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Abstract 
 Split-plot design models are special class of linear models with two error terms, that is 

the whole plot error and subplot error terms. These models can be remodeled as nonlinearly with 

variance components. This is a combination of nonlinear model for the mean part of the split-plot 

design model with additive error terms which describes the covariance configuration of the 

models. This research work presents estimated generalized least square method for estimating the 

parameters of the nonlinear split-plot design models. To achieve this, an iterative Gauss-Newton 

procedure with Taylor Series expansion was implemented. The unknown variance components of 

the model are estimated via residual maximum likelihood estimation method. The advantage of 

this technique is that it produces stable numerical values for the parameters mean and variances 

since it considers the covariance configuration of the model. 

 

Key Words: Nonlinear Split-Plot Design Model, Gauss-Newton, Estimated Generalized Least 

Square, Restricted Maximum Likelihood Estimation.  
 

1. Introduction  
In straightforward terms, split-plot design (SPD) of experiments can be 

defined as blocked experiments. The blocks represent units in the experimental design 

for factors division. Also, there are two levels of experimental units namely, whole plot 

units and subplot units. Randomization of the design is in dual levels. The first 

randomization aim at assigning block-level treatments to whole plots (WP) while the 

second randomization for the subplot (SP) units occurs within each whole plot ([1], 

[2]). In another view SPD is a combination of two known designed experiments 

overlaid on each other or as [3] puts it; superimposition of two similar or different form 

of designs. Investigations have been done in estimating the parameters of the split-plot 

design linear and response surface models respectively ([1], [2], [4], [6], [5], [7]). 

 

Recently, [8] trellis plots were applied to visualize multivariate data by 

permitting conditioning throughout the initial data analysis phase of the split plot design 

data. Also, [9] applied SPD on equipment testing to study three diverse explosive 

powers inclined by four different intensifiers and four different steel balls. It is cheaper 

in cost to run a batch of treatments in SPD of experiments and statistically efficient and 

adequate than running the same experiment in a completely randomized fashion. Ju and 
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Lucas [10] showed that, with one HTC factor or ETC factor, a SPD produces a better 

accuracy in all factor effects estimates involving the subplot and interaction between 

the WP and SP. However, WP main effect estimate accuracy is low compared to the SP 

main effect estimate. Design efficiency measure for SPD has been considered over 

completely randomized designs (CRD) and it has been established that the SPD is more 

efficient and as well has better optimality determinant than the CRD (see [11] & [12]). 

This has resulted in many authors and practitioners as well recommending the custom 

use of SPD even when a CRD is a practicable alternative. 

 

Nonlinear modeling of SPD has attracted little interest mainly in parameters 

estimation. Although, it follows similar procedure used in estimating the parameters for 

nonlinear regression. Gumpertz and Rawlings [13] stated that when the objective of 

fitting a nonlinear function to data from a SP experimental design, a nonlinear model 

with variance components (whole plot variance, σ
2

γ and split-plot variance, σ
2

ε) is 

appropriate. The nonlinear SPD model is a distinct type of nonlinear modelling with 

variance components because the mean part [f(X, θ)] of the model is a nonlinear 

function with additive random effects (like the WP error and SP errors). Traditional 

nonlinear regression follows the assumption that all observations in the data set are 

uncorrelated and only one source of random error. Biased standard errors will be 

obtained for the parameter estimates if the traditional nonlinear regression regime is 

applied for nonlinear SPD model and as well other interesting quantities. This implies 

that the single variance estimate (i.e. mean square error, MSE) obtained will be 

conciliation between the two random errors (MSEa and MSEb) from the nonlinear SPD 

model analysis ([13], [14], [15]). 

 

Many forms of the split-plot design have been studied in terms of arranging 

factorial designs (FD), fractional factorial designs (FFD) and response surface designs 

(RSD) with quadratic and higher order surfaces, optimal designs of first and second 

orders, sequential and mixture designs. So far the review in this subsection revealed 

that all works done are based on the estimation of main, interaction, polynomial and 

higher order effects. Generally, the interest of most researchers is to estimate all the 

1
st
order and 2

nd
order polynomial terms in a SP response surface model. However, when 

the order of the term is increased to cubic and higher order terms interpretability issues 

sets in and in most cases they are of no practical use hence not needed. Therefore, the 

best option is to model the split-plot experiment nonlinear in parameter, that is, the 

parameters cannot be linearly transformed. It saves the time of searching at which order 

a model will produce an estimated optimum yield. In this light, [13] used the Weibull 

function to model a split-plot fashion of an experimental design for studying an open-

top chamber effect of ozone (O3) and moisture stress regimes on the yield output of two 

cultivars of soybean. The SPD used was an unbalanced type and the observations 

within the cultivars are usually correlated with each other. The O3 and moisture stress 

regimes are WP effects while the cultivar is the SP effect. Their designed experiment 

was an unbalanced split-plot design. 

