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Abstract

In this article, another three-parameter Weibull moment exponential (WME)
distribution is derived and studied. The proposed distribution is more flexible because of various
different shapes of hazard rate function including monotone and non-monotone. Mathematical
properties of the WME model are derived such as moments, m.g.f, quantile function, and Rényi
entropy. The pdf’s of its order statistics are also obtained. Characterizations on two aspects are
also presented including the ratio of truncated moments and hazard rate function. Model
parameters are estimated by the method of maximum likelihood. Monte Carlo simulations are
used to show the consistency of parameters. Some real data applications are given to illustrate the
flexibility of the proposed distribution among other competitive models. It may be concluded that
the proposed model is entirely adaptable for lifetime datasets with either monotone or non-
monotone shape of hazard rate function.
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1. Introduction

Several univariate continuous distributions have been extensively used in
environmental, engineering, financial, biomedical sciences, among other areas for
modeling lifetime data. There is still a strong need for generalized distributions and a
significant improvement has been made to generalize classical distributions in recent
years. These distributions are useful in lifetime analysis (reliability analysis), insurance,
economy, finance, and engineering. The exponential distribution has been used to deal
with lifetime datasets in reliability analysis (Epstein, 1958). Its generalizations include
the double exponential (Norton, 1984), exponentiated exponential (Gupta and Kundu,
2001), transmuted exponentiated exponential (Merovei, 2013), moment exponential
(Dara and Ahmed, 2012) and moment exponential (ME) distribution is obtained by
assigning linear weights to well-knownexponential distribution.

Some generalizations of probability distributions have been proposed to
introduce new families which are more flexible than baseline models. For example, odd
generalized exponential (Tahir et al. 2015), exponential (Shushi 2017), new
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exponentiated extended-G (Elgarhy et al. 2017), odd Fréchet-G (Haq et al. 2018) and
moment exponential-G (Haq et al. 2018) family of distributions. One of these
generalizations is Weibull-G family of distribution suggested by Bourguignon et al.
(2014).

A random variable (r.v.) Y is said to have moment exponential distribution
with a scale parameter f, if its cdf is given as

G(y;ﬂ):l—(H%je(;), y>0,4>0,

and its associated pdf is given by
5

g(y;ﬂ):#e(ﬂ], $>0,8>0. (1)

For different value of the shape parameter, the pdf can take different shapes.
Adding parameters to a well-defined distribution is a way of obtaining more flexible
new families of distributions. A few extensions of moment exponential distribution are
accessible, for example exponentiated moment exponential (EME) (Hasnain and
Ahmad, 2013), generalized exponentiated moment exponential (GEME) (Igbal et al.
2014) and Marshall-Olkin length-biased exponential (MOLBE) (Haq et al. 2017)
distributions.

The first parameter induction to the moment exponential was proposed by
Hasnain and Ahmed (2013) taking the power of cdf of moment exponential
distribution. The two-parameter exponentiated moment exponential cdf is

¥

H(y;a,8) :[1—[1+%je[ﬂ]] . y>0,a,8>0,

where o>0 is a shape parameter and its associated density function is

by y

h(y;0, ) :%[1—[1+%je(ﬂ]] e{ﬁj, y>0,a,f>0.

The second parameter extension to the moment exponential distribution is
GEME suggested by Igbal et al. (2014) and its cdf is

A ¥
G(y;aB.7)= 1—[1+%Je[ﬂ] , y>0,a,8,y >0,

where ¥ > () is another shape parameter and its pdf reduces to

G,
g(y;a,ﬁ,y):%jyl 1—(1+y—l;je[ﬂ] e{yf], y>0,a,8,y>0.

Another second parameter extension of moment exponential distribution is
Marshall-Olkin length-biased exponential (MOLBE) distribution presented by Haq et
al. (2017).

y
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In this research paper, we propose and study mathematical properties of this
extension of the moment exponential (ME) distribution called Weibull moment
exponential (WME) distribution. This new distribution would be useful for modeling
lifetime datasets. For example, time until disease recurrence, time until cancer patients'
death after some treatment intervention or time until a part of a machine fails can fit the
proposed distribution.

