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Abstract 
 Most population variables such as density seldom appear to be normally distributed. 

Therefore, the equations for normal distributions may overestimate the sample size required to 

obtain an accurate estimate of the variable. In this research, the total required sample size for 

obtaining the density with 5 and 10% precision was determined in random, uniform and clumped 

distribution patterns. A significant power relationship (p< 0.0001) was found between the actual 

sample size and the square of coefficient of variation for achieving 5 and 10% precision. The 

sample size calculated for normal distribution based on 95% confidence level and 5 and 10% 

precision was respectively 1 to 10 and 1 to 4 times the actual sample size obtained in the different 

distribution patterns. The overestimation increased with an increase in the values of coefficient of 

variation. A new method is presented based on population and sample coefficient of variation for 

estimating the required sample size. The new method can be used to obtain a reliable estimate of 

sample size using a wide range of data types in different study designs.  

  

Key Words- Coefficient of Variation, Clumped, Density, Normal Distribution, Random, 

Sample Size, Uniform.   
 

1. Introduction 
 Density is one of the important and readily obtainable attributes that is 

frequently estimated to describe the biological characteristics of a species or 

community. Density is defined as the number of individuals in a given unit of area or 

the reciprocal of the mean area of space per individual. Measurements of density are 

useful for determining species composition, diversity, richness, intra and inter specific 

competition and association, distribution patterns of organisms, studying population 

size and growth rate, monitoring ecosystem conditions as well as evaluating the 

influence of environmental factors on species and ecosystems (Bonham, 1989; Dacier 

et al., 2011; Mousaei Sanjerehei, 2011; Mousaei Sanjerehei et al., 2011; Olen et al., 

2016; Chiang et al., 2017; Cowling et al., 2018). Some population attributes such as 

cover and biomass can be indirectly obtained through density estimates (McIntyre, 

1953; Strong, 1966; Mousaei Sanjerehei and Basiri, 2008). Plot methods are among the 

simplest to use and have been frequently used to estimate the density of organisms 

(Becker and Crockett, 1973; Anderson and Marcus, 1993; Larson et al., 2008; Mousaei 

Sanjerehei and Basiri, 2008; Alwin et al., 2010; Mahajan and Fatima, 2017). Plot 

sampling may efficiently integrate variations in distribution pattern and departures from 
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randomness and may, therefore, be accurate to estimate density. The highest efficiency 

of density estimate is generally indicated by the plot that provides the smallest variance 

for density measurement. 

 
One of the most important factors influencing the power of the density 

estimate is adequate sample size (number of sampling units). Appropriate sample size 

estimation generally depends on a variety of factors including the purpose of study, 

population size, level of precision and confidence, desired statistical power and degree 

of variability in the estimated attribute (Cochran, 1977; Mousaei Sanjerehei and Bassiri, 

2007; Charan and Biswas, 2013; Eng, 2003; Malterud et al., 2016; Chow et al., 2017). 

Adequate sample size is usually obtained based on the sample mean, variance, desired 

confidence level and precision (Cochran 1977; Chow et al., 2017).  

 

Coefficient of variation (CV) is a standardized measure of dispersion of a 

probability distribution or frequency distribution. The CV is defined as the ratio of 

standard deviation to mean and is a dimensionless measure that quantifies the degree of 

variability relative to the mean. It is one of the important and widely used measures for 

determination of sample size. Cochran (1977) developed one of the most widely used 

methods of sample size estimation based on CV for normal populations. Van Belle and 

Martin (1993) developed methods for known variance normal and the 

noncentral t distribution for estimating sample size based on coefficient of variation. 

Kelly (2007) presented an approach for determining the necessary sample size so that 

the estimated coefficient of variation accurately reflects the corresponding population 

value by achieving a sufficiently narrow confidence interval. 

