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Abstract

Boolean satisfiability logical representation is a programming paradigm
that has its foundations in mathematical logic. It has been classified as
an NP-complete problem that difficult practical combinatorial optimization
and search problems can be easily converted into it. Random Maximum
kSatisfiability (MAX-RkSAT) composed of the most consistent mapping in
a Boolean formula that generates a maximum number of random satisfied
clauses. Many optimization and search problems can be easily expressed by
mapping the problem into a Hopfield neural network (HNN) to minimize the
optimal configuration of the corresponding Lyapunov energy function. In this
paper, a hybrid computational model hs been proposed that incorporates the
Random Maximum kSatisfiability (MAX-RkSAT) into the Hopfield neural
network (HNN) for optimal Random Maximum kSatisfiability representation
(HNN-MAX-RkSAT). Hopfield neural network learning will be integrated
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with the random maximum satisfiability to enhance the correct neural state
of the network model representation. The computer simulation using C++
has been used to demonstrate the ability of MAX-RkSAT to be embedded
optimally in Hopfield neural network to serve as Neuro-symbolic integra-
tion. The performance of the proposed hybrid HNN-MAXRkSAT model
has been explored and compared with the existing model. The proposed
HNN-MAXRkSAT demonstrates good agreement with the existing models
measured in terms of Global minimum Ratio (Gm), Hamming Distance
(HD), Mean Absolute Error (MAE) and network computation Time CPU
time). The proposed framework explored that MAX-RkSAT can be optimally
represented in HNN and subsequently provides an additional platform for
neural-symbolic integration, representing the various types of satisfiability
logic.

Keywords: Artificial neural networks, hopfield neural networks, wan abdul-
lahi method, boolean Satisfiability, random maximum ksatisfiabilit.

1 Introduction

Artificial Neural Networks (ANN) are considered as abstract computational
models aimed at emulating the computational functional capacity of the
biological neural network based on the brain dynamics computational model
(Buscema et al., 2018). ANN teach the machine to perform tasks instead of
training the software system to perform tasks. It is a pragmatic model that
can quickly and precisely find patterns in the data. Core advantages of neural
networks include the potential to understand complex or non-linear input-
output interrelationships, applying serial training procedures and responses
to a given data and provides a less technical approach to computation (Graves
et al., 2016).

Hopfield neural networks (HNN) are a particular type of neural networks
(NN) models that can store certain experiences, memories or patterns in a
fashion similar to the human brain that the complete pattern can be retrieved if
only partially or noisy information is presented to the networks. The dynamic
behaviour of the HNN energy function has potential application capable of
finding solutions to a difficult optimization problem. The HNN model is an
underlying framework capable of processing such memories in a similar way
to the nervous system brought major progress in the area of computational
modelling and optimization with their ability to resolve complex real-world
mathematical application(Abiodun et al., 2018).
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The momentous breakthrough in ANN is Neuro-symbolic integration.
Neural-symbolic architecture is AI systems that can perform any type of
symbolic mechanisms within the artificial neural network framework. ANN
has been regarded as connectionist systems. It draws the attention of various
researchers in computational intelligence communities due to its ability to
analyze and interpret complex non-linear phenomena including some mathe-
matical and graphical models. (Kowalski, 1979) developed the main concept
of mathematical and computational of informal logical representation as a
programming language for the interpretation and analysis of a given problem.
Abdullah (1992) was the pioneer in the field of by utilizing minimization
capacity Hopfield neural network for logic programming representation and
subsequently proposed a learning method to compute the optimal synaptic
weight of HNN. Sathasivam, (2010) utilized and proved the success of the
Wan Abdullah learning method to calculate the Horn logic programming
synaptic weights in HNN. Sathasivam (2012) proposed the notion of a
stochastic method in carrying out logic programming in HNN. Hamadneh
et al., (2012) proposed an idea for representing logic programming incorpo-
rated into RBFNN as single operator logic. Velavan et al., (2015) proposed a
flexible merger between logic programming and HNN in Mean Field Theory
algorithm. Kasihmuddin et al. (2017) proposed a new searching technique
that incorporates kSAT logical rule in the HNN. Alzaeemi et al., (2017)
proposed the idea of incorporating logic programming in Kernel HNN.
Kasihmuddin (2017) developed 2SAT logic representation incorporated with
HNN. Mansor et al. (2017) has successfully upgraded the of 2SAT logic
programming to 3SAT logic. The MaxkSAT logic representation received
attention from (Kasihmuddin et al. 2018). (Sathasivam et al., 2020) proposed
the incorporation of RkSAT in HNN. However, in term of MAXRkSAT,
there is no effort that combined the advantages of the non-systematical and
practical application of RkSAT and maximum satisfiability of MAXkSAT
logic program in HNN model. Therefore, we propose a new hybrid computa-
tional model by mapping MAXRkSAT in HNN in attaining better accuracy,
sensitivity and robustness of higher-order networks. The contributions of the
present study include; (1) To integrate the new logical representation, namely
MAXRkSAT; (2) Mapping a MAXRkSAT logical rule into the discrete Hop-
field neural network (HNN-MAXRkSAT-ES); (3) To explore the feasibility of
HNN for optimal MAXRkSAT logical representation and measure its perfor-
mance in term of accuracy with the existing models for HNN; (4) To establish
a comprehensive comparison of the HNN-MAXRkSAT-ES with the exist-
ing HNN-KMAXkSAT-ES (Kasihmuddin et al, 2017), KHNN-RkSAT-ES
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(Sathasivam et al., 2020) and KHNN-k SAT-ES (Alzaeemi et al., 2017)
models in the literature. By developing an integrated ANN working model,
the proposed hybrid computational model will be beneficial by proving an
alternative method of computation in finding the optimal representation of
various mathematical optimizations and search problem.

