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Abstract

In this paper, a flexible Burr XII distribution with one additional shape
parameter and one scale parameter called the MSM distribution is derived from the
generalized differential equation (GDE).Basic structural properties are studied.
Moments, mean deviations, conditional moments, incomplete moments, inequality
curves, L-moments, and TL- moments, reliability and uncertainty measures are
theoretically presented. We characterize the MSM distribution via various techniques.
We adopt maximum likelihood estimation technique for model parameters. We assess
the behavior of the maximum likelihood estimates (MLEs) through a simulation study.
We illustrate the significance and tractability of the MSM distribution by its application
of serum-reversal times.

Key Words: Moments, L-Moments, TL- Moments, Characterization, Maximum Likelihood
Method.

1. INTRODUCTION

During recent years, a lot of continuous distributions have been derived but
data sets from sciences such as biometry, reliability, engineering ecology, hydrology
and financial don’t follow these distributions. So modified distributions and their
applications to such issues are essential requirements.

Pearson (1895, 1901, and 1916) derived Pearson system of distributions to
model skew data from the clue of limiting situation of hypergeometric distribution.
Shakil and Singh (2015) derived Michaelismenten class of distributions from GDE with
varieties of coefficients.

Burr (1942) proposed Burr family but Burr XII (BXII) distribution has
significant applications in sciences such as biometry, ecology, hydrology, finance,
reliability, engineering, survival analysis and quality control plans.

Many modified types of BXII distribution are presented in statistical literature
such as Burr (Takahasi;1965),income model (Singh and Maddala;1976), extended
three-parameter BXII (Shao et al.; 2004), drought models (Nadarajah and Kibria;
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2006),beta BXII (Paranaiba et al.; 2011), Kumaraswamy BXII (Paranaiba et al.; 2013),
Singh Maddala (Shahzad and Asgher;2013), BXII-Geometric (Korkmaz and Erisoglu;
2014), BXII power series (Silver and Cordeiro ;2015), McDonald BXII (Gomes et al.;
2015), generalized BXII-Poisson (Muhammad; 2016),extended BXII (Ghosh and
Bourguignon; 2017), BXII modified Weibull (Mdlongwa et al.;2017), gamma BXII
(Guerra et al.; 2017), BXII modified Weibull (Mdlongwa et al.; 2017), five-parameter
BXII (Mead and Afify; 2017), new BXII (Yari and Tondpour; 2017), four-parameter
BXII (Afify et al.; 2018), generalized log BXII (Bhatti et al.;2018), modified log BXII
distribution (Bhatti et al.;2018) and modified BXII-Power (Bhatti et al.;2019).

We derive and study a flexible BXII distribution with one additional shape
parameter and one scale parameter called the MSM distribution. The MSM density can
be arc, J, reverse-J, exponential, symmetrical, left-skewed and right-skewed shaped.
The flexible failure rate for MSM model can produce many shapes such as increasing,
decreasing, constant, inverted tub and modified bathtub. The MSM distribution
recommends good fits for data sets in survival analysis, reliability, finance, business
and economics.

In this article, we study the MSM distribution. Section 2 deals with
development of the MSM distribution from the GDE. We also present some structural
properties and sub models. We plot graphs of density and failure rate functions of the
proposed model. Section 3 takes up moments, conditional moments, incomplete
moments, mean deviations, inequality curves, life expectancy and mean inactivity time,
L-Moments and TL- moments. Section 4 deals with the study of various reliability
measures. In Section 5, various uncertainty measures are presented. Section 6
characterizes the MSM distribution via different techniques. In Section 7, the
parameters for the MSM distribution are assessed via maximum likelihood estimation
technique. We clarify the consistency of the maximum likelihood estimates (MLEs)
through a simulation study. We test the significance and utility of the MSM distribution
through different goodness of fit criteria by application to serum-reversal times. The
conclusion and remarks about the MSM distribution are presented in last Section.

2. The MSM Distribution
Now, we derive the MSM distribution from the GDE (Dunning and Hanson;
1977) given as

2 m
ﬁ: a0+a1x+a2x2+...+amx f(x), x>0, mn=12.. (D)
dx by +byx+byx” +...+b,x"

Taking ao :B—l,al =a2 :"‘am_l :Ojam Z—[OLB"‘Y]}"_B, b() :Oa bl :15

b =0,i=273,.n—1,b, =y P m=PB,n=B+1 in(1), we obtain

%[lnf(x)k(ﬂ_l)lﬂ_(aﬂ”)xﬁ. )

AP x+yxH
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Integrate (2), we obtain as

=2 (2] B

using property.[ f ( x)dx =1, we obtain K:%ﬁ. Therefore probability density
0
function (pdf) of the MSM distribution with shape parameters Of,ﬂ, ¥ and scale

parameter A, is

a
p-1 AN
(94 X X
f(x):—ﬂ— 1+y| = , x>0. 3)
A \1 A
Therefore the cumulative distribution function (cdf) for the MSM distribution, is
X “ 7;
F(x):l— I+y| — , x=0. @
A
It is simple to observe that F' (x )is differential and strictly increasing in(0,00). The

cdf of MSM also shows that limF(x) =land limF(x) =().Tt means that F(x) is
x—0

X—>00

absolutely continuous cdf.