 

Variance of the number of individuals in sampling units (e.g., plots) is 

strongly affected by the pattern of dispersal of individuals. In the random dispersion, 

each sampling unit has an equal chance of hosting an individual and the resultant 

variance is close to mean (��/� =1). Where individuals have a clumped pattern, there 

are numerous sampling units with no individuals and a few with many individuals. In 

clumped patters, the variance is much greater than the mean (��/� >1). In uniform 

distribution, most sampling units contain exactly the same number of individuals and as 

a result the variance is much less than the mean (��/� <1) (Ludwig et al., 1988; 

Mousaei Sanjerehei and Bassiri, 2007). Therefore, sample size needed for sampling of 

clumped communities is greater than that of random communities, which in turn is 

greater than that of uniform communities.  

 

There are certain statistical frequency distributions that, because of their 

variance-to-mean properties, have been used as models of these types of distribution 

patterns: the Poisson distribution (�� = � ) for random patterns, the negative binomial 

(�� > �) for clumped patterns and the (positive) binomial (�� < �) for uniform 

patterns (Gardner et al., 1995; Lickfeldt et al., 2002; Castano-Meneses et al., 2003).  

 

A variety of methods have been developed for estimating sample size for 

Poisson and binomial distributions. For example, Signorini (1991) presented sample 

size methods for Poisson regression based on various distributions of a single covariate, 

and a family of multivariate exponential-type distributions of multiple covariates. Zhu 

and Lakkis (2014) derived a sample size formula on the basis of likelihood function of 
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the negative binomial model with the ability to incorporate dispersion parameter and 

exposure time. 

 

Commonly estimated population variables such as density are seldom 

normally distributed (Clark 2001; Lang 2004; Roraas et al., 2012). When data are 

skewed, the sample size estimated based on the variance and confidence intervals for 

normal populations is overestimated. Too big sample size can make the research 

unwieldy, wasting both time and effort. This necessitates introduction of the models 

which can reliably present an adequate sample size for accurately estimation of 

population attributes with different spatial patterns of data. The objective of this 

research was to develop the models for determining the required sample size for 

obtaining density with 5 and 10% precision in random, uniform and clumped 

distributions.  

 

2. Materials and Methods 
2.1. Sampling design 
 Total required sample size (number of sampling units) was determined for 

obtaining the density with ±5 and ±10% precision in this research. Precision is the 

percentage difference between the estimated and true population density. Mean, 

standard deviation and density were determined by using square and rectangular 

different sized plots in the following distribution patterns of points; 

A) Random distribution of points with the densities of 0.05, 0.1, 0.2, 0.5, 0.75, 1, 2, 4, 

10.5, 19 and 35 points cm
-2

 (Fig. 1-a)
1
.  

B) Uniform (regular) distribution of points with the densities of 1, 2, 10 and 20 points 

cm
-2

 (Fig. 1-b). 

C) Clumped distribution of points with different intensity of clumping and the densities 

of 0.1, 0.26, 1, 2, 5 and 9 points cm
-2

 (Fig. 1-c and d). 

 

              

                                                           
1
 - The whole sampling area of 580 cm

2
 (20×29 cm) may be not fully covered by some 

plot sizes. For example 1×1 cm plots can cover the whole area, but 2×2 cm plots can 

cover an area of 20×28 cm. Therefore the actual density calculated by the plot sizes that 

could not fully cover the area are close to the values presented above.     
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Figure. 1- a) Random distribution of points with a density of 2 cm-2 (a total 1160 points/580 

cm2), b) Uniform distribution of points with a density of 1 cm-2, c and d) Clumped 

distribution of points with density of 1 and 5 points cm-2 and different intensities of 

clumping (ten 58-point and five 580-point clumps) 

 

Random distribution of points with the density of 0.05 to 35 was 

generated on an A4-size paper (20×29 = 580 cm
2
) using ArcGIS10.2. Each paper was 

divided into 0.5cm × 0.5cm (0.25 cm
2
) plots. Number of points in the 0.25 cm

2
 plots 

were counted continuously column by column (Fig. 2) and the data were entered in 

Excel. The number of points in contiguous plots was summed to obtain the number of 

points in square and rectangular shaped plots with different sizes (1×1, 1.5×1.5, 2×2, 

2.5×2.5, 3×3, 4×4, 5×5, 0.5×1, 1×3, 1×5, 1×7 cm and 2×14 cm) (Fig. 2). 