This paper proceeds as follows: Section 2 presented the proposed Ran-
dom Maximum kSatisfiability (MAXRkSAT). In Section 3 presented the
mapping of Random Maximum kSatisfiablity in Hopfield neural network is
reported. The Author presented Wan Abdullahi method for synaptic weight
computation in Section 4.s Section 6 presented a new learning rule (NLR)
and relaxation method for learning in HNN model. Section 6 covers the
HNN-MAXRkSAT simulation design & experimental setup. In Section 7
and 8 reported the model performance measure and the experimental Results
respectively. Finally, the remaining sections reported the results, discussion
and conclusion for future direction.

2 The Proposed Random Maximum kSatisfiability
(MAXRkSAT)

Random Maximum kSatisfiability (MAXRkSAT) is a class of non-systematic
Boolean satisfiability representation that composed a maximum number of
random literals per clause to be negated with the probability of 0.5. The
MAXRkSAT logic can be represented in CNF where each logical clause
consists of a random number of Boolean variables connected by a logical
operator. The standard structure of MAXRkSAT logical representation is
restricted as compared to the ordinary kSAT(Yolcu and Póczos, 2019) and
MAXkSAT logical representation. However, RkSAT part of our problem
is not restricted (Sathasivam et al., 2020). The general formulation for
MAXRkSAT will be restricted obeying Equation (1);

QMAXR2SAT =
n
∧
i=0

QMAXk2SAT

m
∧
i=0

QR2SAT (1)

where QR2SAT and QMAX2SAT are defined in Equation (2) and Equation (3)
respectively follows;

QR2SAT =
n
∧
i=0

C
(2)
i

m
∧
i=0

C
(1)
i (2)

QMAX2SAT =
n
∧
i=0

λ
(2)
i

m
∧
i=0

β
(2)
i (3)
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where ∀m,n ∈ [1, 2, . . . N ], n > 0 and m > 0. The clauses in QR2SAT

is presented in Equation (5) and QMAX2SAT are defined in Equation (6) and
Equation (7) respectively as follows;

C
(k)
i =

{
(Ii ∨ Ji), k = 2

Li k = 1
(4)

λ
(2)
i = (λ1 ∨ λ2) ∧ (¬λ1 ∨ λ2) ∧ (λ1 ∨ ¬λ2) ∧ (¬λ1 ∨ ¬λ2) (5)

