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Abstract 
 This paper deals with various methods of estimation used for estimating the parameters 

of lifetime distributions. The distributions considered are exponential, Weibull, Rayleigh, 

lognormal and gamma and the method used are: method of moments, maximum likelihood, 

probability weighted moments, least squares and relative least squares. To compare the efficiency 

between the different methods of estimation, we used the total deviation, mean squared error and 

probability plot correlation coefficients. In order to study numerically, the execution of the 

different methods of estimation and goodness of fit analysis, their statistical properties have been 

simulated for different sample sizes. The graphs of bias designed for different methods of 

estimation have also been plotted against various sample sizes.   

 

Key Words: Lifetime Distributions, Methods of Estimation, Goodness of Fit Analysis, 

Simulation. 

 

1. Introduction 
Numerous parametric models are used in the analysis of lifetime data and in 

the problems associated with the modeling of the ageing or failure process. A few 

specific distributions play a central role because they are useful in various situations. 

The exponential, Weibull, Rayleigh, gamma, and lognormal distributions are the 

primary distributions in this category. The exponential distribution is often used to 

model the time interval between successive random events. The Weibull distribution, 

perhaps the most widely used model of fatigue distribution, was derived in 1939 by W. 

Weibull, who used it in 1951 to experimentally observe variations in the fatigue 

resistance of steel, its elastic limits, etc. The Weibull distribution is the most widely 

used model for lifetime distribution. It is also widely used in biomedicine, e.g. in 

studies on the time until tumors occur in the human population or in laboratory animals 

and in various supplementary situations. The exponential distribution is a particular 

case of the Weibull distribution. 

 

 Epstein and Sobel (1953) introduced the maximum likelihood estimators of the 

scale parameter, the one-parameter exponential distribution in the case of censorship 

from the right. Lee and Thompson (1974) argued that within the class of the 

proportional hazard rate model, Weibull seemed to be the mainly suitable selection 
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intended for describing lifetimes. Hosking and Wallis (1987) described ML as the most 

efficient method for estimating the parameters of the generalized Pareto distribution 

(GPD), algorithms for calculating ML estimates can cause convergence problems even 

with large sample sizes. Castillo and Hadi (1997) developed a method for estimating 

the parameters of the generalized Pareto distribution (GPD) that can be used for each of 

k. This method has the advantage of generating estimates of k' that always match the 

observable data (k is the shape parameter of GPD). Grimshaw (1993) performed ML 

estimations to make comparisons with the proposed Bayesian approach. Hirai (1998) 

described the L moments r; r=1,2.... of a real-valued random variable 'X' exist, if and 

only if "X' has a finite mean. A distribution whose mean exists is characterized by its L 

moments {: r=1, 2...}. Such a distribution specified by its L-moments, even if some of 

its conventional moments do not exist. Al-Fawzan (2000) presented both the graphical 

and the analytical methods for estimating the Weibull parameters, namely form and 

scale parameters.  Afify (2003) conducted the study by estimating the parameters of the 

two parameters "Rayleigh distribution". He used the smallest square method (LS), the 

relatively smallest square method (RLS), the ridge regression and the robust ridge 

regression (RR, RRR), the moment estimator (ME) and the modified moment 

estimators (MME) to estimate the two Rayleigh distribution parameters. To compare 

different methods of estimation, he recommended the quality of fit analysis. 

 

 Bermudez and Tukrman (2003) proposed Bayesian approach to parameter 

estimation of the generalized Pareto distribution. Mahdi and Cenac (2006) presented 

results on parameter estimation of logistic and Rayleigh distributions. Three estimation 

methods are investigated, namely the MM, ML and PWM methods. 

 

Inspired by the above mentioned study, the present study intends to fit a 

suitable distribution for survival data. Focusing on distribution belongs to exponential 

family. The structure of this article as follows: Exponential, Weibull, Rayleigh, 

Lognormal and gamma distributions are selected for study. Different methods of 

estimation for estimating the parameters of the exponential family of distributions are 

described in section 2.  Goodness of fit analysis is given in section 3. In section 4, the 

simulation study and the graphs of bias for different sample sizes is given. A real life 

data application is given in section 5. This article concludes with a brief discussion in 

section 6. 