 

Since sampling of a 580 cm
2
 area may be not enough for calculating the 

adequate sample size for achieving 5 and 10% precision (Lyon, 1968; Otypkova and 

Chytry, 2006), the data of plots for each size were replicated 20 times to estimate the 

density in an area of 580 ×20=11600 cm
2
. To obtain the density by each plot size, the 

data of each plot size were randomly reordered and the density was calculated by 

consecutively adding plot data (1
st
, 1

st
 and 2

st
, 1

st, 
2

st
 and 3

st
 plot, etc.) as 

∑	

�� , where 
� is 

the number of points in the plots, A is the area of plot and N is the number of plots 

(Table 1.). Mean and standard deviation of the number of individuals were also 

consecutively calculated by the plots.  
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Figure. 2: Division of each paper into 0.5cm × 0.5cm (0.25 cm2) plots and counting the 

number of points in each plot. The figure shows combination of 16 contiguous 0.25 cm2 
plots for obtaining number of points in 2 × 2cm (4 cm2) plots. 

       

    Uniform distribution of points was generated using Point software on an A4-

size paper. The density was then estimated using different sized plots as explained for 

random distribution. 

 

 Clumped distributions of points with different intensity of clumping (different 

number of clumps and number of points within clumps) and the density of 0.1 to 9 cm
-2

 

were generated using ArcGIS. The Intensities of clumping generated were: ten 6-point, 

fifteen 10-point, ten 58-point, twenty 58-point, five 580-point and nine 580-point 

clumps.  

 

 The data for each plot size were replicated 20 times and randomly reordered to 

obtaine the density as explained for random patterns. 

 

 



56                                             Journal of Reliability and Statistical Studies, June 2019, Vol. 12(1) 

2.2. Determination of the distribution of points and data  
The spatial pattern of points was measured by Morisita’s Index of 

Dispersion (���) as ��� = �	 ∑�
��∑�

(∑�
)��∑�
 , where x is the number of individuals in the 

plots and N is number of plots. ��� is equal to 1 for random distribution, <1 for 

uniform distribution and >1 where there is clumping (Morisita, 1962). Significant 

departures of ��� from 1 (randomness) was tested using Chi-square test as �� =
���(∑ �� − 1) + � − ∑�� .   
    

2.3. Determination of adequate sample size and development of models 

 The required sample size for obtaining the density with 5 (N5) and 10% (N10) 

precision were determined for each plot size and distribution pattern. N5 was the sample 

size (number of plots) by which a precision of 5% was obtained and the precision 

remained below 5% as the number of plots increased (Table 1). N10 was the sample size 

by which a precision of 10% was obtained and the precision remained below 10% as 

sampling continued with more plots (Table 1). 

 

 For each precision, the type of relationship between the actual sample size and 

the population coefficient of variation ( 
�
 	) was determined. � (population standard 

deviation) is the standard deviation of the number of individuals in all plots for each 

size, and � ( population mean) is the mean number of individuals in the plots for each 

size =  (
!"!#$	%&�'()	"*	�%+�,�+&#$-	�%	!.(	/$"!-
!"!#$	%&�'()	"*	/$"!-	*")	(#0.	-�1(	 ). To test the models, RMSE (root mean 

square error) was calculated as 2345 = 6(+
�7
)�
��� , where 8� is the predicted N5 and 

N10 by the models and �� 	is the observed N5 and N10.  

 

 To obtain the required sample size using sample standard deviation and mean, 

the relationship between the actual sample size and ( !-9�)	was determined for k =0.05 

and 0.10.  :	and � are respectively the sample standard deviation and mean. t is 

determined from t-table based on the degree of freedom (n-1) at 95% and 99% 

confidence level. 