Let g (y;7)and G(y;7)denote the pdf and cdf of the baseline probability

distribution with parameter vectory. The cdf of the Weibull distribution is

F ( y) :1—e7(ay)) with positive parameters a and b and Y>0. Bourguignon et al. (2014)

considered the upper limit G(,7)/ G(y,y) in this cdf, where G(y,7)=1-G(»,7) and
the cdf of the Weibull-G family is as follows:
Gr.r)G(y7) ()
F(y,a,b,}/) =ab J e\ dr

0

b
G(J’J/)}
F(y,a,b,y)=1—-expy-a| = , >0 (2)
( ) {G(W)
Then, the density function of the Weibull-G distribution becomes
_ b
G(y.r)" {G(J’J/)}
S(yiabyy)=abg(y:y)| =57 |expy—a| = : 3

Motivated by the Weibull-G family, many probability distributions have been
proposed and studied in the literature. Few examples include Weibull-Pareto by
Alzaatreh et al. (2013) and Nasiru and Luguterah (2015), transmuted New Weibull-
Pareto (Tahir et al. 2018), Weibull-Dagum distribution by Tahir et al. (2016), Weibull-
Power Function distribution by Tahir et al. (2014), transmuted Weibull Power Function
(Haq et al. 2018) and transmuted Weibull-Fréchet distribution (Haq et al. 2017).
Weibull-Lomax distribution by Tahir et al. (2015), Weibull-Rayleigh by Merovci and
Elbatal (2015), Weibull-exponential distribution by Oguntunde et al. (2015). However,
these distributions are not flexible enough for the lifetime datasets. Thus, the main
purpose of this paper is to derive a new three-parameter model named as the Weibull-
moment exponential (WME) distribution based on this idea.

This article is arranged in following manner: In Section 2, the expressions of
cumulative distribution function and density functions of proposed model are defined.
Then, we derive the linear representation of the pdf and its important main
mathematical properties. In Section 3, the entropy functions of the WME distribution
are also given. The mean residual life and mean inactivity time are presented in Section
4. Characterization of distribution based on truncated moments and hazard function are
given in Section 5. The order statistics of the WME distribution are given in Section 6.
In Section 7, we considered maximum likelihood estimation (MLE) method to estimate
the unknown parameters. Monte Carlo simulations are used to show the performance of
the WME distribution is presented in Section 8. The flexibility of the derived
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distribution is assessed by few real data applications in Section 9. Finally, final
comments are given in Section 10.

2. Properties of the Weibull Moment Exponential Distribution

2.1. Some important functions

By putting Eq. (1) in Eq. (2), the cdf of the WME distribution is
- b
2y
1- (1 + yj ¢’
A
y
(1 + yj e’
L B
The corresponding pdf is obtained as
r b1 ’
, 1—[1+;je”} 1_[1+y]eﬁ
()= ab%eiﬁ - — T eXpy—a —’By (5)
p 1+2 ei (1+y}:ﬂ
B s

Henceforth we denote Y ~ WME (a,b, ﬂ) ar. v. having pdf (5) and its survival function is
1- (1 + y] e’
B
y
[1 + y] e’
p

In lifetime data analysis, the expression of hazard rate function (hrf) has a vital
significance. That’s why, we will study hrf of the WME distribution and it is defined as

ol

h(x)=ab—c * —
5]

Figures 1 (a) and 1 (b) show the graphs of pdf and hrf of the WME distribution for
some specific parametric values. The unimodal and monotonically decreasing shapes can be seen
in figure 1 (a), which shows the WME distribution more flexible than the ME distribution.
Furthermore, Figure 1(b) shows different shapes of hrf of the WME distribution such as
increasing and bathtub. This makes the WME demonstrate valuable and appropriate when non-
monotone sample hazard behaviors are shown.

F(y)=1-expi-a “)

b

S(y)=exps—a (6)

(N
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Figure 1(a). The pdf plots Figure 1(b). The hrf plots
Further, Table 1 displays some special models of WME distributions.
a b B | Reduced Model Authors
- - 1 | Weibull distribution Weibull (1951)
- 2 - | Rayleigh moment exponential distribution New
- 1 - | Exponential moment exponential distribution New
1 1 - | Moment exponential distribution Dara and Ahmed (2012)
- 2 1 | Rayleigh distribution Rayleigh (1880)

Table 1: Some special models

2.2. Shape characteristics of the pdf and hrf of WME Distribution
The limiting behavior of the density and hrf are presented in following
theorem.

Theorem: Let Y be ar.v.Y ~WME(a,b,f)then the limit of pdf and hrf of WME
distribution at origin and as y approaches to infinity are given by

') b<0.5
. . a
lylg(}f(y)—%g%h(y)— 727 b=05
0 b>0.5

and lim f(y)=0, limh(y)=o0

y—oo y—oo

Proof: For the given relation

f(y) = h(y)S(y), the limits are obvious.
From the above theorem, it can be observe that shape of density function may assume
following shapes

e Decreasing when b<0.5, starting froma/ [2pand increase or decrease when
b=0.5, and starting from origin and form modal shape if b>0.5.
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e The density function always touches x-axis as x approaches to .
e The hazard curve always form increasing trend or bathtub shape for all
combinations of parametric values.