β
(2)
i = (β1 ∨ β2) (6)

where C(1)
i and C(2)

i designated as the first and second-order logical clauses

respectively inQR2SAT .B(2)
i and V (2)

i designated as the second-order clause
in QMAX2SAT . In this work, Fα used to represent a Boolean formula in
CNF where logical clauses are chosen uniformly, independently and without

any replacement from 2α
(
m+ n
κ

)
non-trivial clause of length α. Ii exists

in the C
(k)
i , if the C

(k)
i contains either Ii or its negation (¬Ii) and the

mapping of g(Fα) → [−1, 1] defined as a logical interpretation of Boolean
formula. Sathasivam et al. (2020) [15], Alzaeemi et al. (2017) described that
any Boolean value for the mapping of Satisfiability representation can be
expressed as 1 or −1 for TRUE or FALSIFICATION respectively. Theoret-
ically from Equation (1), QMAXR2SAT for k ≤ 2 can be mathematically
presented as follows;

QMAXR2SAT =


MAX−2SAT︷ ︸︸ ︷

(λ1∨λ2)∧ (λ1∨λ2)∧ (λ1∨λ2)∧ (¬λ1∨λ2)∧ (β1∨β2)∧

RANDAM−2SAT︷ ︸︸ ︷
(I1 ∨ ¬J1) ∧ (I2 ∨ ¬J2) ∧ ¬L1 (7)

According to Equation (6),QMAXRkSAT comprises ofC(2)
1 = (I1∨¬J1),

C
(2)
2 = (¬I2∨J2),C(1)

1 = ¬L1, λ(2)i = (λ1∨λ2)∧(¬λ1∨λ2)∧(λ1∨¬λ2)∧
(¬λ1 ∨ ¬λ2) and β(2)i = (β1 ∨ β2). Therefore, the result of Equation (7)
is reduced to QMAXRkSAT = −1 (not satisfiable). Hence, Equation (7) is
considered as one of the constrained optimizations and search problems that
can be found maximization problem. Kasihmuddin et al (2018) and Mansor
et al. (2017) observed that MAXkSAT is not fully satisfiable, it is therefore
considered as a constrained optimization and search problem that can be
carried out on the HNN model for optimal representation.
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3 Mapping of Random Maximum tSatisfiablity in Hopfield
Neural Network

Hopfield neural networks (HNN) are a computational method of biological
influence that can be applied in various combinatorial and search problems.
Their advantage over more traditional optimization techniques is their ability
to use strong computational power in discrete components and the inherent
parallelism of the network. HNNs are recurrent types of ANN-based on
content-addressable memory with binary threshold nodes that should yield
a minimum local. HNN basic architecture and structure consists of discrete
interconnected bipolar represent a neural computational model through an
auto-associative framework behaviour with a strictly symmetrical weight
matrix between the neurons without any self-loop and hidden neurons. Given
an initial state vector variable Si(i = 1, 2, 3, , , n) that is input to the HNN
model. The HNN will converge to the state of equilibrium corresponding to
the minimum value HQMAXRkSAT

. The HNN minimizes the energy function
due to its apparent resemblance to the physical revolving system in statistical
mechanics (Barra et al. 2018). The neuron’s state in HNN is considered
bipolar, Di ∈ [−1, 1] comply with the dynamics by obeying the general
asynchronous updating rule as follows:

Di(t+ 1) =

 1, if
N∑
j
MijDj(t) + Ψ

−1, otherwise

(8)

whereMij designated the HNN strength vector that maintains the link
between the connections neuron j to another neuron i with pre-determined
biasΨ. The MAXRkSAT logical representation can be mapped into HNN
by assigning each vector variable with neurons Di with the represented cost
function. Hence, the cost functionEQMAXRkSAT

, that man the combinations of
HNN and MAXRkSAT logic is represented as follows:

EQMAXRkSAT
=

NC∑
i=1

m∏
j=1

Tij (9)

where NC and m represent the number of logical clauses and the number
variables QMAXRkSAT logic respectively. The inconsistency of a logical



Neuro-Symbolic Integration of Hopfield Neural Network 205

clause in QMAXRkSAT is given as follows:

Tij =


1
2(1−Dx), if¬x

1
2(1 +Dx), otherwise

(10)

MAXRkSAT logic in HNN can be updated obeying the following:

hi(t) =

N∑
j=1,i 6=j

M
(2)
ij Dj(t) +M

(1)
i (11)