 

Knezevic et al. [15] nonlinearly modelled the effect of three nitrogen rates on 

critical period for controlling weed (CPCW) in corn. The designed experiment was a 

SPD with fixed block effect where the three nitrogen rates (Nr) were assigned to the 

WP and weed periods [critical timing of weed removal (CTWR) and critical weed free 

period (CWFP)] as subplot treatment effect. Logistic and Gompertz functions were 
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used to fit the CTWR and CWFP respectively. Blankenship et al. [14] stated that the 

nonlinear SPD model is not different from ANOVA-type model for a standard linear 

SPD experiment with blocks, but the fixed main and interaction effects are replaced by 

a nonlinear function relating the connection between treatments and response. 

 

On estimation of the parameters for the nonlinear SPD model developed by 

[13] was based on EGLS and compared to OLS. They used ANOVA and MIVQUE for 

estimating the model variance-covariances. They also used maximum likelihood 

estimation (MLE) technique for estimating the variance components but were dropped 

from using it for further analyses because the MLE estimates were biased downwards. 

The MIVQUE did better since it is suitable for unbalance design and generally the 

EGLS estimates were better than the OLS estimates. However, [15] and [14] added 

block effect as part of the random effects in their analyses and they used Logistic and 

Gompertz functions to separately model the WP and SP effects respectively. They 

estimated their models variance components with residual maximum likelihood 

estimation (REML) technique. 

 

Estimating variance components (VC) of a nonlinear model, different methods 

such as MLE by [16], REML introduced by [17], Quasi-MLE, Modified MLE by [18] 

and [19], ANOVA method by [20], [21] Estimator, Minimum-norm Quadratic 

Unbiased Estimator (MINQUE), MIVQUE, etc, can be used. The MINQUE and 

MIVQUE methods were developed by ([22], [23]) and the reason was to find quadratic 

estimators that are unbiased which are unchanging and minimizes some matrix norm. 

Rasch and Masata [24] stated that unfortunately, results obtained from these methods 

depend on the unknown VC. Since they are replaced by estimates from the data, the 

results are neither unbiased nor quadratic anymore. However, [24] only identified that 

of MINQUE and MIVQUE in VC estimation but the same is applied to other variance 

component estimation methods because in almost all cases of modelling with VC, the 

population VC are unknown. Therefore, since estimated values obtained from the 

design data which could have outliers, replacement of missing values, etc, the solution 

might not be unbiased for all other estimation methods. 

 

Weerakkody and Johnson [25] presented a two-step residual-based approach 

for estimating WP and SP error variances separately. However, as identified by [26] the 

estimator of the WP error variance in [25]’s approach can be obtained for only the case 

a > p (p = 1+p1+p2, where a is the number of runs in each WP unit, p1 and p2 are levels 

of WP and SP effects). This is an impractical strict condition in most situations because 

it is only suitable for balanced designs. Hasegawa et al. [27] suggested a dissimilar 

estimator for the WP error variance. It has better practical condition than the one 

introduced by [25]. Yet, both approaches for estimating the two error variances are 

suitable only for balanced designs. Their approaches were not compared to other 

methods such as MLE, REML, ANOVA, etc. They are not useful for unbalanced 

designs, which are often used for reducing experimental runs. Ikeda et al. [26] modified 

the two-step residual-based method proposed by [27] in order to make it readily 

applicable for balanced and unbalanced designs. Also, they compared their method with 

REML only. They concluded that their method can be an alternative to REML based on 

their simulation results. Their alternative method is not a better estimation method 

because under a different simulation scenario it can perform poorly. Also, their results 

obtained were not compared with other estimation technique like MLE. However, the 
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methods introduced by [25], [27] and [26] are all implemented only for linear balanced 

and unbalanced SPD models. In this research we present an iterative Gauss-Newton 

procedure via Taylor Series expansion using estimated generalized least square (EGLS) 

method is performed. In this construct, the variance-covariance components which are 

unknown are estimated by REML method. The purpose for this research is to present a 

theoretical outline of producing numerically stable parameter estimates. 