 

 

AD x ∑x A N ED P ; s <
; t0.05 t0.01 V5-95 V5-99 V10-

95 

V10-99 

4 10 10 2.25 1 4.44 11.11 10 - - - - - - - - 

4 14 24 2.25 2 5.33 33.33 12 2.83 0.236 12.706 63.657 59.9 300.2 30 150.1 

4 11 35 2.25 3 5.19 29.63 11.67 2.08 0.178 4.303 9.925 15.3 35.4 7.7 17.7 

4 9 44 2.25 4 4.89 22.22 11 2.16 0.196 3.182 5.841 12.5 22.9 6.2 11.5 

4 9 53 2.25 5 4.71 17.78 10.6 2.07 0.195 2.776 4.604 10.8 18 5.4 9 

4 8 61 2.25 6 4.52 12.96 10.17 2.14 0.21 2.571 4.032 10.8 17 5.4 8.5 

4 10 71 2.25 7 4.51 12.7 10.14 1.95 0.192 2.447 3.707 9.4 14.3 4.7 7.1 

4 9 80 2.25 8 4.44 11.11 10 1.85 0.185 2.365 3.499 8.8 12.9 4.4 6.5 

4 7 87 2.25 9 4.3 7.41 9.67 2 0.207 2.306 3.355 9.5 13.9 4.8 6.9 

4 11 98 2.25 10 4.36 8.89 9.8 1.93 0.197 2.262 3.25 8.9 12.8 4.5 6.4 

4 9 107 2.25 11 4.32 8.08 9.73 1.85 0.19 2.228 3.169 8.5 12.1 4.2 6 

4 12 119 2.25 12 4.41 10.19 9.92 1.88 0.19 2.201 3.106 8.3 11.8 4.2 5.9 

4 9 128 2.25 13 4.38 9.4 9.85 1.82 0.185 2.179 3.055 8.1 11.3 4 5.6 
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4 8 136 2.25 14 4.32 7.94 9.71 1.82 0.187 2.16 3.012 8.1 11.3 4 5.6 

4 9 145 2.25 15 4.3 7.41 9.67 1.76 0.182 2.145 2.997 7.8 10.9 3.9 5.5 

4 9 154 2.25 16 4.28 6.94 9.63 1.71 0.178 2.131 2.947 7.6 10.5 3.8 5.2 

4 8 162 2.25 17 4.24 5.88 9.53 1.7 0.178 2.12 2.921 7.6 10.4 3.8 5.2 

4 11 173 2.25 18 4.27 6.79 9.61 1.69 0.176 2.11 2.898 7.4 10.2 3.7 5.1 

4 9 182 2.25 19 4.26 6.43 9.58 1.64 0.171 2.101 2.878 7.2 9.9 3.6 4.9 

4 11 193 2.25 20 4.29 7.22 9.65 1.63 0.169 2.093 2.861 7.1 9.7 3.5 4.8 

4 7 200 2.25 21 4.23 5.82 9.52 1.69 0.177 2.086 2.845 7.4 10.1 3.7 5 

4 9 209 2.25 22 4.22 5.56 9.5 1.65 0.174 2.08 2.831 7.2 9.8 3.6 4.9 

4 8 217 2.25 23 4.19 4.83 9.44 1.65 0.175 2.074 2.819 7.3 9.9 3.6 4.9 

4 9 226 2.25 24 4.19 4.63 9.42 1.61 0.171 2.069 2.807 7.1 9.6 3.5 4.8 

4 8 234 2.25 25 4.16 4 9.36 1.6 0.171 2.064 2.797 7.1 9.6 3.5 4.8 

4 10 244 2.25 26 4.17 4.27 9.39 1.58 0.168 2.06 2.787 6.9 9.4 3.5 4.7 

4 11 255 2.25 27 4.2 4.94 9.44 1.58 0.167 2.056 2.779 6.9 9.3 3.4 4.6 

4 5 260 2.25 28 4.13 3.18 9.29 1.76 0.19 2.052 2.771 7.8 10.5 3.9 5.3 

4 8 268 2.25 29 4.11 2.68 9.24 1.75 0.189 2.048 2.763 7.8 10.5 3.9 5.2 

4 8 276 2.25 30 4.09 2.22 9.2 1.73 0.188 2.045 2.756 7.7 10.4 3.8 5.2 

4 8 284 2.25 31 4.07 1.79 9.16 1.71 0.187 2.042 2.75 7.6 10.3 3.8 5.1 

4 12 296 2.25 32 4.11 2.78 9.25 1.76 0.19 2.04 2.745 7.8 10.4 3.9 5.2 

4 15 311 2.25 33 4.19 4.71 9.42 2 0.212 2.038 2.741 8.7 11.6 4.3 5.8 

 