Di(t+ 1) =


1,

N∑
j=1,i 6=j

M
(2)
ij Dj(t) +M

(1)
i ≥ 0

−1,
N∑

j=1,i 6=j
M

(2)
ij Dj(t) +M

(1)
i < 0

(12)

where M
(2)
ij and M

(1)
i represent the second and the first order synaptic

connection of HNN integrated with MAXRkSAT logic. Equation (11) to
Equation (12) are vital stages to ensure that neurons state in HNN converges
to an optimal configuration corresponding to MAXRkSAT logical represen-
tation. To assess the quality of the state pattern recovered in the network,
the Lyapunov energy function, HQMAXRkSAT

described in Equation (13) was
applied as follows.

HQMAXRkSAT
= −1

2

N∑
i=1,i 6=j

N∑
j=1,i 6=j

M
(2)
ij DiDj −

N∑
i=1

M
(1)
i Dj (13)

One of the properties possessed by Lyapunov energy function in
Equation (13) is that the energy viewed from the QMAXR2SAT always
decreases monotonically with the network configuration. The value of
HQMAXRkSAT

in determining the value of network energy corresponding to
the absolute final energy of the network consumed Hmin

QMAXRkSAT
. Therefore,

the overall quality of the final state of the network can be properly obeyed the
given condition (Sathasivam, 2012).∣∣HQMAXRkSAT

−Hmin
QMAXRkSAT

∣∣ ≤ ξ (14)
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where ξ defined by any pre-determined tolerance value. According to Satha-
sivan (2020), 0.001 is appropriate. Note that if the embedded logic clause
in HNN does not meet the condition in Equation (14), then the final state
pattern obtained is assumed to be stuck in a local minimum solution (ie
wrong pattern). Worth mentioning that, M (2)

ij and M (1)
i can be effectively

computed by using Wan Abdullah learning method (Abdullah, 1992) which
is equivalent to Hebbian Learning rules (Gerstner and Kistler, 2002). In this
paper, the authors donated the mapping of MAXRkSAT logic in HNN is as
HNN-MAXRkSAT logical representation.

4 Wan Abdullahi Method for Synaptic Weight Computation

MAXRkSAT logic can be represented as one of the constrained optimization
and search problems that are being carried out on HNN. Wan Abdullah logic
learning became the pioneer in computing the synaptic weight of current
neural network like HNN based on logical inconsistencies (Sathasivam et al.,
2020). The cost function of the problem that corresponds to MAXRkSAT
logical is represented in the minimized form of logical inconsistencies in
QMAXRkSAT defined as follows.

min
i∈(0,∞),QMAXR2SAT=1

¬ QMAXR2SAT (15)

Equation (14) is considered as one of the constrained optimiza-
tion/decision problems that can be found maximization problem. Finding
inconsistencies of Equation (7) can be represented by its negation as follows;

¬QMAXR2SAT = (λ1 ∨ λ2) ∧ (¬λ1 ∨ λ2) ∧ (λ1 ∨ ¬λ2) ∧ (¬λ1 ∨ ¬λ2)

∧(β1 ∨ β2) ∧ (¬I1 ∨ J1) ∧ (I2 ∨ ¬J2) ∧ L1 (16)

The cost function for (16) is defined as follows;

EQMAXR2SAT
=

1

2
(1− Cλ1)

1

2
(1− Cλ2) +

1

2
(1 + Cλ1)

1

2
(1− Cλ2)

+
1

2
(1− Cλ1)

1

2
(1 + Cλ2) +

1

2
(1− Cλ1)

1

2
(1− Cλ2)

+
1

2
(1− Cβ1)

1

2
(1− Cβ2) +

1

2
(1− CI1)

1

2
(1 + CJ1)

+
1

2
(1− CI2)

1

2
(1 + CJ2) +

1

2
(1 + CL1) (17)
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Table 1 Displays the clauses and corresponding synaptic weights
Synaptic
weights (¬β1 ∨ ¬β2) (¬I1 ∨ J1) (¬I2 ∨ J2) L1 HNN−MAXR2SAT