2. Materials and Method 
The nonlinear split-plot model which has whole plot error (WPE) and subplot 

error (SPE) are special case of a nonlinear model with random effects (also called 

nonlinear model with variance components, that is, WPE and SPE). The formulated 

model and assumptions are given as follows. 

 Let  

(  )y f X , wθ ε= + +      (1) 

Inserting the levels of the factors to be investigated, (1) is given as follows. 

  (  )ijk ijk ij ijky f x , wθ ε= + +      (2) 

where, 

ijky  is the response variable; i = 1, ..., s replicates (Reps) or block; j = 1, ..., a levels of 

the WP factor A; k = 1, ..., b levels of the SP factor B; ijw  is the WPE and ijkε  is the 

SPE; (  )ijkf x , θ is the nonlinear function for the mean describing the relationship of fixed 

main and interaction effects to the response ijky . The parameters Reps, A and B are 

assumed fixed. 

Assumption 1: it is presumed that the WPE and SPE are random effects. Also, it is 

presumed that 2(0 )WP

i.i.d .

ijw N ,~ σ and 2(0 )SP

i.i.d .

ijk N ,~ε σ . 

Assumption 2:  Let θ̂  be the parameter estimate of θ for the model which follows an 

asymptotic normal distribution with mean θ  and variance 2 1( )σ −′F F , where F is the n × 

u matrix with elements ( )( )ijkf x ,θ θ ′∂ ∂  which has full column rank, u. This implies that 

the estimated response 0ŷ  follows an asymptotic normal distribution with mean y0 and 

variance 1( )x x
− −′ ′ 1f F V F f  where fx is a u × 1 vector with elements ( )( )ijkf x ,θ θ ′∂ ∂  and V is 

the variance-covariance (VC) matrix of the reaction vector. 

Assumption 3: if the parameters in the mean function, (  )ijkf x , θ  is p and r is the 

number of random effects, then n which is the number of observations in the data set 

must be less than or equal to p + r +1 for all parameters to be estimated. This implies 

that n ≥ p + r +1. 

2.1 Estimated generalized Least Square (EGLS) Estimation Method 

When the covariance matrix of y is known then the GLS estimator, GLSθ̂ , is 

found by minimizing the objective function ([8]) 

( ) ( )1(  ) (  )y f X , y f X ,θ θ−′
− −V     (3) 
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with respect to θ . Where V is a known positive definite (non-singular) covariance 

matrix which arises from the model 

(  )ijkl ijkl ijk ijkly f x , wθ ε= + +     (4) 

where, E( ijkw ) = 0, Cov( ijkw )= 2
Nwσ I , E(ε ) = 0 and Cov( 2

εσ NI ). 

Let the variance-covariance matrix of the observations var(y) be written as 

  V = 2
wσ NI  + 2

εσ NI  

   = 2σ I . 

Using Cholesky decomposition, the inverse of a positive definite matrix Z (non-

singular matrix) is positive definite with Cholesky factorization if Z = L L
t
, where L is 

invertible (its diagonal elements are nonzero) then the right and left inverses of Z are as 

follows. 

• Right inverse of Z is T = L
–t 

L
–1

 such that ZT = L L
t 
L

–t 
L

–1
 = L L

–1
 = I   

• Left inverse of Z is T = L
–t 

L
–1

 such that ZT = L
–t 

L
–1 

L L
t 
= L

–t
 L

t
 = I   

Hence, Z is invertible as Z
–1

 = L
–t

 L
–1

 and T
 –1

 = L L
t
. 

Multiplying model (4) by L
-1

 on both sides yield that 

  -1 -1 -1 -1L  L ( )  L ( )  L ( )ijk ijk ij ijky f x , wθ ε= + +    (5)  

Let I = T
 –1

 = L L
t
then the Cholesky factorization of the error variance is as follows. 