2.1 Basic Structural Properties

The survival, failure rate, reverse failure rate, cumulative failure rate,
elasticity functions and Mills ratio of X with the MSM distribution are specified,
respectively, by

B\ 7y
S(x)= l+y/(—) , x>0, )

Vi -1
j ] ; (6)
j"]j ’ (7)
a B
H(x)=—In 1—(1+7/( j H, (3)
¥

m(x) = %Gjﬁ_l[u y[%jﬁj , ©)
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and

e(x)=

o
LN O W .4 . (10)
dlnx A
d
The mode of the MSM distribution after simplifyingd—(ln ( f (x))) =0,is
X

Mode = 1" [(ﬂ—l)(aﬁ+ y)”}? (11

The MSM distribution has the following quantile function
1

x, =4y ((1-q)i -1ﬂﬂ. (12)

The random number generator for MSM model is
1

_r B
X=2 yl((l—U) a—lﬂ : (13)

where U is the uniform the random variable on (0, 1 )

2.2 Plotsfor the MSM Density and Failure Rate Functions

Fig. 1 displays that the MSM density can produce the shapes such as arc, J,
reverse J, exponential, symmetrical, positively skewed and negatively skewed. The
flexible failure rate for MSM distribution produces various shapes such as increasing,
decreasing, constant, inverted tub shapes and modified bathtub (Fig. 2).

MSM-Distribution

a=0.80, f=1.30, y=6.00, A=0.30
a=2.00, 5=1.00, y=5.00, A=1.50
a=2.75, p=2.50, y=1.50,A=1.00
------ a=4.25, p=3.50, y=0.50,A=1.50
----- a=4.65, f=4.50, y=0.25,A=1.80
a=6.00, =6.50, y=0.25A=2.90
a=0.15, 5=1.05, y=5.00,A=0.10

. : g X
1.0 1.5 2.0
Fig. 1: Plots for pdf of the MSM Distribution
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MSM-Distribution

05 0
Fig. 2: Plots for failure rate function of the MSM Distribution
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2.0

a=2.25, B=4.75, y=3.35, A=1.50
a=1.00, 8=0.95, y=0.10, A=1.50
a=0.20, B=4.95, y=0.10, A=1.50
a=2.35, B=1.05, y=0.10, A=1.50
a=1.00, 8=2.00, y=0.10, A=1.50
a=4.00, B=2.00, y=3.40, A=1.50

- X mmeas

a=3.10, 8=2.00, y=1.40,A=1.70
a=0.30, 8=1.00, y=0.50,A=0.20
a=0.30, 8=1.00, y=0.01,A=0.20

The MSM distribution has the following sub models.

1 X o ﬂ e A Modified Singh Maddala
(MSM)
2 X (04 ﬂ 1 A Singh Maddala (SM)
3 X a ﬂ e 1 Modified Burr XII (MBXII)
4 X a IB 1 1 Burr XII (BXII)
5 X a 1 e A Modified Lomax (ML)
6 X o 1 1 1 Lomax
7 X 1 ﬂ 1 1 Log-logistic (Log-logistic)
8 X (04 A Generalized Weibull (GW)
p y—>0
9 X 1 ﬂ y—0 1 Weibull (W)
10 X a 1 y—0 |1 Generalized exponential
(GE)
11 X 1 1 y—> 0|1 Exponential (E)
12 X o 2 y—> 0|1 Generalized Rayleigh (GR)
13 X 1 2 y—> 0|1 Rayleigh (R)
14 1 o ﬂ e A Modified Dagum (MD)
X
15 1 o IB 1 A Dagum (D)
X
16 1 a ﬂ e 1 Modified Burr IIT (MBIII)
X
17 1 a ﬂ 1 1 Burr I (BII)
X
18 1 o IB y— 0| A Generalized inverse Weibull
X (GIW)

Table 1: Sub-Models of the MSM Distribution
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3. Estimation

We take up moments related properties such as moments, characteristic
function, conditional moments, incomplete moments, mean deviations, inequality
curves, life expectancy and mean inactivity time, L-Moments and TL- moments.