Cβ1Cβ2 − 1
4

0 0 0 − 1
4

Cβ1
1
4

0 0 0 1
4

Cβ2
1
4

0 0 0 1
4

CI1CJ1 0 1
4

0 0 1
4

CI1 0 − 1
4

0 0 − 1
4

CJ1 0 1
4

0 0 1
4

CI2CJ2 0 0 1
4

0 1
4

CI2 0 0 1
4

0 1
4

CJ2 0 0 − 1
4

0 − 1
4

CL1 0 0 0 − 1
2

− 1
2

The Appropriate weight matrix-vector of HNN-MAXR2SAT can be
obtained by equating EQMAXR2SAT

in Equation (17) with HQMAXRkSAT
in

Equation (13) and the result is displayed in Table 1.
The synaptic weight connections calculated and presented in Table 1 are

sums of the inputs of individual logical clauses of HNN-MAXR2SAT to be
stored CAM of HNN which will later be used in the retrieval phase. The
synaptic weights are essential bits of information that are acquired after the
training process. The training process in this experiment yields the optimum
value of cost function that will determine the system’s effective weights.
The optimal global minimum energy estimation requires suitable mapping
and adjusted synaptic weights. The optimal global minimum energy can
be delineated at the start of the recovery process as the projected global
minimum energy. The logic program of MAXR2SAT can be regarded as com-
binatorial optimization. This is done by minimizing the logical inconsistency
of the Boolean formula. The general global minimum energy for the HNN-
MAXR2SAT is given as in Equation (17). The satisfied interpretation such as
Cβ1 = 1, Cβ2 = 1, CI1 = 1, CJ1 = −1, CI2 = 1, CJ2 = −1, CL1 = 1
is substituted into Equation (17). We obtained the optimal globally mini-
mum energy in Equation (18) since EminHNN−MAXRkSAT is not satisfiable we
obtained the optimal satisfiability as follows.

EOptimumMAXR3SAT = −3

4
(18)
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EOptimumMAXR3SAT will be used to separate the correctness of the neuron state
produced by the network during the retrieval phase.

5 New Learning Rule (NLR)

The activation function is a complex model of Hopfield’s neural network
of logic programming. The activation mechanism used in neural-symbolic
integration to turn the activation rate of a system (neuron) into an output
signal (Sathasivam, 2015). Nonetheless, this trigger mechanism imposes too
much focus on mild noise disturbance instead of the cost-related signals
(Alzaeemi et al., 2017) proposed a new activation function as follows:

fXi =

1
2

(
1 + tanh(

νXi
u0

)
)

1 + tanh
(
x0
u0

) (19)

fXi =
tanh

(
x0
u0

)
+ 1

2

(
1 + tanh

(
νXi−xo
uo

))
1 + tanh

(
x0
u0

) (νXi ≥ 0) (20)

where the fXi and νXi represent the activation function and the initial states
of the HNN respectively. xo define the threshold value fXi to become steeper,
and u0 use to compute the triggering function’s steepness. It can handle this
function with noise and do well if the system is large.

5.1 The Relaxation Method for Learning in HNN Model

The relaxation method is a useful stage for contextual information pro-
cessing to reduce local uncertainty and maintain the global accuracy of
the HNN model. It is essentially a parallel execution system that changes
the confidence levels of the entities involved based on interrelated theories
and measurements of confidence. The neural network, on the other hand,
is a computational paradigm with massive parallel capacity for execution.
Each neuron’s output depends primarily on information from other neurons.
Therefore, in the relaxation process and the neural network technique, there
are some common properties. (Sathasivam, 2015; Kasihmuddin et al., 2019)
proposed a mapping which allows HNN to perform the relaxation process. A
downside of this is that the relaxation process can be carried out in real-time
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because traditional analogue circuits can implement the HNN model. The
neural network design can be easily adapted by this approach to solve the
many problems that the relaxation mechanism has already solved. “HNN–
MAXRkSAT relaxation” can be demarcated after the local field has been
collected as a sequence of relaxing loops in the system. The network tends
to create many local minima solutions lacking an adequate relaxation mech-
anism. The relaxation frequency function is to modify the relief speed so
that higher quality solutions can be obtained. Because HNN–MAXRkSAT
includes further clause restrictions, authors allow network to pass through
relaxation stage to ensure that it stays calm in its final state. The HNN
-MAXRkSAT relaxation obeys the following function.

dhnewi

dt
=
Rdhi
dt

(21)

where R refers to the relaxation rate, hnewi refers to the updated local field
and hi defined as the local field value of the model measured based on HNN-
MAXRkSAT. The relaxation frequency R theoretically reflects how quickly
the model is relaxed. The R value is a modifiable parameter that can be
empirically computed. The optimum relaxation rate is usually in the range
of 2 ≤ R ≥ 4. In this paper, we deployed R = 4 for all of the simulations.
The selected relaxation rate complies with the work (Sathasivam, 2015).