 

2. Materials and Methods 
Different methods of estimation used for estimating the parameters of the 

lifetime distributions are: method of moments (MM), maximum likelihood (ML), and 

probability weighted moments (PWM), least squares (LS) and relative least squares 

(RELS). 

 

2.1 Exponential distribution 

 The pdf f (x) and cdf F (x) of the exponential distribution are given below: 

 

( ) ( )xxf λλ −= exp ; x> 0, λ >0 

  F (x) = 1-exp (-λx) 
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The method of moments and method of maximum likelihood estimates of λ  is: 
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While the probability weighted moment estimates of λ is: 
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2.2 Weibull distribution 
 The pdf f (x) and cdf F (x) of the weibull distribution are given by: 
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The quantile function x (F) of the Weibull distribution is defined as: 
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The Weibull distribution reduces to exponential distribution when 1=α . The method 

of  moments estimators of λα &  are obtained to solve these equations numerically. 
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While the methods of maximum likelihood estimating equations are: 
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We solve these equations numerically to find the ML estimates of α and λ. 

We have obtained the PWM estimates of λα &  
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by solving these above equations simultaneously for λα & . 

 

 The least squares and relative least squares estimates for the shape and scale 

parameters are inclined away: 
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while the relative least squares estimators are obtained by minimizing 

the relative sum of squares of residuals and are given as: 
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2.3 Rayleigh distribution 

The pdf f (x) and cdf F (x) of the Rayleigh distribution are given below 
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The quantile function of the Rayleigh distribution is 

  ( ) ( )[ ] 2
1

1ln −= FFx α  

 

 The Rayleigh distribution, which is a special case of the Weibull distribution, 

is widely used, e.g. in service life testing. The MM and PWM estimate of the Rayleigh 

distribution is given by: 

π
α
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While the ML estimate of the scale parameter of the rayleigh distribution is: 
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2.4 Lognormal distribution 

 The pdf f (x) and cdf F (x) of the lognormal distribution are given below:  
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While the maximum likelihood estimates of 
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2.5 Gamma distribution 

 The pdf f (x) and cdf F (x) of the gamma distribution are given by: 
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The maximum likelihood estimators of βα & are: 
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 Hosking (1986) showed that point estimates of the parameters of the Gamma 

distribution could be obtained by L-moment are described as: 
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3. Goodness of Fit Analysis 
 To compare the efficiency among different methods of estimation, we use the 

total deviation (TD), mean squared error (MES) and probability plot correlation 

coefficient (R
2
).  

3.1: Total Deviation (TD) 

 The TD will be calculated as under:  
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If γ & δ are the true values of the estimated parameters after each method, the best 

method yields the minimum total deviation. 

 

3.2 Mean Square Error (MSE) 

 The mean square error can be calculated as given: 
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3.3 Correlation Coefficient R
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The adequacy of a fitted distribution can beassessed by the correlation 
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4. Simulation study 
A simulation study for sample sizes of n=10, 20, 40 and 80 with different 

values of shape and scale parameters was performed to compare the performance of the 

proposed estimation methods for lifetime distributions. The results are based on 10,000 

simulation runs. We have generated samples of different sizes using the Minitab 

statistics package. The results are presented in Tables 4.1 to 4.5. 

 

 

Method 

 

 

Sample 

Size 

True 

values 

 

Estimated 

values 

 

TD 

 

MSE 

 
2R  

 

Bias 

λ  λ̂  

 

 

 

 

MM,ML 

and 

PWM 

 

 

10 

 

1 0.9668 0.0332 0.0001 0.8789 -0.0332 

2 0.6131 0.6934 0.0164 0.9116 -1.3869 

3 0.5109 0.8297 0.0264 0.9903 -2.4891 

 

20 

1 0.1755 0.2446 0.1621 0.5555 -0.8245 

2 0.6392 0.6804 0.0130 0.9490 -1.3608 

3 0.3382 0.8873 0.0543 0.9884 -2.6618 

 