2.3. Expansion for the density function

We describe density function of WME model as a mixture representation in

terms of power series expansion:
b bi

1-[142 e c =142 ¢’
B =i(_1) a B
[1+;je; = [1+;Je;

Then, the pdf of the WME distribution reduces to

Y w Lt 5 Jeli+)-1 5 (eG4
P e (L e 2
f =hLe’ (14——]6 p (14-—]@ s
B Zo s A

where
y b(i+1)-1 - k Ty
{1—(“%} ﬂ} Z(‘; ( ’+k1) ](H%} e /.

Therefore, we can also write the pdf as follows:

_y vk  e=(b(+1)+1)
Cbye ” & (<) d (b(i+1)-1 V.7
/()= = [ k )

exp< —a

k=b(i+1)- o (f_ b 1 1 J
where [1 2 Z (i ) 2 | Hence, the mixture representation for
B

the WME distribution is given by

f(y):b i M{b(i+1)_1j{k_b(i.+l)_lj£e;(kb(m))

i,j,k=0 i! k j ﬁ;+2
yr (k b(i+1))
bz/zko hk [J’“Z (®)
0 -1 itk il . B _ R B
where 5, = z ().—a(b(”‘l) lj(k b(1.+1) 1].
Nt il k j

Many characteristics of the WME distribution can be obtained using pdf expansion
given in Eq. (8).

2.4 Moments
In this subsection, we derive the moments of WME (a,b,f) distribution.
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Theorem: Let Y be ar. v. has WME distribution. Then the ' raw moment is
, © P T(r+j+2
by 5, L) ©)
ik (k=b(i+1))

Proof: The 7" moment of X of a distribution can be obtained using following integral

o= fyrf(x;a,b,ﬁ)dy
0

LI A o =Z(k-b(i+
From Eq. (8), we have w,=b Y %J‘y’””e Ca 1))a’y
i,j,k=0 /8] 0
Lethel(k—b(iH)). Then, we can write y:Land dy=¢dz.
B (k=b(i+1)) (k=b(i+1))

The above equation reduces to

] oo 0 )+1+1 r+j+1 . ﬂ
o= rjk O sz '([ r+j+le (k—b(l+1))dz
< ﬂr T rej+l -z
=b _ |z d.
/zko M k=b(i+n)) Jereas

and simplification completes the proof.
Both Skewness (y,) and kurtosis ( ﬁz) both are used to evaluate the shape of the

probability distribution. These measures can be easily determined by the following
expressions based on the first four mean moments:

= %’ 182 = /u_i
3

2.5. Incomplete Moments
In this subsection, we derive the incomplete moments of WME (a,b,p).

Theorem: Let Y has the WME density (8). The " incomplete moment is obtained as
p(1)=b Y 8, —L——y(r+j2p) (10)
i) k=0 (k—b(i+l))
Proof: The 7" incomplete moment of WME distribution is
k b(i+1))

w y — v dv b ’]+k :+]+1 dV
( ) j ) ,]z,() ﬂ] 2 '([
Letzzl(k—b(iﬂ)).Then, we have v=—"—— zp anddv—#dz
; (i) " (i)
The above expression reduces to
oo y r+j+1 r+j+1 ﬁ
w y - +2 r+ j+ e_z . dZ
(r)=h l,koﬂ’ ! 7T (k=b(i+1))

r y
) bz ,jk—ﬂ _ _[Z"””e'zdz

i, k=0 (k—b(i+1))r+]+2 0



Incomplete gamma function is substituted and result follows.

2.6. Moment generating function
Now we define the mgf of WME distribution as

My (t) = IE”’f(y;a,e,/l)dy =

0

:bZé'

i,j.k,r=0

tr 0 rtj+l

Y

oo, — | ——¢
i,j.k j+2
oty gt

After integration and simplification, we get the mgf as

—%(k—b(z‘ﬂ))

IZ%y"f(y;a,H,ﬂ)dy

or=0" -

dy.

t'BT(r+j+2)
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M} (t)=b Z i,j.k . r+j+2 (11)
1 k=0 r!(k -b(i+ 1))

a b B Mode Mean H 7 (sk) ﬁz
0.5 1 0.5 1.00861 | 0.978333 | 0.199257 | 0.0914216 | 2.35074
0.5 1 1 2.01722 | 1.95667 | 0.797027 | 0.0914216 | 2.35074
0.5 1 5 10.0861 | 9.78333 | 19.9257 | 0.0914216 | 2.35074
0.5 2 0.5 0.9525 0.88112 | 005489 | -0.338926 | 2.80357
0.5 2 1 1.9050 1.77622 | 0.21956 | -0.338926 | 2.80357
0.5 2 1.5 2.8575 2.66434 | 0.494011 | -0.338926 | 2.80357
0.5 2 5 9.525 8.88112 | 5.48901 | -0.338926 | 2.80357
0.5 5 0.5 0.8905 | 0.852701 | 0.00967 | -0.76855 | 3.87153
0.5 5 1 2.6795 1.7054 | 0.038705 | -0.76855 | 3.87153
0.5 5 5 8.90543 | 8.52701 | 0.967637 | -0.76855 | 3.87153