6 HNN-MAXRkSAT Simulation Design and Experimental
Setup

In this study, the MAXRkSAT logic to be incorporated into HNN to search for
optimal MAXRkSAT logic representation. HNN model employed simulated
data sets to implement MAXRkSAT logical clauses. HNN-MAX-RkSAT
simulations were performed with Dev C++ release version 5.11 on Win-
dows 8, Intel Core i3, 1.7 GHz 8 GB RAM processor. Initially, the program
must randomize the neuron position. The primary objectives of this project
were to seek an optimal model, which would represent the practical MAX-
RkSAT model. The algorithms Figure 1 displays the implementation of
the HNN model within the system. The following algorithms illustrate
how the proposed models are implemented in the program. Table 2 indi-
cates the appropriate control parameters utilized during each HNN model
implementation.
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Figure 1 Flowchart for HNN-MAXRkSAT implementation procedure.

Table 2 List of parameters and their value used in HNN
Parameter Parameter Value
Number of clauses (NC) 40
Neuron Combination (NN) 100
Tolerance Value (ξ) 0.001
Number of Learning (ϑ) 100
Selection Rate (α) 0.1
Number of trials (τ ) 100
Relaxation time (R) 4

7 Model Performance Matrics

A total of four performance different matrix measure were employed
to explore the performance of HNN-MAXRkSAT logical representation
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compares with the existing model. The proposed HNN-MAXRkSAT model
was assessed based on Global Minimum Ratio (gM), Hamming Distance
(HD), Mean Square Error (MSE) and Computation time (CPU time). The
performance matrices utilized in this study have been discussed as follows:

7.1 Global Minima Ratio (gM)

Global Minima Ratio (gM) is described as the proportion between the total
minimum global energy and maximum runs. (Sathasivam, 2012; Kasihmud-
din et al., 2019). Because the HNN model will generate 10,000 solutions per
execution, this analysis will make searching for gM applicable. Each of the
neurons measuredHQMAXRkSAT

in HNN will be sorted based on ξ. If the HNN
is within the condition states in Equation (14), then the HQMAXRkSAT

will be
regarded as the minimum global energy. gM obeys the following equation.

gM =
1

τc

NC∑
i=1

NHQMAXRkSAT
(22)

where τ and c represent the number of trial and the combination of neurons
in MAXRkSAT respectively. The amount of the proposed model’s global
minimum energy. If the value of gM corresponds to 1 a particular model is
rendered robust.

7.2 Proportion of Satisfied Clause (PSC)

Since MAX-RkSAT logical rule cannot be satisfied, the program will evaluate
the proportion of clauses that are satisfied (PCS). The following equation will
be used to calculate the proportion of the clause satisfied.

PSC =
fMAXRkSAT

NC
(23)

where fMAXRkSAT and NC denote the fitness of MAXRkSAT logical clause
and a total number of clauses in HNN-MAXRkSAT model respectively.
The efficiency of the MAX-RkSAT model will be measured based on an
increasing amount of several neurons.

7.3 Hamming Distance (HD)

Many problems in information storage, retrieval and related fields depend
on an accurate measurement of the distance or similarity between objects
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most often represented as vectors. In this paper, HD determines the proximity
of bits in the relaxation cycle between the stable state and the global state
(Guoguang et al. 2008). We use the HD to compute the difference between
the original pattern and the patterns retained, or between the output pattern
and the patterns stored. The HD is a computation used to equate two binary
patterns in the HNN, which is the number of bits of the two patterns varying.
The distance to HD here is defined as follows;

HD =

NC∑
i=1

|si − sηi | (24)

where si is a state of an initial state presented to the network or an output
pattern generated, sηi is the ith component of the τth stored pattern that was
presented. In our study, the τth stored pattern, the HD of the network trend
would be 5 or 40, whether the initial state or output pattern is the τth pattern
stored or its exactly reversed form respectively.