40 

1 0.8812 0.1188 0.0010 0.7935 -0.1188 

2 0.5387 0.7306 0.0293 0.9611 -1.4613 
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3 0.2854 0.9049

 

0.0968 0.9945 -2.7146 

 

80 

1 0.8506 0.1494 0.0018 0.7960 -0.1494 

2 0.5141 0.7430 0.1042 0.8193 -1.4859 

3 0.3138 0.8954 0.1949 0.7822 -2.6862 

 

 

 

 

 

 

LS 

 

 

 

10 

 

1 1.1335 0.1335 0.0008 0.8457 0.1335 

2 0.9906 0.5047 0.0270 0.9693 -1.0094 

3 0.3732 0.8756 0.1239 0.9978 -2.6268 

 

20 

 

1 0.9595 0.0405 0.0002 0.7449 -0.0405 

2 1.3813 0.3094 0.0098 0.9355 -0.6187 

3 0.4359 0.8547 0.2038 0.9912 -2.5641 

 

40 

 

1 2.1814 1.1813 0.0423 0.6556 1.1814 

2 1.0177 0.4912 0.0263 0.9892 -0.9823 

3 0.5340 0.8220 0.1441 0.9883 -2.4660 

 

80 

1 2.9284 1.9284 0.0702 0.6867 1.9284 

2 0.7088 0.6456 0.0607 0.8528 -1.2912 

3 0.7757 0.7414 0.0570 0.8130 -2.2243 

 

 

 

 

 

 

 

RELS 

 

10 

 

1 0.1318 0.8682 0.2570 0.5786 -0.8682 

2 0.0723 0.9639 0.4010 0.9628 -1.9277 

3 0.1942 0.9353 0.2764 0.9732 -2.8058 

 

20 

 

 

1 0.0877 0.9123 0.2315 0.5451 -0.9123 

2 0.1755 0.9123 0.2938 0.9923 -1.8245 

3 0.0161 0.9946 0.7789 0.9870 -2.9839 

 

40 

1 0.0343 0.9657 0.3080 0.6751 -0.9657 

2 0.0374 0.9813 0.5064 0.9788 -1.9626 

3 0.1047 0.9651 0.4397 0.9925 -2.8953 

 

80 

1 0.0119 0.9881 0.3237 0.5926 -0.9881 

2 0.2195 0.8902 0.2582 0.9164 -1.7805 

3 0.1418 0.9527 0.3986 0.8197 -2.8582 

 

Table 4.1: Estimation of Parameter for Exponential Distribution 

 

 

 From Tables 4.1, it is observed that LS achieves the best estimate 8 times out 

of 12 which is approximately 67% of the time based on TD, MSE and 
2R . The bias in 

MM, ML and PWM estimates remains constant with the increase in sample size for λ
=2 and 3. But for λ =1, the bias is close to zero as the sample size increases.  Fig. 4.2, 

shows that the bias in LS estimators for λ =1 increases with the increase in sample 

size, for λ =2 the bias in LS estimator decreases after λ =2. It can further be observed 

the bias in RELS estimator just about remains constant with the increase in sample size 

for different values of the scale parameter. 
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Method 

 

 

Sample 

size 

True 

values 

Estimated values  

TD 

 

MSE 

 
2R  

 

Bias 

α  λ  α̂  λ̂  ( )α̂Bias  ( )λ̂Bias  

 

 
 

 

 
 

MM 

 
 

 

10 

1 1 1.4064 0.8989 0.5075 0.1410 0.7662 0.4064 -0.1011 

2 2 2.6457 1.9205 0.3626 0.1241 0.7099 0.6457 -0.0795 

3 2 3.7986 1.8804 0.3260 0.2030 0.6948 0.7986 -0.1196 

 
20 

 

1 1 0.8775 0.6621 0.4604 0.2066 0.6588 -0.1225 -0.3379 

2 2 1.8736 1.6103 0.2581 0.2576 0.9112 -0.1264 -0.3897 

3 2 2.7104 2.1410 0.1670 0.1204 0.7110 -0.2896 0.1410 

 