3.1 Moments

The moments are significant for statistical analysis in practical sciences. The

descriptive statistics such as mean(ui), median(ﬂ), standard deviation(G),

skewness (Y1) and kurtosis (Y5 ) can be calculated through moments. The ™ ordinary
moment for X with MSM distribution is

sesr oo (oo )

r a1 2 ’

,U; :aﬂ/f}/[H;j B(1+%’g—%j, r:1,2,3,... (14)
e

Mean and Variance of X with the MSM distribution are

E(X)= “jl B(%+1,%—%),

7ﬂ

and

2
Var(X)=a/1 B(£+1,1—%J— al B(L+1,ﬁ—

2
= B 4
7#

The characteristic function ¢ y (l‘ ) =F [eitXJ for X with the MSM distribution is

o]

dx (6)=2 %E(X) = aé @), v_(Hg) B(”%’%‘ﬁj’ (15)

!
r=1 r

where [ is the imaginary number.

The m™ central moment, Pearson’s coefficient of skewness and kurtosis of X with the
MSM distribution are computed from the relations

L m oy oy pn Hy
W, = Z(z )(—1) HoBoms v, = —33andl32 =

= 2 (Hz)z
(k2)2

We study numerically central tendency (median and mean), dispersion (standard

deviation), skewness and kurtosis of the MSM distribution based on selected values of

parameters. We also depict the effect of parameter values on the descriptive measures.
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Parameters Median Mean Standard Skewness Kurtosis
a, By, A Deviation

4,1.5,1.5,1.5 0.5085 0.6860 0.6935 11.0374 1020.85
5,1.5,1.5,1.5 0.4304 0.5588 0.5027 0.5027 122.106
5.75,1.5,1.5,1.5 0.3885 0.4952 0.4241 2.9730 42.3833
5,6.5,1.5,1.5 1.1245 1.1222 0.2285 0.0085 3.2869
5.4,6,1.5,1.5 1.0824 1.0809 0.2351 0.0304 3.2430
5.5,5,1,1 0.6690 0.6677 0.1652 0.0148 3.0482
5,5,0.9,05 0.3409 0.3402 0.8411 0.0102 3.0432
5,5,0.5,0.5 0.3390 0.3367 0.0804 -0.1131 2.9315
5,5,0.3,0.5 0.3380 0.3350 0.0786 -0.1707 2.9010
5,5,0.3,0.5 0.3371 0.3334 0.0770 -0.2260 2.8841
5,6,0.05,5 3.5976 3.5495 0.6904 -0.3584 3.0293
5,10,0.05,5 4.1039 4.0511 0.4890 -0.6233 3.5502
5,5,2.5,5 3.4880 3.5582 1.0323 0.6630 5.0678
5,5,3.5,5 3.5400 3.6723 1.1973 1.3240 12.0698
5,5,5,5 3.6215 3.8718 1.5497 4.1028 161.485
3,5,3,5 4.0110 4.2883 1.7163 4.1346 166.29

Table 2: Median, mean, standard deviation, skewness and Kurtosis of the MSM
Distribution

3.2 Conditional Moments

The k™ conditional moments E (X k‘X > Z) = S

for the MSM distribution are

k s
E(xx>z)= Lok |plk o k) g7z k@ K\l
S(z)}/?l gy B VB Ty B

where B (Z‘ 5es ) is incomplete beta function.

The upper incomplete st incomplete ordinary moment of X for the MSM distribution is

k B
Jsbz()("):‘)‘;1 [B(ﬁﬂ,ﬁ—EJ—B(%;EH,Z—EH. (17)
SL\B oy B AVp Ty B

},ﬁ'

The s™ reversed conditional moments E (X k‘ X<z ) = E,_. (X k )] of X

1
F(z)[
for the MSM distribution is

k B
E(X'|x<z)= L o B(ﬂﬁ, ;5+1,3—5J. (18)
F) s W78y p
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The lower incomplete st incomplete ordinary moment of X for the MSM distribution is

' /Ik B k k
Mi(z)=Ey.(X")= “kﬂB[fﬂ ;EH,%—E], (19)

The residual life functions play vital role in reliabilty and survival analysis.

The mean for residual life R(Z) = X—Z| X > 2,220 of a component at time z or

life expectancy known as mean residual life (MRL) function is
1
E[R(Z)J =E(X-zX>z) =W[E(X)—EXSZ (X)]-=.

s B .(20
E[R(Z)]z I ot B(SH,“—S]—B LR R P _ @0
S(z) S| B Ty B APB Ty B
YB
The mean for reverse residual life]_z(z) =z-X |X <2,z 20 or mean waiting time

or mean inactivity timeis

E[I_Q(Z)}=E(Z—X|XSz)=z—F;Z)[EXSZ(X)]

k B
E[E(Z)}zz— L oh” plyz” ko k) @1)
F(z) Ky LB B v B

Y
The mean deviation about the mean(é'1 =E|X - ,u|) and about the median

(52 =E‘X—A7ID can be written asd, =2uF(u)-2uM|(u)and &, = y—ZMl’(M)
respectively, where 4= E(X) and M = Q,,.The quantities M, (u)and M/ (M) can
be obtained from (19). For specific probability p, Lorenz and Bonferroni curves are

computed as L(p) = M , B(p) = L(P)| p and, whereg = Q (p) :
U

3.3 L-Moments and related Descriptive Measures

Hosking (1990) developed L-moments to estimate model parameters. L-
moments are less affected due to outlier in data. The 7™ L-moments are computed as