Table 1: Determination of the required sample size for estimating the density of 4 cm-2 with 

a precision of 5% by 2.25 cm2 plots in the random distribution of points. N5 was obtained to 

be 23. This is the sample size by which a precision of 5% was obtained and the precision 

remained below 5% as sampling continued with more plots. AD: actual density, x: number 

of individuals in plot, ∑x: cumulative x, A: plot area, N: sample Size    (number of plots), 

ED: estimated density, P: % difference between the actual and estimated density 

(%precision), ; : mean number of individuals in plots , s: standard deviation of the number 

of individuals in plots, t0.05: t- table at a=0.05, t0.01: t table at a=0.01. t-values start from the 

second row because of the degree of freedom n-1. V5-95: 
=>.>?<
>.>?; , V5-99: 

=>.>@<
>.>?;, V10-95: 

=>.>?<
>.@; , V10-99: 

=>.>@<
>.@;  . 

 

3. Results 
3.1. Distribution of the points and data  

 Morisita’s index of dispersion (���) was 0.9-1.04 (p>0.05) for the random 

patterns indicating a random distribution of points and an agreement with a Poisson 

series of data. ��� for the uniform pattern scenarios was 0.2-0.85 (p<0.05) suggesting 

the uniformity of dispersion and binomial distribution of the data. For the clumped 

patterns, ��� was in a range of 1.41-2.78 (p<0.05) indicating different intensity of 

clumping and fit of negative binomial model to the data. 

   

3.2. Relationship between the actual sample size and the population coefficient of 

variation 
 By using different dispersion patterns and plot sizes and shapes, a wide range 

of variance (0.155-31686), mean (0.012-980) and coefficient of variation		(0.037-6.25) 

was obtained. There was a significant power relationship (p<0.0001) between the 

population coefficient of variation and the required sample size for obtaining the 

density with 0.05 and 0.1 precision (Figs. 3 and 4). RMSE of the sample size models 

for achieving 0.05 and 0.1 was 24.5 and 17 respectively. Based on the size of data for 
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dependent variable (sample size of 3-6242 for 0.05 precision model and sample size of 

1-3872 for 0.10 precision model), the obtained RMSE can indicate the efficiency of 

prediction of the models.  

 

 
 

 

Figure. 3: The relationship between the actual sample size and the population 

coefficient of variation ( 
A
B	) for achieving the precision of 0.05 

  

 

 

 
 

Figure. 4: The relationship between the actual sample size and the population 

coefficient of variation ( 
A
B	) for achieving the precision of 0.10 
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3.3. Comparison between the actual sample size and the sample size for normal 

distribution 
 The sample size calculated using Cochran’s equation for normal distribution 

C !-9�D
�
 based on 0.05 precision and 95% confidence level was 1 to 10 times the actual 

sample size obtained using the studied designs (Fig. 5). For 0.10 precision, the sample 

size calculated by the equation was 1 to 4 times the actual sample size (Fig. 5). As 

shown in Figure 5, the overestimation of sample size by C !-9�D
�
equation was 

significantly correlated to the population CV and increased with an increase in the 

values of CV. There was also a significant correlation (a < 0.01) between the actual 

sample size and C !-9�D  for k = 0.05 and 0.1 at 95 and 99% confidence levels. 

 

 

 
 

 

Figure. 5: The ratio of sample size calculated by Cochran’s equation C !-9�D
�
for 

normal population to the actual sample size and its relationship to the population 

coefficient of variation ( 
A
B	) for achieving 5 and 10% precision  

 

 The models developed based on population and sample coefficient of variation 

for estimating an adequate sample size for the precision of 0.05 and 0.1 are presented in 

table 2. 95% upper and lower confidence intervals are presented for the mean of sample 

size. 
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The developed methods 

 Precision=0.05 Precision=0.10 

 

�E = 400 × I��J
K.E

 

 

�KL = 172 × I��J
K.O

 

 

 

95% 

Confidence 

intervals 

PQPRE% = 386.4 × I��J
K.E

 

 

WQPRE% = 413.9 × I��J
K.E

 

 