40 

1 1 0.9997 1.0617 0.0620 0.1366 0.6329 -0.0003 0.0617 

2 2 2.1228 2.2655 0.1942 0.1363 0.8304 0.1228 0.2655 

3 2 4.5163 2.1345 0.5727 0.1622 0.9143 1.5163 0.1345 

 
80 

1 1 1.0366 0.9176 0.1190 0.1369 0.7289 0.0366 -0.0824 

2 2 1.9758 1.9876 0.0183 0.1896 0.8977 -0.0242 -0.0124 

3 2 3.2815 1.9817 0.1030 0.1899 0.7165 0.2815 -0.0183 

 

 
 

 

 
ML 

 

 

 

10 

1 1 2.3995 1.0905 1.4900 0.1146 0.8128 1.3995 0.0905 

2 2 1.6184 2.5225 0.4521 0.1046 0.9114 -0.3816 0.5225 

3 2 3.9490 1.6022 0.5152 0.3275 0.8875 0.9490 -0.3978 

 
20 

 

1 1 1.2131 1.1419 0.3550 0.2076 0.8183 0.2131 0.1419 

2 2 1.9743 2.0215 0.0236 0.1646 0.9257 -0.0257 0.0215 

3 2 2.5043 2.3537 0.3421 0.2253 0.7843 0.4957 0.3537 

 

40 

1 1 1.2180 0.9160 0.3020 0.1649 0.4551 0.2180 -0.0840 

2 2 2.0638 1.8486 0.1076 0.2005 0.8869 0.0638 -0.1514 

3 2 4.4655 1.6149 0.6811 0.1768 0.8552 -1.4655 -0.3851 

 
80 

1 1 0.8880 0.9999 0.1121 0.1547 0.7833 -0.1120 -0.0001 

2 2 2.1028 1.7144 0.1942 0.1615 0.8782 0.1028 -0.2856 

3 2 3.3557 1.8877 0.1748 0.1327 0.7402 0.3557 -0.1123 

 

Table 4.2: Estimation of Parameters for Weibull Distribution 

 

 

 For the Weibull distribution, obtained results are listed in Table 4.2. It is 

noticed that MM and ML method for estimates are found more complex and Newton-

Raphson method is used to calculate the parameters. The bias in MM estimators 

decreases rapidly with the increase in sample size. It is observed that estimated value of 

the shape parameterα̂ by PWM, LS and RELS came out negative for samples of size 

less than 80. It might be due to large amount of bias for small samples. The bias in the 

shape parameter when estimated by using MM is large when 3=λ  and n=40. But 

when the sample size increases i.e. 80, then the bias for 3&2,1=λ  are almost 

similar. While the bias in scale parameter also decreases rapidly when n=80.The bias in 

the shape and scale parameters decreases when estimated by using the method of 

maximum likelihood.  
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Method 

 

Sample 

size 

True 

values
α  

 

Estimated 

valuesα̂  

 

TD 

 

MSE 

 
2R  

 

Bias 

  

 

 

 

 

 

MM 

and 

PWM 

 

 

10 

1 1.0986 0.0986 0.0018 0.4406 0.0986 

2 1.2062 0.3969 0.0724 0.4240 -0.7938 

3 2.7549 0.0817 0.0023 0.2030 -0.2451 

 

20 

1 1.1663 0.1663 0.0079 0.1484 0.1663 

2 1.8960 0.0520 0.0008 0.0547 -0.1040 

3 2.7498 0.0830 0.0021 0.1230 -0.2502 

 

40 

1 1.0528 0.0528 0.0009 0.2814 0.0528 

2 1.8422 0.0789 0.0019 0.3321 -0.1578 

3 2.9921 0.0026 0.0000 0.1341 -0.0079 

 

80 

1 1.0450 0.0450 0.0005 0.4455 0.0450 

2 2.1067 0.0534 0.0007 0.8803 0.1067 

3 2.8992 0.0336 0.0004 0.9748 -0.1008 

 