1 1 0.5 0.64899 | 0.72278 | 0.128717 | 0.297641 | 2.49294

1 1 1 1.2980 1.44556 | 0.514867 | 0.297641 | 2.49294

1 1 1.5 1.9470 2.16834 | 1.15845 | 0.297641 | 2.49294

1 2 0.5 | 0.802782 | 0.755606 | 0.0431472 | -0.259824 | 2.73323

1 2 1 1.60556 | 1.51121 | 0.172589 | -0.259824 | 2.73322

1 2 1.5 240835 | 2.26682 | 0.388324 | -0.259824 | 2.73323

1 5 0.5 | 0.833826 | 0.798303 | 0.0087937 | -0.748911 | 3.81622

1 5 1 1.66765 | 1.59661 | 0.035175 | -0.748911 | 3.81622

1 5 1.5 2.50148 | 2.39491 |0.0791436| -0.748911 | 3.81622

5 1 0.5 10.237042 | 0.3232 | 0.031738 | 0.65702 | 3.15674

5 1 1 0.474083 | 0.6464 0.12695 0.65702 | 3.15674

5 1 1.5 [ 0.711125 | 0.9696 | 0.285645 | 0.65702 | 3.15674

5 2 0.5 | 0.523777 | 0.505034 |0.0218724 | -0.115308 | 2.67573

5 2 1 1.04755 | 1.01007 | 0.087489 | -0.115308 | 2.67573

5 2 1.5 1.57133 1.5151 0.19685 | -0.115308 | 2.67573

5 5 0.5 |0.711947 | 0.681638 | 0.0068822 | -0.707178 | 3.70568

5 5 1 1.42389 | 1.36328 |0.0275288| -0.707178 | 3.70568

5 5 1.5 2.13584 | 2.04492 |0.0619397| -0.707178 | 3.70568

Table 2: Central tendencies and measure of dispersions for Y at different
parameter combination
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It is observed from Table 2 that

. The range of y increases as 3 or an increases or b decreases.
ii. Variance increases for higher values of 8.
ii. Skewness and kurtosis remain same for same vale of b.
iv. Distribution is negatively skewed for b>1.

2.7. Quantile function and random number generation
If U is a uniform r. v. with(O,l) , then Y=Q(U) follows density Eq.(5). The

quantile function of Y corresponding to Eq.(4) is

y=F '(u)=p ef -1 (12)

(1—log(l—u);j;

Since it is a complex equation, by iteration method, the equation provides the quartiles
and random numbers of the WME distribution.

3. Entropies
Let us now consider the Rényi and q entropies. These entropies are measures
of uncertainty of a random variable. We derive the Rényi entropy defined by

1
IR(5)21_5

10gjf§ (x)dx, o>0and o #1.
0

Theorem: If the r. v. Y follows WME distribution, then the Rényi entropy is given by

dloga JSlogh 1 © F(5+j+1)
#(5) s s 0gﬂ+1_5 og{%“oﬂl_,,k (k—b(i+5))“"” (13)

Proof: If Y has the WME distribution, then the Rényi entropy can be obtained from
1
1,(8) = —log[1(5)] (14)
where 6> 0and ¢ # 1. Eq.(14) becomes

1(8)= [£° (»)dv

y Ob—-6 b
. {1—(1+;]e ﬂ} 2
= J.adbd y_zaei7 5b+5 :
p _y
’ Kl+y e’
B

Since we can write the following expansion
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We have

5 % o (_ Ly b(i+5)-5 Ly ~(b(i+6)+9)
Po=sr Lo F SR (T2
(v)= z . .
where
e : B -
1‘(“1}” =Z(—1)k[l’(l*5) 5)(@]
B k=0 k Yij
Then, we have