 

( ) ( )[ ] ( ) ( )

( ) ( )[ ]

( )

-1 -t -1 -t -1 -t

-1 -t

1 2 -t

2 1 t -t

2

L L L L L L

L L

L L

L LL L

ijkl ijk ijkl ijk

ijk ij

Cov Cov w Cov Cov w

Cov Cov w

ε ε

ε

σ

σ

σ

−

−

+ = +

= +

=

=

=

I

I

 

Define Tijk= -1L ijky , )( ∗θ,xijkM = -1L ( )ijkf x ,θ  and ijkΩΩΩΩ  = -1 -1L ( )  L ( )ij ijkw ε+ . 

Then equation (5) becomes 

Tijk = )( ∗θ,xijklM  + ijkΩΩΩΩ     (6)  

where, E( ijkΩΩΩΩ ) = 0 and V( ijkΩΩΩΩ ) = I
2σ . Thus the GLS model has been transformed 

to an OLS model. Hence, model (6) is to be solved using the OLS technique as follows. 

Taking the summation of both sides of (6) and squaring we have   

2
2 ( )

s a b s a b

ijk ijk ijk

i j k i j k

x ,θΩΩΩΩ = − ∗  ∑∑∑ ∑∑∑ T M   (7) 

Let L(θ*) = [ ]2
2 ( )

s a b s a b

ijk ijk ijk

i j k i j k

x ,θΩΩΩΩ = − ∗∑∑∑ ∑∑∑ T M   

minimize L(θ*) w.r.t. θ*, equate to zero and divide both sides by – 2  we have, 

(  )
(  ) 0

s a b *
ijk*

ijk ijk* *
h h ˆi j k

x ,L( )
x ,

θ θ

θθ
θ

θ θ ∗ ∗

∗

=

∂∂
= − × =

∂ ∂

 
    

 
∑∑∑ M

T M   (8) 
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At this point, equation (8) has no closed form hence will be solved iteratively using the 

Gauss-Newton method via Taylor series expansion of ) ,( ∗θijklxM  at first order. Note 

that the Taylor series expansion is given as 
2( ) ( )

( ) ( ) ( ) ( ) ( )
2

hx a x a
f x f a x a f a f a ...

! h!

− −
′ ′′= + − + + +  

( )
1( )h

hf a R +× +      (9) 

Therefore, we have  

0 0

0 1 10 2 20

1 2

(  ) (  )
(  ) (  ) ( ) ( )

* * * *

* *
ijk ijk* * * * * *

ijk ijk * *

x , x ,
x , x , ...

θ θ θ θ

θ θ
θ θ θ θ θ θ

θ θ
= =

∂ ∂
= + − + − +

∂ ∂

M M
M M  

0

0

(  )
( )

* *

*
ijk* *

h h *
h

x ,

θ θ

θ
θ θ

θ
=

∂
+ −

∂

M

     

(10) 

Let (  )*
ijkx , ( )θ η θ ∗=M  and 

0

(  )

* *

*
ijk

ijkl *
h

x ,
d

θ θ

θ

θ
=

∂
=

∂

M
 for all N cases and 

*

0θθδ −= ∗
 then (10) becomes 

δθηθη 0

*

0 )()( D+=∗
    (11)  

where 0D  is the N×H derivative matrix with elements { hijkd × } and this is comparable 

to approximating the residuals for the model, that is, )()( ∗∗ −= θηθ TΩΩΩΩ  by 

0 0
* Dθ η θ δΩΩΩΩ ∗ = − +  ( ) T ( )  

   = 0 0
*( ) Dη θ δ− −T     

           = 0 0z D δ−                                 (12)  

where 0z  = 0
*η θ−T ( )  and 0

*δ θ θ∗= − . 

The Householder (1958) QR decomposition ([28], [29]) is applied to (28), as a 

result of its numerical stability characteristics for estimating the model parameters [29]. 

This is done to decompose 0D  into a product of an orthogonal matrix and an inverted 

matrix.  

Theorem 1: Suppose A is a full column rank matrix of x × y, then A can be written as 

A = QR where Q is a matrix of x × y whose column vectors create orthonormal basis 

for the column space of A while R is an y × y invertible upper triangular matrix. 

Proof: Let an x × ymatrix have columns 1 2 yw ,w ,...w  vectors.  

Also, let 1 2 1n y xq ,q ,...q ,q ,...,q+  be orthonormal vectors such that,  

1=iq ,  0t
i jq q =  if i ≠ j 

Then Q is m × n with orthonormal columns such that, Q
t
Q = I. 