 

 

 

 

 

ML 

 

 

 

10 

1 0.9495 0.0505 0.0006 0.3573 -0.0505 

2 1.6675 0.1663 0.0093 0.3585 -0.3325 

3 2.2400 0.2533 0.0322 0.2761 -0.7600 

 

20 

1 1.1502 0.1502 0.0062 0.0125 0.1502 

2 1.9040 0.0480 0.0008 0.0500 -0.0960 

3 3.4412 0.1471 0.0048 0.1125 0.4412 

 

40 

1 0.9323 0.0667 0.0013 0.4332 -0.0677 

2 1.8471 0.0765 0.0018 0.2515 -0.1529 

3 3.0142 0.0047 0.0000 0.1200 0.0142 

 

80 

1 1.0754 0.0754 0.0018 0.6564 0.0754 

2 2.1193 0.0597 0.0009 0.9009 0.1193 

3 2.9162 0.0279 0.0002 0.9715 -0.0838 

 

 

 

 

 

 

LS 

 

 

 

10 

1 0.9980 0.0020 0.0000 0.7922 -0.0020 

2 1.3580 0.3210 0.0357 0.1797 -0.6420 

3 3.1590 0.0530 0.0007 0.1932 0.1590 

 

20 

1 0.5930 0.4070 0.0885 0.2612 -0.4070 

2 2.0166 0.0083 0.0000 0.0898 0.0166 

3 2.8270 0.0577 0.0009 0.0612 -0.1730 

 

40 

1 0.7899 0.2101 0.0144 0.3932 -0.2101 

2 1.5174 0.2413 0.0167 0.2955 -0.4826 

3 2.3687 0.2104 0.0159 0.1233 -0.6313 

 

80 

1 0.7925 0.2075 0.0175 0.4198 -0.2075 

2 1.5600 0.2200 0.0188 0.9140 -0.4400 

3 2.4271 0.1910 0.0126 0.9802 -0.5729 

 

 

 

 

 

 

10 

1 1.1374 0.1374 0.0044 0.6462 0.1374 

2 2.1104 0.0552 0.0008 0.4833 0.1104 

3 3.1454 0.0485 0.0006 0.4877 0.1454 

 

20 

1 0.9271 0.0729 0.0014 0.6796 -0.0729 

2 2.6057 0.3028 0.0194 0.7260 0.6057 
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RELS 

 

 

3 4.0599 0.3533 0.0202 0.4864 1.0599 

 

40 

1 0.5725 0.4275 0.0983 0.3205 -0.4275 

2 2.5502 0.2751 0.0160 0.6452 0.5502 

3 5.4088 0.8029 0.0934 0.5478 2.4088 

 

80 

1 0.1305 0.8695 0.3191 0.3066 -0.8695 

2 0.8004 0.5998 0.1511 0.8788 -1.1996 

3 1.0157 0.6614 0.1816 0.9706 -1.9843 

 

Table 4.3: Estimation of Parameter for Rayleigh Distribution 

For the Rayleigh distribution, the gained values are listed in Table 4.3. It can 

be observed that MM and PWM achieve the best estimates. In the table 4.3, the bias in 

the RELS estimator decreases rapidly with the increase in sample size, while the bias in 

ML and PWM estimator decreases rapidly for scale parameter is 3, with the increase in 

sample size.  

 

 

Metho

d 

 

 

Sampl

e size 

True 

values 

Estimated values  

TD 

 

Bias 
µ
 

2σ
 

µ̂  2σ̂  ( )µ̂Bias
 

( )2σ̂Bias

 

 

 

 

 

MM 

 

 

10 

1 1 1.2757 0.4491 0.8266 0.2757 -0.5509 

2 2 3.5384 0.8754 1.3315 1.5384 -1.1246 

3 2 3.5684 1.3290 0.5250 0.5684 -0.6710 

 