50 o 1\t i . B v k=(b(i+6)+5)
()= "b‘;—e : Z 1) (a5) (b(z+5) 5]“1+Zjeﬂ}

i,k=0 k ﬂ
Since [1+ yJ{ itz :Z‘:[k—(b(i+§)+5)][yjj we obtain
s = J s ’
i) =atp 5 U0 (b(i+0) =0 ) k=(bli+)+0) | 2 e
Y)= K il k . ﬂ/JrZz) 4
i,j,k=0 . ]
/“’ (k b(i+5))
abbl /Zkloﬂ'l I ﬁ/+25 s
i+k
- o j - k—(b(i+d)+0o
where 7, ; , :M[b(wf) 5]( ( (i+0)+ )J.The entropy is obtained
’ 1! J
as
© LIt L (k-b(ivs))
10)=a Y mu]gmme
i,j,k=0
After simplification, the final expression for the Rényi entropy is given by
a’h’ & L(5+j+1)

(15)

1(0)= b/ —
19)= B /zko M (k=b(i+8))""
Substituting Eq. (15) in Eq. (14) completes the proof.

The q entropy (H) of the WME distribution is obtained by
1
Ho=1g log(1-(1-q)1x (8))

1 ! Slogh z [(6+/+1
——log{1—{1-q)| 2841 T 100 - =5 [Z””k(—)\]

q-1 -5 1-6 o (k=blive)) "

Substitution of Eq (13) completes the proof.
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4. Mean Residual Life (MRL) and Mean Inactivity Time (MIT) Functions
If 7is a continuous r. v. representing the life of an substance or a part having
distribution function F(t,) defined in Eq. (5), the mean residual life is obtained from

1 o0
,U(to):E(r—t0|r>to)):FJ.S(k) dk, #,>0 (16)
whereF = 1 — F = S(t,) is the survival function.

Theorem 4.1: Let Y be a r. v. having the WME distribution, then MRL function is

ll_bzw s ﬂv(j+3,y)]

i,j k=0 1rJok k—blitl 3
lto) = (k=b(i+D) —t, (17)

N b
1—(1+t°je ’
B

(1+t"jeﬂ
B

Proof: From Eq. (5), we can write

expy—a

u(t,)= S(to)jS(k)dk
K 4T
. -l 1+— e’
u(ty)= ! p Iexp a [ kﬂ]k dk

Furthermore, the MRL function can be obtained as

_ K £ (k)dk
,u(to):[l (”1(t°)]_tzj’ﬂ (%) ~t,, 1,20, (18)

S(w) 1 S)

where ¢, (1,) = jk f(k)dk is the first incomplete moment of K. Substituting of Eq. (9)
0

in Eq. (18), completes the proof.

Theorem 4.2: Let Y be a r. v. with the WME distribution, the MIT function is
expressed as
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o0 ﬂ .
z:,j,k—o SJok (k—b(l+1))J 3 ( )
M(t,)=t,— — (19)
1—(1+tojeﬂ
(1+t°jeﬂ
B
Proof: The MIT function is defined by
[% (to)]
M(t)=E(t,—-7|t<t))=t, ——=, >0, (20)
(0) (0 0 ) 0 F(to) 0

by inserting Eq. (9) and Eq. (6), the result follows.

5. Characterizations
Characterization of distribution is a significant aspect which helps the
researcher to see if the proposed model is the correct one.

5.1. Characterization based on two truncated moments
Characterization of the WME distribution is derived using theorem proposed
by Glanzel (1987). The theorem is based on truncated moments given in ratio form.

Theorem 5.1: Let Y has the pdf given in Eq. (5) and
q(y)=1 21

b

1—(1+Zjeﬁ
4, (y)=q,(y)expy—a| —————| t,fory>0 (22)

(l+yje;
B

The r.v. Y follows WME distribution iff the function n having following expression

vIp b
n(y):%exp{_a(e ﬁ—lj } 23)

y+p

1—(1+y]e;
_\ B
[1+y]e2
B

Proof: For y>0, it can be seen that

(I—F(y))E[ql(Y)|Y Zy] =exp{—a
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B b
and son(y):%exp{—a[j/ ﬁ_lJ } as

b
_r
1—(1+yje s
—expi—a _\ A #0

[1 +y]e;
B

for all values of y. This completes the proof. Conversely, for given expressions of
4,(v) .4,(y)and n(y)we show that the r.v. ¥ has WME distribution. Here, we get

1004 (5) ()=, gp“yg o

| —

o n(»)a(»)
D)= e ) -0.0)
yiB ﬂ_ i
abe y(y+,8 1] g
(y+B)(y+B-¢""B)

s()=-

B b

and so s(y):a(e g—l] , ¥>0 .Now using theorem of Glanzel (1987), Y has
y+

density in Eq. (5).