=1
A =lZ(—1)k C'E(X,.,.). (22)

¥ k=0

The mean of X -, 18 computed as

E(X,)=r()[x(F @) (1-F@)" f(x)dx. @
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The mean of X .., for the MSM distribution is

r-1 n—r

E(Xm)zr(f)zxm 1{”{?7}7 {”{Enﬂy )

i=0

EOe) = (E () s (1 f S ] @9
}/l+g ﬂ V4 /E

The first four L-moments are obtained from relationships
1

A = E(X)=[x(F)dF -

0

A, = %E(XM - X,,) = [x(F)(2F -1)dF,

0

2’3 :%E(X3:3 _2X2:3 +X1:3): X(F)(6F2 _6F_1)dF’

x(F)(20F° =30F +12F —1)dF,

S Oy —

1
14 :ZE(XM _3X3:4 +3X2;4 _X1:4):

A A
L—CV =>%is coefficient of variation. T, =—,F > 3, T,=— and 7,

are measures for skewness and kurtosis respectively . The main four L-moments, L-
CV, L-skewness and L-kurtosis for the MSM distribution are

o))
A=E(x)=2 P r B (25)
o)
e
1 1 2 1
) _H[ﬂﬂ] r(j—ﬂ)_r 7ﬂ]] 6)
’ - a 2a ’
7 () ()
1 a 1 2 1 3 1
AT| —+1|| | &= = rl=«_1 rl3e_1
A, = (ﬂfj 4 ﬂJ_3 v ﬂj” v ﬂ] @
A ECRE G
V4 V4 1%
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i
vy P
(20{) (28)
3

A "(F-5) Hjﬂ 9)

F(a_lJ r 2_1J r 3_1J
v B 3 y B, vy B
) ] e e
t,=L-CS 4 4 4
| ol
vy B)_ ry B
{ ") )
is a measure of skewness. ’ '
ri&-— r|=£_-—- r|2%¢_-_— r| 2% _-—
G I G 2 T e 2 I )
a a - a @D
el ) ()
(55 55
a 2a
f(5) (3

is measure of kurtosis.
3.4 TL-Moments and related Descriptive Measures

Elamir and Seheult (2003) introduced trimmed L-moments(TL-moments). TL-
moments trim unwanted influences. TL-moments provide best estimates of model
parameters from TL-moments. The rth TL-moments as follows:

1& k
1 —
ﬁr() :_Z(_l) Ck IE(X’”‘Fk‘FlI r+2)' (32)

|
The main four TL-moments, TL-CV, TL-skewness and TL-kurtosis are determined
from following relationships
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1
AV =E(X,,)=[x(F)dF-
0

1

AW =ZE(X,, - X,,)= 6jx(F)(1—F)(2F—1)dF,

1
/13(1)=§E(X45 2X 5+ X, 230jx(F)(1 F)(5F*-5F +1)dF,
0

20 :%E(XM “3X, 3N, — X,y ) = jx(F)(1 F)(14F* =21F* +9F —1)dF,
0

20 (1) 20
Tr(l) =—L— rz 3 , T3(1) = 23— and 2'4(‘1) =% _are measures of skewness and
20 20 O]
2 2 2
kurtosis respectively. The main four TL-moments, TL-CV, TL-skewness, TL-kurtosis

for the MSM distribution are
1 2a 1 3a 1
AT | = +1 r| =% -— r| 2% - -
L0 _ [ﬁ j3 [7 ,;J_ (y ﬂj (33)
1

L 9
y P FEMJ FEM]
V4 V4

1 2 1 3 1 4 1
3AT | —+1 ||| 5= | 2r| - | r|>=-—
20 = (ﬂ J /4 ﬂJ_ (7 ﬂ]+ /4 ﬂ]’ (34)
S I G I S B G
Y 4 Y
) elry),
vy _B) y B,
1 2a 3a
= r| == rl=>=
20 10“(/3”) (7) (yj 33)
)7 Sr(w_lj ZF[Sa_lj
r B y B
(5 )
L 4 4 J
I a 1 3a ]
(2] -8,
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r L“_i] 4r(3—— j 5r(4i_l
10 y B Y N y B
2 I 5 I o B 5
) TL_CS < Y Y Y Y ’
EEEKE
r b y B), \r B
(GGG
y Y y

5 T 5 r r
5 n _ +
4r[2“] 3r[3—“] 4r[4“] 2r[5“] 6r[6“j (39)
O _7L_CK = /4 /4 /4 /4 /4

is a measure of Kurtosis.
4. Reliability Measures

We present two reliability measures such as stress-strength reliability and
multi-component stress-strength reliability.