20 

1 1 1.0601 0.4973 0.5628 0.0601 -0.5027 

2 2 2.2945 2.0548 0.1747 0.2945 0.0548 

3 2 3.5612 1.2303 0.5720 0.5612 -0.7697 

 

40 

1 1 0.8554 0.4793 0.6653 -0.1446 -0.5207 

2 2 2.1449 1.7292 0.2079 0.1449 -0.2708 

3 1 3.9061 2.3275 0.4658 0.9061 0.3275 

 

80 

1 2 1.0483 1.0543 0.1026 0.0483 0.0543 

2 2 2.7385 2.5039 0.6212 0.7385 0.5039 

3 2 3.9208 1.6055 0.5042 0.9208 -0.3945 

 

 

 

 

ML 

 

 

 

 

10 

1 1 2.0250 0.8896 1.1354 1.0250 -0.1104 

2 2 1.3126 3.2025 0.9450 -0.6874 1.2025 

3 2 2.4563 2.2524 0.3074 -0.5437 0.2524 

 

20 

1 1 0.9998 0.3973 0.6029 -0.0002 -0.6027 

2 2 1.4759 4.8743 1.6993 -0.5241 2.8743 

3 2 2.8942 3.5440 0.8073 -0.1058 1.5440 

 

40 

1 1 1.3332 0.9016 0.4316 0.3332 -0.0984 

2 2 2.1351 3.7099 0.9226 0.1351 1.7099 

3 2 3.4759 2.9714 0.6443 0.4756 0.9714 

 

80 

1 1 1.1679 0.9069 0.2611 0.1679 -0.0931 

2 2 2.1716 3.1256 0.6486 0.1716 1.1256 

3 2 3.2081 3.5614 0.8501 0.2081 1.5614 

 

Table 4.4: Estimation of Parameters for Lognormal Distribution 
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For the lognormal distribution, the location parameter ( )µ  and the scale 

parameters ( )2σ  were estimated by MM and ML. The results are given in Table 4.4. It 

can be observed that MM is 9 times best as compared to ML estimates, which is 

approximately 75% of the time on the basis of goodness of fit analysis. The bias in MM 

estimates decreases consistently with the increase in sample size.  

 

 

 

Method 

 

 

Sample 

size 

True 

values 

Estimated 

values 

 

TD 

Bias 

α  β  α̂  β̂  ( )α̂Bias  ( )β̂Bias  

 

 

 

MM 

 

 

 

 

10 

1 1 1.1318 1.3711 0.5029 0.1318 0.3711 

2 2 1.4461 3.2615 0.9077 -0.5539 1.2615 

3 2 1.7871 2.5746 0.6916 -1.2129 0.5746 

 

20 

1 1 1.4323 1.0126 0.4539 0.4322 0.0126 

2 2 2.8663 1.4661 0.7001 0.8663 -0.5339 

3 2 3.8023 1.6883 0.4233 0.8023 0.3117 

 

40 

1 1 0.9796 1.2157 0.2361 -0.0204 0.2157 

2 2 3.0653 1.4077 0.8289 1.0653 -0.5924 

3 1 2.5861 2.0902 0.1831 -0.4139 0.0902 

 

80 

1 2 0.8362 1.3197 0.4835 0.1638 0.3197 

2 2 2.6806 1.7016 0.4895 0.6806 0.2984 

3 2 3.7878 1.8646 0.3303 0.7878 -0.1354 

 

 

 

 

 

ML 

 

 

 

 

10 

1 1 0.8769 1.1202 0.2433 -0.1231 0.1202 

2 2 3.1494 1.0786 1.0354 1.1494 -0.9214 

3 2 2.9620 1.6846 0.1704 -0.0387 -0.3154 

 

20 

1 1 1.5192 0.6996 0.8196 0.5192 -0.3004 

2 2 1.6238 2.5849 0.4806 -0.3762 0.5849 

3 2 3.5081 1.6152 0.3618 0.5081 -0.3848 

 

40 

1 1 1.1676 0.9519 0.2157 0.1676 -0.0481 

2 2 1.4085 2.9548 0.7732 -0.5915 0.4774 

3 1 2.8139 1.9377 0.0932 -0.1861 -0.0623 

 

