered MLEs of model parameters
are now compared based on randomly generatedN= 3000 samples of values
of different sizes following the inverse transform sampling algorithm. In this
regard, we investigate their (average) Bias and mean square error (MSE)
defined as follows:

MLE(n) =
1

N

N∑
i=1

δ̂i,Bias(n) = MLE(n)−δ,MSE(n) =
1

N

N∑
i=1

(δ̂i−δ)2,

where δ ∈ {θ, γ} and δ̂i denotes the obtained MLE at the i-th sample.
Figures 3, 5, 7 and 9 present graphically the evolution of the Bias for the

estimates for n from 10 to 50 for selected values of θ and γ. Also, Figures 4,
6, 8 and 10 present graphically the evolution of the MSE for the estimates for
n from 10 to 50 for the same selected values of θ and γ.

We can see that all the curves representing the Bias and MSE tend quickly
to 0 when n increases, showing the efficiency of the method.

Figure 3 Figures of the Bias of MLE for θ = 0.5 and γ = 3.

Figure 4 Figures of the MSE of MLE for θ = 0.5 and γ = 3.
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Figure 5 Figures of the Bias of MLE for θ = 2 and γ = 3.

Figure 6 Figures of the MSE of MLE for θ = 2 and γ = 3.

Figure 7 Figures of the Bias of MLE for θ = 0.5 and γ = 0.5.
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Figure 8 Figures of the MSE of MLE for θ = 0.5 and γ = 0.5.

Figure 9 Figures of the Bias of MLE for θ = 3 and γ = 0.5.

Figure 10 Figures of the MSE of MLE for θ = 3 and γ = 0.5
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5 Applications

The versatility of the MOEML model is engraved by exercising two prac-
tical datasets. We compare the fitting ability of the MOEML model with
another MOE distributions, such as, MOE Exponential (MOEE) (Marshall
and Olkin, 1997), MOE Frechet (MOEF) (Krishna et al., 2013) and MOE
Lomax (MOEL) distributions (Ghitany et al., 2007). For comparing the use-
fulness of the models, we estimated the unknown parameters, standard error
(SE), −log likelihood (−logL), the values of the AIC (Akaike Information
Criterion) and BIC (Bayesian Information Criterion), AICc (corrected AIC),
Kolmogorov-Smirnov (K-S) statistic (with p-values).

Dataset I depicts the fatigue life of some aluminum coupons cut in specific
manner (see, Birnbaum and Saunders, 1969). The dataset (after subtracting
65) is:

Dataset I: 5, 25, 31, 32 ,34 ,35 ,38, 39, 39, 40, 42, 43, 43, 43, 44, 44, 47,
47, 48, 49, 49, 49, 51, 54, 55, 55, 55, 56, 56, 56, 58, 59, 59, 59, 59, 59, 63, 63,
64, 64, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 68, 69, 69, 69, 69, 71, 71,
72, 73, 73, 73, 74, 74, 76, 76, 77, 77, 77, 77, 77, 77, 79, 79, 80, 81, 83, 83,
84, 86, 86, 87, 90, 91, 92, 92, 92, 92, 93, 94, 97, 98, 98, 99, 101, 103, 105,
109, 136, 147.

The second data set representing the amount of cycles up to remissness
of the yarn have been given by Picciotto (1970). The data set is:

Dataset II: 86, 146, 251, 653, 98, 249, 400, 292, 131, 169, 175, 176, 76,
264, 15, 364, 195, 262, 88, 264, 157, 220, 42, 321 ,180, 198, 38, 20, 61, 121,
282, 224, 149, 180, 325, 250, 196, 90, 229, 166, 38, 337, 65, 151, 341, 40,
40, 135, 597, 246, 211, 180, 93, 315, 353, 571, 124, 279, 81, 186, 497, 182,
423, 185, 229, 400, 338, 290, 398, 71, 246, 185, 188, 568, 55, 55, 61, 244, 20,
284, 393, 396, 203, 829, 239, 236, 286, 194, 277, 143, 198, 264, 105, 203,
124, 137, 135, 350, 193, 188.

Tables 2 and 3 summarize the findings of descriptive analysis for the
specified distributions for Dataset I and II, respectively. The least − log L,
AIC, BIC, AICc, K-S statistic and the highest p-values are acquired for the
MOEML distribution. So, MOEML is the compatible model for two data
sets. Figures 11 and 12 illustrate the estimated pdfs for Dataset I and II,
respectively. In addition, Figures 13 and 14 show the comparison of the
cdfs for each model with the empirical distribution function. From plots, the
proposed MOEML model furnishes the most agreeable fit for the specified
data sets. Furthermore, the corresponding probability–probability (PP) and
quantile-quantile (QQ) plots of MOEML for Dataset I and II are displayed
in Figures 15 and 16, respectively. We remark that the scatter plot is well
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Figure 11 Fitted pdf plots for Dataset I.

Figure 12 Fitted pdf plots for Dataset II.

Figure 13 Fitted cdf plots for Dataset I.
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Figure 14 Fitted cdf plots for Dataset II.

Figure 15 PP and QQ plots of MOEML for Dataset I.

Figure 16 PP and QQ plots of MOEML for Dataset II.
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adjusted by the corresponding estimated line. Hence, from all graphical
representations, the proposed model is more flexible than other considered
distribution with respect to modeling lifetime data.

5.1 Conclusions

Lindley distribution has been practiced quite effectively in Statistics, because
of its analytical tractability, providing an interesting alternative to the expo-
nential distribution. In this present work, we discussed about a generalized
version of a modified Lindley distribution. Several statistical and mathemat-
ical peculiarities of the MOEML model have been provided. The evaluation
of the parameter is approached by the MLE method. The performance of
estimates has been conferred via a simulation study. Further, we used two
datasets to demonstrate the eminence of the MOEML model and compared it
with other MOE models.
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