4.1 Stress-Strength Reliability of the MSM Distribution
Let X, be strength and X, be stress and X , follows the MSM distribution

(al,ﬂ,y,i) and X, follows the MSM distribution(az,ﬂ,]/,/l), then

R = Pr I f dx is reliability parameter (Kotz et al.; 2003).

The Stress-Strength rehablhty of the component is calculated as

Taf Y xﬂi%f1 xﬂi% a
R:JI—(—j 1+7(—j 1- 1+7/(—j dx =——— (40)
. A\ A A (o +a,)
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So, R does not depend upon 3,  and A .

4.2 Multi-component Stress-Strength Reliability Estimator R Based on the

MSM Distribution

Consider a system that has K identical components out of which s components
are functioning. The strengths of K components are Xl-,l' =1,2...Kx with common cdf
F while, the stress Y imposed on the components has cdf G. The strengths
Xi,l' =1,2...K and stress Y are i.i.d. distributed. The probability that system operates
properly is reliability of the system i.e.

R, = Plstrengths (X;,i =1,2..x) > stress (Y)],

R, = Plat the minimum"s"of (X;,i =1,2...x) exceed Y ].

K o0
RS,K = Z ( ?)J‘ [1- F(y)]l [F(y)]K_l dG( ), (Bhattacharyya and Johnson;1974) (41)
[=s 0

Let X, follows the MSM distribution (al,ﬁ, ]/,/7,) and Y follows the MSM
distribution(az, 5, ]/,ﬂ)with common shape parameters /5, } and unknown shape

parameters &, and a,. The reliability that system operates properly in multi-

component stress- strength for the MSM distribution is

oy N o
K © B % B % B
Rs,Kzﬁz(}?)({[Hy(;j ] l—[1+y(;j ] d 1—[1+y(;j ]
_%2
X Bl oy
Lettingu =| 1+ (Xj , then we obtain
K ()L ! K~/
RS’K:Z[EJJ(L[Y) (l—uY)( du
f=s 0
Let W:MY .
1 & (kL e fe—t
s,k—¥2(£]fw (1)
f=s 0
K
RS’K=l (?)B(€+l,1<—€+l} where Y =L (42)
Y€=S Y 105

The probability Rs, J in (42) is multi-component stress- strength reliability model.
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5. Uncertainty Measures
Information generating function, Shannon entropy, Renyi entropy, Q-entropy
and other entropies for the MSM distribution are studied.

5.1 Information Generating Function

The differentiation of information generating function at point 0 or 1, help to
derive the measures of information which are otherwise tough to characterize and
compute. The information generating function for X with the MSM model is computed
as

H(f)=E[F™ (X)]=] " (xpx. )

-1 (1-p)r-1
H(f):aY(ﬁJ y ? B(Y+1;Y,aﬂr;;y+7/j. (44)

d
The Shannon entropy can be found by EH ( f )

Y=1
5.2 Shannon, Awad, Renyi and Other Entropies

Entropy is a device to measure the amount of uncertainty or randomness
confined in random observation about its mother distribution. The smaller uncertainty

in the data is smaller entropy. The Shannon entropy h(X ) =F I:I (X ):' for X with
the MSM model is

(X)==[{n[ £ (x)]} £ (x)ekx. (45)

T oA

h(X)=1+g—ln(();—ﬂ}(l—%j[w(%}t(lny)—x//(l)}. (46)

Awad (1987) extended the Shannon entropy as

A(X)z?jln[%}f(x)dx,

where & is maximum value of f (x ) for the MSM distribution in the domain of X.
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Awad entropy for X with the MSM distribution is

1n8+1+l—1n(ﬂ]+
o A

A(X)= . @D
o
p Y
The Renyi entropy 1 R (V) for X with the MSM distribution is
1 T 9
]R(S):mlog{“f(x)] dx},3>0,19¢1
o . )
@ @ B-1 B
9 af( x X 4
(122 2] 1442 dx,
[ (opin=]| 2 (%) [ 7(1” .
we obtain
8 pI-1 _ _
/- 1 log a’p ISB(I% 19+1,a,6’n9+7 syj | )
1-9 20T s B
The Q-entropy H p ( f ) for X with the MSM distribution is
1
H, (1) = toe[1-1(0)]
1 a’'p’ l-g+qpB afq—qy+
H. () =—"1og| 1- ﬂqu( a+af afg-ay 7}_ )
—-q /1q71 s ﬂ yﬂ
Havrda and Chavrat entropy [ HC (V) for X with the MSM distribution is
1 K v
IHC(v):—llog{I [f(x)] dx},v>0,v¢l, (50)
V_
v pv-1 _ _
IHC:Llog a ap HB(I v++vﬂ’aﬂv v}/+7j 2L (51
V= lv_l V+7 ﬂ %B

/4
Tsallis entropy S q ( f (x )) forX with the MSM distribution is

(1) = (17 ().
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1 B! 1-q+ —qy+

Sq[f(x)]z 1- a'p B[ 1 qﬂ,aﬂq 47 yj g #1.(52)
- ﬂ,q_lj/ B ﬂ }/ﬂ

Entropies are useful to study daily temperature fluctuations (climatic), anomalous

diffusion, DNA sequences, information content signals, heart rate variability (HRV)
and cardiac autonomic neuropathy (CAN).

