A MATHEMATICAL PROGRAMMING APPROACH IN OPTIMUM STRATIFICATION UNDER NEYMAN ALLOCATION FOR TWO STRATIFYING VARIABLES
DOI:
https://doi.org/10.13052/jrss2229-5666.12213Keywords:
Optimum Stratification, Dynamic Programming, Auxiliary InformationAbstract
The current study discusses the solution for obtaining stratification points under Neyman allocation having one study variable and two auxiliary variables. Using dynamic programming approach non-linear programming problem has been solved. The proposed technique has gained in precision rather than using only one auxiliary variable. Numerical illustration has been given in which each of the auxiliary variable is supposed to follow different distribution. Through the empirical study, the proposed method has been compared with the Ravindra and Sukhatme (1969) and Khan et al.(2005) methods with the conclusion of having its more relative efficiency.
Downloads
References
Dalenius, T. (1950).The problem of optimum stratification-Ii, Skand. Aktuartidskr, 33, p. 203-213.
Dalenius, T. and Gurney, M. (1951). The problem of optimum stratification-II, Skand. Aktuartidskr, 34, p. 133-148.
Dalenius, T. and Hodges, J. L. (1959). Minimum variance stratification, J. Amer. Statist. Assoc., 54, p. 88-101.
Danish , F. and Rizvi, S.E.H. (2017). On optimum stratification using mathematical programming approach, International Research Journal of Agricultural Economics and Statistics, 8(2), p. 435-439.
Danish, F., Rizvi, S.E.H. Jeelani, M. I and Reashi J.A. (2017a). Obtaining strata boundaries under proportional allocation with varying cost of every unit, Pak. J. Stat. Oper. Res., 13(3), p. 567-574.
Danish, F., Rizvi, S.E.H. Jeelani, Sharma, M.K. and M. I.J (2017b). Optimum stratification using mathematical programming approach: a review, Stat. Appl. Prob. Lett. , 4(3), p. 123-129.
Fanolahi, A.V. and Khan, M.G.M. (2014).Determining the optimum strata boundaries with constant cost factor, Conference: IEEE Asia Pacific World Congress on Computer Science And Engineering (Apwc), At Plantation Island, Fiji.
Khan, M.G.M. , Khan, E.A. and Ahsan , M.J. (2003). An optimal multivariate stratified sampling design using dynamic programming, Aust. N. Z. J. Stat, 45(1), p.107–113.
Khan, M. G. M., Najmussehar and Ahsan, M. J. (2005). Optimum stratification for exponential study variable under neyman allocation, J. Indian Soc. Agricultural Statist., 59(2), p. 146-150.
Khan, M. G. M., Nand, N. and Ahmad,N. (2008). Determining the optimum strata boundary points using dynamic programming, Survey Methodology, 34 (2), p. 205-214.
Khan, M. G. M., Ahmad, N. and Khan, Sabiha (2009). Determining the optimum stratum boundaries using mathematical programming, J. Math. Model. Algorithms, Springer, Netherland, 8(4), p. 409- 423.
Khan, M. G. M. , Rao, D., Ansari, A.H. and Ahsan, M.J. (2015). Determining optimum strata boundaries and sample sizes for skewed population with log- normal distribution, Communication in Statistics –Simulation and Computation, 44, p.1364-1387.
Mahalanobis, P. C. (1952). Some aspects of the design of sample surveys, Sankhya, 12, p. 1-7.
Rao, D., Khan, M.G.M. and Khan, S. (2012). Mathematical programming on multivariate calibration estimation in stratified sampling, World Academy of Science, Engineering and Technology, 6, p. 12-27.
Rao, D.K., Khan, M.G.M. and Reddy, K.G. (2014). Optimum stratification of a skewed population, International Journal of Mathematical, Computational, Natural and Physical Engineering, 8(3), p. 497-500.
Rizvi, S. E. H., Gupta, J. P. and Bhargava, M. (2002). Optimum stratification based on auxiliary variable for compromise allocation, Metron, 28(1), p. 201- 215.
Sebnem, Er.(2011). Computation methods for optmum stratification: an overview. Int.Statistical Inst.:Proc.58th World Stastistical Congress. Dulbin, (Sts 058).
Singh, R. (1971). Approximately optimum stratification on the auxiliary variable, J. Amer. Statist. Assoc., 66, p. 829-833.
Singh, R. (1975). An alternate method of stratification on the auxiliary Variable, Sankhya, 37, p. 100-108.
Singh, R. and Sukhatme, B. V. (1969). Optimum stratification for equal allocation, Ann. Inst. Statist. Math., 27, p. 273-280.