Corollary 5.1: Let Y be a r. v. assumingQ—)(0,00) and letg, (y) as defined in

Theorem (5.1). For the density in Eq. (5), iff there exist functions g, ( y) and n defined
in Theorem (Glanzel 1987, 1990) satisfying the differential equation

lﬂ][c" ﬂﬂfl ) yip b
abe” 7 ]y(e 'B—lj

, y+p
1a) A peeh) (24)
n(»)a (»)-a,(») [ %] .
c

The general solution of Eq. (24) is given by
2B b
s (wﬂ ]y(e B_

o] oot v ]
: 2 1 - d C
! (y+ﬂ)(y+ﬂ_ey/ﬁﬂ) [q (g (»)} J v+

n(y)=e

where C is a constant. Note that a set of functions satisfying the differential Eq. (24) is
given in Theorem (5.1) with C =0.However; other triplets (ql,qz,n) satisfying the
condition of Theorem (Glanzel 1987, 1990) also exist.

5.2. The characterization based on hazard function
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The hazard rate function hg(y),satisfies the following equation

1) _he ()
f(v) he(»)

where F is twice differentiable distribution function. For numerous continuous
distributions, hazard function characterization is the only characterization that exists.

—h.(y), y € support of distribution function (F)

Theorem 5.2: For the pdf of WME distribution in Eq. (5) if its hg(y) satisfies the
equation

h(»)-3h(y) =ab) ¢ ﬂ(;ﬂ) -202h)
(25)
{—,B(—2y+(—2+(l+b)e”/ﬂ),B)—(y+ﬂ)(y+ﬂ—be”/ﬂ,8)Log[e]}
(4 (v+5)(v+ =)
Proof: For the pdfin Eq. (5), we get
h(y)-y'h(y)=ab # 1- ﬂ(; NN
(26)

[(ﬁ(yz—be””yﬁ+( 1+e”’) ) y(y+ﬂ)(y+ﬂ be‘ﬂﬂ)Log[ ])}
[y

) [1—£1+yje;j
o Y s B

/ [(Hy]e’;]
B

and simplification follows Eq. (26). Now if Eq. (26) holds then

abei [ i (1 +yn [e; [1 +yn
d d B B

O ;

and simplification results in Eq. (7).

6. Order Statistics
Suppose Yi, Ys, ...,Y, be a random sample from WME distribution and its
ordered values is denoted as Y(l),)’(z),Y(3), ...... ,Y(n) . The pdf of s™ order statistic Y. is

expressed using the following function
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The density function of the s™ ordered statistics follows the WME distribution is
derived as follows:

y
B

s
&
B
K {1[1+y]e2 i '
ab ;2 e’ 7ﬂ T eXpy—a ¢
(I

The density of the smallest order statistic obtained as

!
n ' l—exps—a

fa () "= Di(n-s)!

._.
@
51

bS]

|
2

27

n-1

b o b
El ) 1—[1+1]e/’ El
e/ vyl VA e

-1 ab—¢e

(H%j s KH;){;T expi—a (1+%] (28)

The density of the largest order statistic obtained as

fu(y)=n| expi-a

-1

VT e \
2 , {1—[1+y)e ”} 2
e’ 1 Y B B e/

fow(¥)=n|1-expy—a| ——- ab yz = - —expi—ua
il e
B B B

7. Estimation

Here, we express the MLEs of parameters of the WME model. Let yy, v, ...,ya
be a random sample from Y~ WME(a,b,B) of size n with parameters (a,b, ). Then
log likelihood function of the WME distribution based on the given random sample is
obtained as

¢ =nloga+ nlogb+Zlog(y)—anog(ﬂ)—Z%-k(b —I)Zlog{l—[l-r;]eﬂ}

(30)

—(b+1)210g{(1+2je;}—a2 M—l
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Therefore, the MLEs of parameters can be obtained by maximizing the above log
likelihood function Eq. (30). The first derivative of the Eq. (30) with respect to ‘a’, ‘b’
and B parameters and equate to zero respectively to the equations (31) to (33). We have

b

s
%—ﬁ—z © 31)
a a y
1+=
5]
ol n y) 5 - e’ ei
=+Zlog(1—[1+JeﬂJ—Zlog[[1+ Je ”]—aZlog =1}, (32)
&b b (Hlj (Hlj
B B
1+yJ 2 y 2(1_,_)’)
[ i ,B[HJ B B

(33)

Non-linear equations are solved for a, b and B by utilizing softwares MATHEMATICA
(NMaximize) or R-Language (Adequacy Model or maxBFGS sub-routine). There exist
many maximizing algorithms in R to solve nonlinear equations simultaneously.