6. Characterizations
In this section, we characterize the MSM distribution via (i) Truncated

moment of a variable; (ii) ratio of truncated moments; (iii) Hazard function and (iv)
Mills ratio.

6.1 Truncated moment of a Variable

Proposition 6.1:Let XIQ—)(O,OO) be a random variable of a continuous

distribution, the function £ (x ) in (4) is cdf of X, if and only if

B

A Y .
—) l+a z with o > y. (53)

E[Xﬁ‘X>z]: o

Proof.If (3) is pdf of X, then (53) holds, it is easy to show

E[ X/|X>z|=[1-F(z)] [x"f(x)dx,
_ ) % -1 A
E[ XX >z :[l—F(z)]_ljxﬁ%(%j 1+ij ",
_ - B B
E[ X’|X >z A l+a(£j
L 1 (a-y) A
Conversely if (53) holds, then B B
1 7 5 AP (z g
F(z)!x f(x) x (a—y)_ +a 7 _,
“ 1-F(z))A" [ /]
Q.Xﬂf(x)dx:% 1+a(% | (54)

Differentiating (54), we obtain

—Zﬂf(z):w{aﬂzﬂl}—m 1+a(%)p}

(a=7)




On the modified Singh-Maddala distribution: Development ... 95

F(z):l|:1+y(%jﬂ}j,220,

which is cdf of the MSM distribution.
6.2 Ratio of Truncated Moments

Now, we characterize the MSM distribution on the basis of two truncated
moments of X using Theorem G (Glanzel; 1990).

£\
Proportion 6.2.1: Let & (x) _aty (1 + 7/(%) J
(44

52
and &, (x)= 0!-;2}/ |:1+}/(%j :| ,x>0. LetXIQ—)(O,OO) be a random

variable of a continuous distribution, the pdf of X is (3) if and only if U(x) has the

formu(x){lw(%f]

Proof: For random variable X with the MSM distribution with pdf (3), then

0(x)4 (x)=4(x) {Hy zﬂ

p-1
, (a+2jﬂ7/(xj
The differential equation g ( x): v (x )§2 (x ) _\7 A\4

34—2}
7

1
has solution § (x) =Iln| 1+ 7(;)

Now, according to the theorem G, X has pdf (3).
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Corollary 6.2.1.Let X:QQ — (O,OO) be a random variable of a continuous distribution

52
and é(x):a+2}/{l+7[§j :l , x>0.The pdf of X is (3) if and only if the functions
[24

U(x) and & (x ) fulfills the equation

a1 C1 N LG | S

Remarks 6.2.1. The general solution (55) is

oror(f T 22 oo (5] st

where E is constant.

6.3 Hazard Function
Definition 6.3.1: Let X:(2 —)(O,OO) be a random variable of a continuous

distribution, the function f (x) is pdf of X, if and only if the hazard function hF (x),

of a twice differentiable function F, satisfying differential equation

'
Ll (x)]= Z 8 h (%), (56)
Proposition 6.3.1: Let X:() —)(O,OO) be a random variable of a continuous
distribution, the function f (x) in (3) is pdf of X, if and only if the hazard function of
X, hF (x ) satisfies the first order differential equation

i (x) 1+7(%f +hF(x)£(£)ﬂl :M(EJM. 57

A\A A’ A
Proof: If (3) is pdf of X, then (57) holds. Now if (57) holds, then

d YV apd|(x)"

| ) ”7@ e (z) ’
p-1 AN

hF(x)=%(%j 1+7(%j ,

which is hazard function of MSM distribution.

or
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6.4 Mills Ratio
Definition 6.4.1: Let X:Q2 —)(0,00) be a random variable of a continuous

distribution. The function f (x) is pdf of X, if and only if the Mills ratio m(x) ,of a

twice differentiable function F, satisfies equation
1+m'(x) . d[lnf(x)]
m(x) dx

Proposition 6.4.1: Let X:Q —)(0,00) be a random variable of a continuous

=0. (58)

distribution. The function f° (x) in (3) is pdf of X, if and only if the Mills ratio of X,

mg (x ) satisfies the first order differential equation

rols) BB A e

Proof: If(3) is pdf of X, then (59) holds. Now if (59) holds, then

d <Y a4 d xY
Lm0 2] =L 14y 2] |,
dx A aff dx A

A (x\" xY
=5 (5] )

which is Mills ratio of MSM distribution.