80 

1 2 0.8746 1.0635 0.1889 -0.1254 0.0635 

2 2 2.2581 1.6849 0.2866 0.2581 -0.3151 

3 2 3.5204 1.7256 0.3107 0.5204 0.2744 

 

Table 4.5: Estimation of Parameters for Gamma Distribution 

 

 For the gamma distribution, the scale parameter ( )β  and shape parameters 

( )α  were estimated by MM and ML. The obtained results are listed in Table 4.5. The 

MM and ML method for estimated parameters of gamma distribution found more 

complex and Newton-Raphson method is used to calculate the parameters of gamma 

distribution. Fleeting look on Table 4.5shows that ML estimators are steadfast and 

unrelenting estimators for estimating the parameters of gamma distribution. 
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5. Data Analysis 
 In this section, we analyze real data set and discriminate between the 

exponential families of distributions. The following data set (Linhart and Zucchini; 

1986, page 69) represents the failure times of the air conditioning system of an 

airplane:23,261,87,7,120,14,62,47,225,71,246,21,42,20,5,12,120,11,3,14,71,11,14,11,1

6,90,1,16,52,95.The study aim is to discriminate the lifetime distribution model. The 

output of the real life data is given in the following tables: 

 

 

Distribution Anderson-Darling (adj) 

Weibull 0.910 

Lognormal 0.754 

Exponential 1.400 

Rayleigh 1.350 

Gamma 3.017 

 
Table 5.1: Goodness of Fit Analysis by using the Real Life Data 

 

 
Distribution Percent Percentile Standard 

Error 

Lower Upper 

Weibull 1 0.249 0.2132 0.047 1.3225 

Lognormal 1 1.335 0.6192 0.538 3.3135 

Exponential 1 0.599 0.1094 0.419 0.8567 

Rayleigh 1 0.499 0.1000 0.400 0.7500 

Gamma 1 -104.818 24.8407 -153.505 -56.1313 

Weibull 5 1.683 1.0102 0.519 5.4575 

Lognormal 5 3.281 1.2122 1.591 6.7688 

Exponential 5 3.057 0.5581 2.137 4.3723 

Rayleigh 5 3.000 0.4400 2.100 3.3000 

Gamma 5 -56.653 19.7927 -95.445 17.8596 

 

Table 5.2: Percentiles by using the Real Life Data 

 

 

 From the above tables (5.1& 5.2), it is noticed that results obtained through the 

real life data are compatible with the simulation results. 

 

 

6. Conclusion 
Estimation of parameters of the exponential family of distributions have been 

derived using the MM, ML, PWM, LS and RELS methods, for all the five distributions 

i.e. exponential, Weibull, Rayleigh, lognormal and gamma. It is found that PWM 

method is best suited for estimating the parameters of those distributions, whose CDF 

are expressible n the inverse form for small sample sizes. In case of large sample sizes, 

ML provides best estimates and the estimated value is close to the true value of the 

parameters. Intended for the exponential distribution, LS achieves the best estimate ‘8’ 
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times out of ‘12’, which is approximately 67% of the time based on the goodness of fit 

analysis.  

 

For the Weibull distribution, it is noticed that MM and ML estimates are found 

more complex and Newton-Raphson method is used. The bias in MM estimators 

decreases rapidly by means of the increase in sample size. It is observed that estimated 

value of the shape parameter α̂  by PWM, LS and RELS came out negative for samples 

of size less than 80. It might be due to large amount of bias for small samples.  

 

In case of Rayleigh distribution, MM and PWM provide the best estimates for 

scale parameterα  . While the bias decreases rapidly with the increase in sample size 

and the estimated value is close to the true value of the parameter and the TD is 

minimum and ranges from 0.026 to 0.1663 and the value of the correlation coefficient 

is close to one. 

 

 For the lognormal distribution, MM provides the best estimates ‘9’ times out 

of ‘12’ times. The bias and MSE for the MM estimates decrease consistently. 
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