7.4 Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is the one of the best performance metric for
displaying the uniformly distributed error generated in a model (Chai et al.
2014). The estimation of the MAE takes the absolute value of the difference
between the expected values and the real values. A good model with HNN-
MAXRkSAT will have the lowest MAE value. The MAE equation is shown
below:

MAE =

NC∑
i=1

1

NC
|fx − fmax| (25)

Where fMAXRkSAT and fi donated the maximum fitness and fitness value
observed respectively.

7.5 Computation Time (CPU Time)

Computation time (CPU Time) has been one of is an important metric or indi-
cator for analyzing our model efficiency. It involves learning and extracting
the total satisfied clauses through our proposed framework. The CPU time is
represented at the time that a particular network has consumed to complete
one execution. It is about the measure of effectiveness and stability of ANN
models.

CPU _ Time = Learning _ Time+Recovery _ Time (26)
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8 Experimental Results and Discussion

Figures 2–6 show search performances between the proposed model and
other existing models. It exhibits the behaviour of the errors observed in
the searching process from 5 ≤ NN ≤ 40. In general, based on the
simulated results the HNN-MAXRkSAT logic manifests good agreement
with the existing models in the literature.

Figure 2 displays the zM trend via HNN-MAXRkSAT in compares
HNN-KMAXkSAT-ES (Kasihmuddin et al. 2018), (Sathasivam et al., 2020),
KHNN-RkSAT-ES and KHNN-kSAT-ES(Alzaeemi et al. 2017) for opti-
mal logical representation. Its efficiency can be calculated by testing the

Figure 2 Global minimum ratio (gM) of various models.

Figure 3 Hamming distance (HD) performance evaluation of various models.
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Figure 4 Mean absolute error (MAE) performance evaluation of various models.

Figure 5 Computational time (CPU time) performance evaluation of various models.

consistency of the energy from 5 ≤ NC ≤ 40. gM = 0.8502 is identified as
8502-bit strings of minimum global energy and 598-bit strings of minimum
local energy. If the gM of the network approaches one, almost all neurons
achieved the required final state during the recovery phase. An effective
method of calming by Sathasivam relaxation system stabilizes the state of
the neuron during the period of recovery. The stable neuron state generated
by HNN-MAXRkSAT results on the convergence of the energy generated
to global minimum energy. As the number of neurons rose (MAX-RkSAT
maximum number increased), some of the collected neuron states may be
stuck in a local minimum solution (suboptimal solution). All HNN models
entail more computation time before the model can enter the relaxation
phase to avoid MAX-RkSAT’s ’ inconsistencies. It can also stabilize the
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neuronal system by crushing the neuronal collective output. This triggers the
neural systems to converge to the global minimum. Owing to the random
nature of the search for possible solutions, HNN-MAX-RkSAT agreed with
the performance of the existing models in the literature as demonstrated in
Figure 2.

Figure 3 shows the relation between the HD and the NC. It demonstrates
the trend display by all HNN models in term of Hamming distance from
5 ≤ NC ≤ 40. The Hamming distance in this experiment represents the
proximity of the neuron’s state between the learning state and retrieved state
(Global solution) of the neurons when relaxing. The trend demonstrates a
steadily improved in the performance of HNN-MAXRkSATES. The trend in
which HNN-MAXRkSATES can remember the correct statements that led
to the lower HD demonstrates similar behaviour with the existing model. It
is noticeable that KHNN model accumulates higher rise in HD than HNN
model. The exhaustive search algorithm, on the other hand, highlighted the
process of trial and error during the fulfilment process of the rule. According
to the random nature of the search space in searching the right states, HNN-
MAX-RkSATES were able to accommodate NC ≥ 40 when the complexity
of the network increased. Unlike KHNNMAXkSATES that can only sustain
5 ≤ NC ≤ 40 as observed in Figure 3. Similar behaviours were observed by
the previous work as justified in (Kasihmuddin et al. 2017; Alzaeemi, et al.
2017; Sathasivam, et al. 2020). The major reason is due to the exhaustive
search design, which raises the mathematical workload when looking for the
right neuron states.