or

7. Maximum Likelihood Estimation
Here, we adopt maximum likelihood estimation technique for MSM

parameters. Let é/ = (a, ﬁ, Y, /1)T be unknown parameter vector. The log likelihood

function £ ( C) for the MSM distribution is

((€)=InL(a,p,y,A)=nlna +nlnp - nflni +

(B—l)zlnx—[(;+1j21n{1+y(;jq

We can compute the maximum likelihood estimators (MLEs) of a,ﬂ, ]/,ﬂby

simplifying the following nonlinear equations either directly or using quasi-Newton
procedure, computer packages/ software such as R, SAS, Ox, MATHEMATICA,
MATLAB and MAPLE.

(60)

5 B
aa(lnL(a,ﬁ,y,k)):Z—iZln[l+y(;j ]:o, (61)
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X B X
GRS
:B(lnL(oc,B,y,X))zg—nlnk+21nx—(y+oc)zH:O, (62)

P
: (mL(Ohﬁ’M))—%Zln{uy(ﬁﬂ}_[uqz m—o,(@)

v y

0
(L (a.p.7.1))- —';—B+%(1+%Jz

7.1 Simulation Study
Here, we consider the behavior of the MLEs of the MSM parameters regarding
sample size n. To assess the behavior, the steps for simulation are as follows.

e Generate 10000 samples of sizes n from the MSM distribution using the
inverse cdf method.

e Calculate the MLEs for 10000 samples, say (c, 3,9, A) for i=1, 2,..., 10000
from non-linear optimization technique with constraint matching to range of
parameters. (1.25, 1.5, 1.75, 1.0), (1.5,1.7, 1.8,1.5) and (2, 2, 2, 1.8) are taken
as the true parameter values (Oé, 6, Y, )\) .

e (alculate the means, biases and mean squared errors (MSE) of MLEs.

For this purpose, we choose various arbitrarily parameters and #=50,100,200,300,500
sample sizes. We summarize all the results in Table 3. The results clearly indicate that
when the sample size n increases, the estimated MSE decrease and estimated biases
drop to zero. MSE of estimated parameters increases, as shape parameter rises. This
reveals that MLEs for MSM distribution are reliable.
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Sample Statistics a=1.25 B=15 v=1.75 A=1.0
Means 1.2636 1.6569 1.6919 1.1586
n=50 Bias 0.0136 0.1569 -0.0581 0.1586
MSE 0.3423 3.5327 1.6134 1.9019
Means 1.275 1.5518 1.7491 1.0695
n=100 Bias 0.025 0.0518 9e-04 0.0695
MSE 0.0596 0.0836 0.1432 0.1194
Means 1.2914 1.5176 1.7752 1.0524
n=200 Bias 0.0414 0.0176 0.0252 0.0524
MSE 0.0262 0.033 0.0748 0.0521
Means 1.2881 1.5158 1.7945 1.0358
n=300 Bias 0.0381 0.0158 0.0445 0.0358
MSE 0.0174 0.0217 0.0534 0.032
Means 1.289 1.5093 1.7992 1.0304
n=500 Bias 0.039 0.0093 0.0492 0.0304
MSE 0.0108 0.0125 0.0345 0.0186
Sample Statistics | =1.5 B=17 v=138 A=15
Means 1.5008 1.839 1.7198 1.6609
n=50 Bias 8e-04 0.139 -0.0802 0.1609
MSE 0.1778 4.0598 47372 0.7976
Means 1.5211 1.7537 1.7882 1.5739
n=100 Bias 0.0211 0.0537 -0.0118 0.0739
MSE 0.0587 0.0957 0.201 0.1794
Means 1.534 1.7263 1.8293 1.5486
n=200 Bias 0.034 0.0263 0.0293 0.0486
MSE 0.0375 0.0426 0.1138 0.0813
Means 1.5383 1.7163 1.8367 1.5417
n=300 Bias 0.0383 0.0163 0.0367 0.0417
MSE 0.0223 0.0259 0.0666 0.0521
Means 1.5398 1.7102 1.8444 1.5353
n=500 Bias 0.0398 0.0102 0.0444 0.0353
MSE 0.0136 0.0153 0.0438 0.0311
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Sample Statistics a=2.0 B8=20 v=20 A=138
Means D.0406 2.1235 1.8599 2.0007
n=50 Bias 0.0406 0.1235 -0.1401 0.2007
MSE 0.8962 0.4469 0.9227 1.1532
Means D.0419 2.0522 1.971 1.8883
n=100 | Bjas 0.0419 0.0522 -0.029 0.0883
MSE 0.1298 0.1238 0.3622 0.2121
Means D.057 2.0221 2.0243 1.8585
n=200 | Bjas 0.057 0.0221 0.0243 0.0585
MSE 0.0608 0.0528 0.1544 0.094
Means D.0552 2.0185 2.0392 1.8431
n=300 Bias 0.0552 0.0185 0.0392 0.0431
MSE 0.0414 0.0347 0.1082 0.0607
Means D.0573 2.009 2.0466 1.8378
n=500 Bias 0.0573 0.009 0.0466 0.0378
MSE 0.0249 0.0199 0.07 0.0343