PQPRE% = 166.1 × I��J
K.O

 

 

WQPRE% = 177.9 × I��J
K.O

 

 

Confidence 

level 
Precision=0.05 Precision=0.10 

 

95% �E = 1.63 × I Y:
0.05�J

K.E
 

 

�KL = 1.093 × I Y:
0.10�J

K.O
 

 

 

99% �E = 1.082 × I Y:
0.05�J

K.E
 

�KL = 0.687 × I Y:
0.10�J

K.O
 

 

 

Table 2- The developed methods based on population coefficient of variation (A/B) and 

sample coefficient of variation (</;) for determining an adequate sample size with precision 

of 0.05 and 0.10. [? and [@> are respectively the adequate sample size for achieving the 

precision of 5 and 10%. A	and B are the population standard deviation and mean. <	and ; 

are the sample standard deviation and mean. t is determined from t-table based on the 

degree of freedom (n-1) obtained from a preliminary sample and 95% and 99% confidence 

level. 0.05 and 0.10 are the precision for [? and [@>.  LCL and UCL are respectively the 

upper and lower confidence level for the sample size mean. 

 

4. Discussion 
 Many population variables such as density seldom follow a normal 

distribution. When data are skewed, the sample size equations that are based on 

standard deviation and confidence intervals for normal populations may overestimate 

the sample size required to accurately estimate the varaible (Grerig 1964; Haukos et al., 

1998; Piscard et al., 2004). 

 

  In this research, we determined the actual sample size for obtaining an 

accurate density using a wide range of data types based on population and sample 

coefficient of variation. The efficiency of CV for determination of sample size has been 

indicated in several studies (Cochran 1977; Van Belle and Martin 1993; Kelly 2007). A 

significant power relationship was found between the sample size and CV for achieving 

5 and 10% precision (Ward et al., 2009; Taranets et al., 2012). 

 

 The sample size calculated by Cochran’s method for normal population was 

greater than the actual sample size, and this overestimation increased with increasing 

values of CV. This is in line with the statement that when CV is very high (i.e., > 0.5) 
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the sample size estimation formulas for normal distributions lead to sample sizes that 

are generally greater than the exact ones and will increasingly overpower the study 

(Rasmussen et al 2019). We also found a significant correlation between the actual 

sample size and the sample CV indicating that sample CV can be an accurate estimator 

of population CV (Singh, 1986).  

 

 Although some data transformation methods such as logarithmic 

(Papanastasis, 1977; Curran-Everett, 2018), square root (Heady and Van Dyne, 1965; 

Malone, 1968; Hoda, 2018) and angular (Bartlett, 1947; Hinkley, 2014) transformations 

have been used for non-normal data in order to obtain symmetry, forcing the use of 

normal statistical methods on non-normal data to estimate adequate sample size does 

not yield the desired result, the valid use of data.  

 

 Other approaches such as the use of standard deviation of the consecutive 

means, instead of the standard deviation of the individual samples (Clark 2001), 

weighted sample size by dividing the variances into several groups with similar values 

(Kim et al., 2009) and control of the probability with which the desired margin of error 

is achieved (Gregoire and Affleck, 2018) have been recommended for calculation of 

sample adequacy based on skewed data. However use of these methods is efficient only 

when the form of the change of variance with mean level and the exact distribution of 

the original data are known (Cochran, 1977; Fitzner and Heckinger, 2010). 

 

 Kuno (1968) used the regression of mean crowding on mean density for 

estimating sample size, but stated that the model is valid only when sample mean is 

normally distributed about the true mean of the population. Cundill and Alexander 

(2015) presented a sample size equation based on calculations on the link function (log) 

scale for the negative binomial data, but they concluded that their method has little 

advantage for Poisson and binomial distributions.  

 

 The accuracy of sample size calculation obviously depends on the accuracy of 

the estimate of the parameters used in the calculations (Eng, 2003, 2007). Since the 

sample size models presented in this research were developed based on using the true 

population mean and standard deviation, they can be used to obtain a reliable estimate 

of sample size in a variety of research studies. In addition, the use of different types of 

data and a wide range of CV for making the models enable them to provide an efficient 

sample size in various distribution patterns. 
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