8. Simulation

Now, we simulate n =30, 50, 100 and 300 times the WME distribution for 8
=0.6, 1, 2; a= 0.5 and b = 1.5. We compute the ML estimates of parameters for each
sample size. 10000 repetition are obtained and then the Bias and MSE are computed.
The values such obtained are used for comparison of the performance of ML

estimators, for same values of ‘a’ and b and different values of  and are given in Table
3.

n B =0.6 B=1 B=2

a=0.5 b=1.5 a=0.5 b=1.5 a=0.5 b=1.5

30 Bias 0.0888 0.1193 0.1152 0.2451 0.1076 0.0302
MSE 0.3602 0.5236 0.4018 0,4834 0.4123 0.3920

50 Bias 0.0293 0.0992 0.0301 0.2182 0.0394 0.0274
MSE 0.2403 0.4452 0.2890 0.2831 0.2742 0.2511

100 Bias 0.0280 0.0723 0.0241 0.1092 0.0142 0.0192
MSE 0.1832 0.3029 0.1342 0.1632 0.1720 0.2013

200 Bias 0.0156 0.0624 0.0118 0.0981 0.0092 0.0095
MSE 0.0921 0.0251 0.0913 0.1024 0.0928 0.1293

Table 3: Estimated bias and MSE for several values of parameters
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It is observed from table values that

e Mean square error decreases as the sample size increases (nt).

e Bias also decreases as sample size nf.
9. Application

In this part of research, applications of WME model to real data are presented

to demonstrate the usefulness of the WME distribution. Then a comparative study is
carried out which includes WME distribution along with ME, exponentiated
exponential (EE), exponentiated ME (EME), beta exponential (BE), gamma
exponentiated exponential (GEE), Weibull Fréchet (WFr), Kumaraswamy exponential
(Kw-E), Kumaraswamy modified Weibull (Kw-MW) distributions.

The first data are about carbon fibers which give measure of tensile strength of
100 fibers (Flaih et al. 2012) and are given below:
3.7,3.11,4.42,3.28,3.75, 2.96, 3.39, 3.31, 3.15, 2.81, 1.41, 2.76, 3.19, 1.59, 2.17, 3.51,
.84,1.61,1.57,1.89,2.74,3.27,2.41, 3.09, 2.43,2.53, 2.81, 3.31, 2.35, 2.77, 2.68, 4.91,
1.57, 2.00, 1.17, 2.17, 0.39, 2.79, 1.08, 2.88, 2.73, 2.87, 3.19, 1.87, 2.95, 2.67, 4.20,
2.85, 2.55,2.17, 2.97, 3.68, 0.81, 1.22, 5.08, 1.69, 3.68, 4.70, 2.03, 2.82, 2.50, 1.47,
3.22, 3.15, 2.97, 2.93, 3.33, 2.56, 2.59, 2.83, 1.36, 1.84, 5.56, 1.12, 2.48, 1.25, 2.48,
2.03, 1.61, 2.05, 3.60, 3.11, 1.69, 4.90, 3.39, 3.22, 2.55, 3.56, 2.38, 1.92, 0.98, 1.59,
1.73, 1.71, 1.18, 4.38, 0.85, 1.80, 2.12, 3.65. This data set also studied by Haq et al.
(2017).

The unknown parameters of each distribution are obtained by using the ML
method and with these obtained estimates, some accuracy measures are also computed
to compare the fitted models. The model with minimum values for these statistics could
be chosen as the best model to fit the data. Model parameters of the WME distribution
are estimated using NMaximize command in MATHEMATICA. The models considered
for comparison are given as follows:

e The moment exponential distribution by Dara and Ahmed (2012) with the pdf

f(y):%eiz'l(o,w) (J/)y B>0.

e The exponentiated exponential distribution by Gupta and Kundu (2001) with
the pdf

F(y) = (l —e*/f.v)“ .](o,oo) (y), p,a>0.
e The EME distribution by Hasnain and Ahmad (2013) with the pdf

()= alze% {1—[1+%)e;} A (») .B.a>0.

B
e The BE distribution by Srivastava and Kumar (2011) with the pdf
A ~bAy —ay et
10V =gy e T e (0 220

e The GEE distribution Risti¢ and Balakrishnan (2012) with the pdf

f(») :Le’” (1 —e? )mi1 (—log(l —eV ))571 i.0) (), 2,a,6>0.

r(s)
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e The KwMW distribution by Cordeiro et al. (2014) with the pdf
7(y)=abay™ (y + ay)d” ) (1 - e(‘wv"v’”J)“" [1 - (1 - e())] T (¥). @by >0, 220,

o The WFr distribution by Afify et al. (2016) with the pdf
s 5 ~(0+1) s -b
f(y)= abﬁaﬂy’(ﬁ”)eib[:] {1 7e7[:] } exp a{e[y] 1} ) (»), a,b,a, 8> 0.

e The Kumaraswamy exponential (Kw-E) by Adepoju and Chukwu (2015)with
the pdf
a a b-1
f(»y)= ab(l—exp(—/iy)) 1((1—exp(—ﬂy)) ) o) (), a.b,A>0.

