REGRESSION-IN-RATIO ESTIMATORS IN THE PRESENCE OF OUTLIERS BASED ON REDESCENDINGM-ESTIMATOR
DOI:
https://doi.org/10.13052/jrss2229-5666.1221Keywords:
Redescending, Ratio Estimator, Robust Regression, Outliers, Auxiliary InformationAbstract
In this paper, a robust redescending M-estimator is used to construct the regression-inratio estimators to estimate population when data contain outliers. The expression of mean square error of proposed estimators is derived using Taylor series approximation up to order one. Extensive simulation study is conducted for the comparison between the proposed and existing class of ratio estimators. It is revealed form the results that proposed regression-in-ratio estimators have high relative efficiency (R.E) as compared to previously developed estimators. Practical examples are also cited to validate the performance of proposed estimators.
Downloads
References
Andrews, D.F.(1974). A robust method for multiple linear regressions,
Technometrics, 16, p. 523-531.
Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J., Rogers, W.H. and
Tukey, J.W. (1972).Robust Estimates of Location.Survey and Advances,
Princeton University Press.
Beaton, A.E. and Tukey, J.W.(1974). The fitting of power series, meaning
polynomials, illustrated on banned-spectroscopic data, Technometrics, 16, p.
-185.
Fox, J. (2008). Applied Regression Analysis and Generalized Linear Models,
Second Edition. Sage.
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W. A.1986).
Robust Statistics, The Approach Based on Influence Functions, New York:
John Wiley and Sons.
Huber, P.J.(1964). Robust estimation of a location parameter, The Annals of
Mathematical Statistics, 35(1), p. 73-10.
InshaUllah, Qadir, M.F. and Ali, A. (2006). Insha’s redescending M-estimator
for robust regression: A comparative study, Pakistan Journal of Statistics and
Operation Research, 2, p. 135-144.
Kadilar, C. and Cingi, H.(2004). Ratio estimators in simple random sampling,
Applied Mathematics and Computation, 151, p. 893-902.
Kadilar, C., Candan, M. and Cingi, H.(2007). Ratio estimation using robust
regression, Hacettepe Journal of Mathematics and Statistics, 36, p. 181-188.
Khalil, U., Alamgir, Amjad, A. and Khan, D.M., (2016). Efficient Uk’s redescending M-estimator for robust regression, Pakistan Journal of Statistics,
(2), p. 125-138.
Noor-ul-Amin, M., Asghar, S.U.D., Sanaullah, A., and Shahzad, M.A. (2018).
Redescending M-estimator for robust regression, Journal of Reliability and
Statistical Studies, 11(2), p. 69-80
Noor-Ul-Amin, M., Shahbaz, M.Q. and Kadilar, C. (2016). Ratio estimators
for population mean using robust regression in double sampling, Gazi
University Journal of Science, 29 (4), p. 793-798.
Qadir, M.F.(1996). Robust method of detection of single and multiple outliers,
Scientific Khyber, 9(2), p. 135-144.
Rousseeuw, P.J. and Leroy, A.M.(1987).Robust Regression and Outlier
Detection, Wiley-Interscience, New York.
Sisodia, B.V.S. and Dwivedi, V.K.(1981). A modified ratio estimator using
coefficient of variation of auxiliary variable, Journal of Indian Society of
Agricultural Statistics, 33, p. 13-18.
Subzar, M., Bouza, C. N., Maqbool, S., Raja, T.A. and Para, B.A.(2019).
Robust ratio type estimators in simple random sampling using Huber M
estimation, Revista Investigacion Operacional, l40(2),p. 201-209.
Upadhyaya, L.N. and Singh, H.P. (1999). Use of transformed auxiliary
variable in estimating the finite populations mean, Biometrical Journal, 41, p.
-636.
Zaman, T. (2019). Improvement of modified ratio estimators using robust
regression methods, Applied Mathematics and Computation, 348, p. 627-631