Table 3: Means, Bias and MSEs of the MSM distribution (1.25, 1.5, 1.75, 1.0),
(1.5,1.7,1.8,1.5) and (2, 2, 2, 1.8)

7.2 Application: Serum-Reversal Time of Children Data

We now consider data set such as serum-reversal times (in days) for authentication the
flexibility, utility and potentiality of the MSM distribution. For serum-reversal times,
we compare the results of fitting the MSM distribution with Singh Maddala (SM),
modified Burr XII (MBXII), Burr XII (BXII), Lomax, Log-logistic (Log-log)
distributions. For selection of the optimum distribution, we compute Cramer-von Mises
(W*), Anderson Darling (A*), and Kolmogorov- Smirnov statistics with p-values [K-
S(p-values] statistics for MSM distribution and its sub-models. We compute the MLEs
and their standard errors (in parentheses). We summarize all the results such as the
MLEs (standard errors in parentheses) and measures W*, A* K-S with p-values in
table 4.

The data set related to Serum-reversal times of children born from HIV-infected
mothers (Lee, 1992)are

2,2,2,59,9, 19, 32, 32, 46, 50, 56, 56, 78, 91, 95, 106, 129, 129, 148, 149, 156, 175,
176, 191, 192, 204, 209, 211, 225, 229, 230, 238, 254, 271, 274, 276, 290, 291, 292,
297, 297, 322, 334, 334, 334, 344, 346, 353, 353, 359, 365, 366, 367, 370, 378, 378,
382, 382, 385, 398, 400, 402, 414, 422, 424, 428, 434, 435, 440, 443, 446, 448, 448,
451, 454, 459, 460, 461, 473, 480, 481, 484, 487, 493, 497, 498, 502, 511, 511, 513,
514, 516, 521, 524, 526, 537, 538, 541, 543, 544, 544, 545, 549, 551, 553, 553, 554,
556, 559, 571, 576, 577, 578, 582, 588, 590, 596, 609, 610, 615, 619, 626, 627, 648,
653, 678, 680, 687, 696, 729, 744, 748, 777, 847, 848, 867, 874, 894, 901, 907, 974 and
1021.
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Model a W A* K-S
'B 4 A (p-value)
MSM 940715.9 1.9324 90390.20 564861.0 0.8301 4.6726 0.1125
(2310.858) | (0.0138) (12420.61) | (14213.58) (0.0535)
SM 1112.3637 | 1.6349 - 33818.8522 0.8542 | 4.7958 0.1425
(536.3601) | (0.1144) (1690.8385) (0.0060)
MBXII 0.0110 86.6803 5.4828 - 3.9246 | 20.5629 0.4542
0.0317) | (1067.626) | (83.1094) (<2.2¢-16)
BXII 0.0233 7.5074 - - 3.9366 20.6203 0.454
(0.0259) | (8.3425) (<2.2¢-16)
Lomax 3.5492 - - - 3.5492 18.7682 0.4534
(0.0146) (<2.2e-16)
Log-log - 0.2665 - - 2.7239 14.7181 0.6721
(0.0172) (<2.2¢-16)

Table 4: MLEs (standard errors),W*, A*, K-S(p-values) for Serum-reversal times

We infer from the table4 that MSM distribution is best model, with smallest values for
(W*, A* and K-S) statistics and maximum p-value.

8. Conclusion and Final Remarks

We derive the MSM distribution from the GDE. We present some structural
and main descriptive properties such as quantile function, sub-models, ordinary
moments, characteristic function, conditional moments, incomplete moments, mean
deviations, inequality curves, moments for residual life functions, L-moments, L-
coefficient of variation, L- coefficient of skewness and L- coefficient of kurtosis, T L-
moments, TL-coefficient of variation, TL- coefficient of skewness and TL- coefficient
of kurtosis and reliability measures. We characterize the MSM distribution via different
techniques. We address maximum likelihood estimation technique for MSM
parameters. We assess the behavior of the maximum likelihood estimates (MLEs)
through a simulation study. We test the importance of the MSM distribution with
goodness of fit statistics via its applications to serum-reversal time’s data. The values of
goodness of fit statistics suggest that that the MSM distribution is best fitted model.
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