Table 4 involves the ML estimates of the fitted distributions for the tensile data. The
values of accuracy measures are provided in Table 5.

Model Estimates
ME(S) 1.3057
EE (o0, B) 7.8780 1.02111
EME(o, B) 3.5135 0.77534
BE (a, b, 1) 5.9964 191.696 0.01182
GEE(, a, ) 0.2719 8.13102 6.17272
WME(a, b, p) 258.345 1.47285 12.7842
Table 4: The MLEs for carbon fibre

Model The goodness of fit criteria

AIC BIC -f A* W
ME(S) 333.857 336.462 -165.928 8.14797 1.45650
EE (o0, B) 294910 300.120 -145.464 1.25447 0.23611
EME(a, p) 467.588 472.798 -231.794 1.09176 0.21035
BE (a, b, 1) 291.056 298.871 -142.528 0.77823 0.15443
GEE(, a, o) 292.054 299.87 -143.027 0.85420 0.16904
WME 287.792 295.608 -140.896 0.45223 0.07073

Table 5: The accuracy measures AIC, BIC, - £, A and W for carbon fibre

It is observed from Table 5 that the WME model provides a very good fit to
the first data set. The density plots of the fitted WME and other fitted distributions are
displayed in Figure 2, and it shows that the WME distribution is the most suitable
model for tensile data.
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Figure 2: The tensile data is fitted using MLE method; left figure: The fitted pdf of
WME and histogram of data. The right figure: The WME cdf estimates and
empirical cdf

The second set consists of measurement of the strengths of 1.5 cm glass fibers,
measued at National Physical Laboratory, England (Smith and Naylor, 1987). The
estimates of unknown parameters of the distributions for the second data set are
presented in Table 6. The values of the accuracy statistics AIC, BIC, A*, W* are listed
in Table 7.

Model Estimates

ME(p) 0.7534

EME(a.3) 12.925 | 0.312553

WME(a, b, p) 0.1257 | 2.3562 0.6641

BE(a, b, ) 17.443 | 870.58 0.0132

KwE(a, b, J) 58184 | 3.59696*10" | 0.0095

GEE(), a, 0) 0.4339 | 24.666 18.803

WFr(a, b, a, ) 1.4762 | 16.856 0.3865 | 0.2436

KwMW(a,b,a,y.2) | 0.17111 | 0.64975 0.1498 | 1.79940 0.49987
1

Table 6: The MLEs for the glass fibre

Based on Table 6, we presume that the WME gives adequate fit when
compared with considered models and WME distribution gives least values of AIC,
BIC, A*, W*. The histogram of the glass fibre data with the estimated density and cdfs
of the proposed model with sample cdf are given in Figure 3. It is revealed from the
Figure 3 that proposed model fits the given data best and also it is supported by the
results given in Table 6.
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The goodness of fit criteria

Model AIC BIC ¢ A* W+

ME(®) 134.64 136.78 -66.317 13.325 2.6496
EME(a,p) 64.161 68.448 -30.081 17.611 3.6572
WME(a, b, ) 35.017 41.447 -14.509 1.0254 0.1827
BE(a, b, ) 53.904 60.333 -23.952 3.1256 0.5703
KwE(a, b, 1) 36.455 42.884 -15.227 4.0379 0.7314
GEE(}, a, 0) 55.019 61.448 -24.510 3.2248 0.5885
WFr(a, b, o, ) 39.000 47.573 -15.207 1.3410 0.2326
KwMW(a,b,a,y,2) | 38.323 46.895 -15.161 1.2410 0.2158

Table 7: The statistics AIC, BIC, - £, A and W for the glass fibre data

o ]
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Figure 3: The glass fiber data is fitted using MLE method; left fig.: The fitted pdf
of WME and histogram of data. The right fig.: The WME cdf estimates and
empirical cdf

10. Conclusion

There has been an increasing interest to develop tractable lifetime models
which fits survival data in better way. In this research article, we propose and study a
new three-parameter distribution called Weibull moment exponential distribution and
derives its some characteristics including ordinary moments, incomplete moments and
quantile function along with its characterizations. The order statistics and explicit
expressions for Renyi and g-entropies are also presented. The estimation of the model
parameters is obtained using the method of maximum likelihood. We study the
behavior of the estimators by means of simulation for sample size 30 to 200. We
present applications to illustrate its usefulness.
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