Figure 4 shows the relation between the MSE and the NC. It can be
observed in Figure 4 that the learning error in terms of MAE increases
massively as the neurons out weight from NC ≥ 10. The comparison in
the HNN model trend, based on MAE error measures. HNN-MAXRkSAT
and HNNRkSAT display the lowest performance recording 5.07 (94.93%
accuracy) and 3.61 (96.39% accuracy) respectively. KHNN-MAXRkSAT and
KHNNRkSAT have the highest MAE accumulating closed in 22.05 (77.95%
accuracy) and 18.31 (81.69% accuracy) respectively. All models display
the good performance agreement of close to 95% at the initial stage when
NC = 5 and 80% on the final stage when NC = 40. A rapid increase in
MAE error is noticed in all models. The justification for this trend is that a
higher as the complexity of NC raised (Peter et al. 2017). However, the gap
between all is not significant. This indicates that HNN-MAXRkSAT agreed
with other models, both in the short run and in the long-run trend.

Based on Figure 6, the computation time was displayed for all models,
it is observed that all models under study start execution with a reasonable
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amount of execution time. At NC = 40, CPU time could not be plotted as
the execution time is too high (that is it exceed a threshold value). The figure
displays CPU time the trend from 5 ≤ NC ≤ 30. AtNC = 5, HNN executes
MAXRkSAT and RkSAT logic in 2.5 seconds and 1.5 seconds respectively,
and KHNN executes MAXRkSAT and RkSAT in 6.8 seconds and 5.1 seconds
respectively. At NC = 40, KHNN consume 12981 seconds to execute
MAXRkSAT logic while HNN consumes 7871.8 seconds to execute RkSAT
logical representation. Therefore, HNN requires less computational time
compared to other models in executing RkSAT logic. However, all models
maintain a similar pattern even as the number of neurons increases. The
computational time for all model raised high. The Justification for this trend
is that a higher as the number of clauses high. As it stands, HNNRkSATES
requires a substantial amount of time to reach the optimal eligibility (Sathasi-
vam, 2015; Kasihmuddin et al., 2019; Sathasivam et al., 2020). This problem
can be reduced by employing the metaheuristics algorithm. The KHNN-
MAXRkSAT computation time is higher than other existing models in the lit-
erature. During the training phase of HNN, the optimal searching technique is
needed to drive the solution to optimal eligibility in an acceptable time range.
The searching techniques will work extensively throughout the training phase
for doing MAXRkSAT programming as the complexity of the neurons rises.

9 Conclusion

We have successfully developed a model that explored the feasibility of
the Hopfield neural network (HNN) to be incorporated with MAX-RkSAT
programming. A network by incorporating with Hopfield neural network
in performing maximum random k-satisfiability logic programming (HNN-
MAXRkSATES). The proposed model was compared with other existing
models to measure its performance. The work, reported in this paper,
revealed the efficient performance of HNN-MAXRkSAT model in terms
of the global minimum ratio, Hamming distance, Mean Absolute Error
and the computation time. According to the experimental results, the pro-
posed HNN-MAXRkSAT gives us an acceptable result and also agreed with
KHNN-MAXRkSAT, KHNNRkSAT and HNNRkSAT in all metric measures
enjoyed in this study. The proposed framework provides a solid platform for
evaluating various types of satisfiability problem.

The upcoming research in this regard will be focusing on the investiga-
tion to explore the other variants of the satisfiability representation problem
such as minimum satisfiability, restricted Maximum Random satisfiability,
weighted maximum random satisfiability and quantified maximum random
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satisfiability. We will also propose HNN-MAXRkSAT to accommodate real-
life data set, that, Hopfield neural network Random Maximum kSatisfiability
Reverse Analysis (HNN-MAXRkSATRA). Additionally, robust metaheuris-
tic techniques such as Genetic Algothrim (GA), Election Algorithm (EA)
and swarm intelligence like Artificial bee colony (ABC) and Particle swam
(PSO) to reduce the complexity of the HNN-MAXRkSAT model during the
training phase and other intelligence algorithms can be integrated with HNN-
MAXRkSAT to accelerate the learning phase for optimal representation.
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