If A is a squared matrix (x = y), then Q is orthogonal, that is, Q
t
Q = QQ

t
 = I, hence, iq  

is orthogonal to 1 2 yw ,w ,...w . 

Therefore,  
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1 1 1 1

2 2 1 1 2 2 2

1 1 2 2

( )

( ) ( )

( ) ( ) ( )y y y y y y

w w q q

w w q q w q q

...

w w q q w q q ... w q q

= ⋅

= ⋅ + ⋅

= ⋅ + ⋅ + + ⋅

    (13) 

This implies that A = QR 

1 1 1 2 1

2 2 2
1 2 1 2

0

0 0

y

y
y y

k k

( w q ) ( w q ) ( w q )

( w q ) ( w q )
w w w q q q

( w q )

⋅ ⋅ ⋅

⋅ ⋅
=

⋅

 
 

       
 
  

⋯

⋯
⋯ ⋯

⋮ ⋮ ⋱ ⋮

⋯

  (14) 

Let A = 1 2 yw w w  ⋯  and Rij= ji qw ⋅ , therefore, equation (14) is written as 

11 12 1

22 2
1 2

R R R

0 R R
A

0 0 R

y

y
y

yy

q q q=

 
 

   
 
  

⋯

⋯
⋯

⋮ ⋮ ⋱ ⋮

⋯

    (15) 

Equation (15) shows that R is y × y, upper triangular with nonzero diagonal elements 

and R is non-singular (since the diagonal elements are nonzero). This means A = QR.   

Theorem 2: If A is an p × n matrix with full column rank, and if A = QR, a QR-

decomposition of A, then the normal system for Ax = b can be expressed as Rx = 

Q
t
band the least squares solution is 1 t  R Qˆ −=x b . 

Proof: Let t 1 t  (A A) Aˆ −=x b  be the best approximate solution to Ax = b. Based on the 

orthonormal and orthogonal property exhibited by QR-decomposition, if 

A = QR  

then 

A
t
 = R

t
Q

t
. 

Therefore,  

 t 1 t  (A A) Aˆ −=x b = (R
t
Q

t
 QR)

– 1
R

t
Q

t
b 

 ⇒ R
t
Q

t
 QR x̂  = R

t
Q

t
b  

 ⇒ R
t
 R x̂  = R

t
Q

t
b 

Since Q
t
Q = 1 

 x̂  = R
 – 1

Q
t
b.       (16) 

Based on the two stated and proved theorems on QR-decomposition, the decomposition 

of 0D  is presented as follows. 

 Let 0 QRD =  

where Q is a matrix of N×N and orthogonal, 
t tQ Q QQ I= =  while Ris an N×H 

triangular matrix and under the major diagonal Ris zero. Writing Q and R as follows, 

    [ ]1 2Q Q |Q=  

where 1Q  is the first H columns and 2Q  is the last N – H columns of Q, and 

    1

2

R
R

R
=  

  
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with 1R  a H×H upper triangular matrix with all elements greater than zero and 2R  is 

a (N – H)×H lower matrix of zeros. Also, 

    
1

2

t

t

t

Q
Q

Q
=
 
  

 

where
t
1Q  and 

t
2Q  are of dimension H×N and (N – H)×N respectively. Therefore, 

0 1 1QR Q RD = =     (17) 

 Geometrically, the columns of Q define an orthonormal, or orthogonal, basis 

for the response space based on the property that the H columns cover the expectation 

plane. Projection onto the expectation plane is simple if the projection is in the 

coordinate system given by Q [28].  

 

Next is transformation of the response vector, which is 
t

0Qg z=     (18) 

with components 

1

t

0
Q

1
g z=     (19) 

and 

2

t
0Q2g z= .     (20) 

The projection of g onto the expectation plane is simply given as 

1

0

g 
  

      

in Q coordinates and 

   
1

1 1 1Q Q
0

g
ˆ gη = = 

  
    (21)  

in the original coordinates. So, 

   R-1
0 1 1gδ =       

this implies 

   1R 0 1gδ =      (22)  

 

 Equation (22)  can now be easily estimated using backward solving ([29]). The 

point 1 1 0 0
* *ˆ ( ) ( )η η θ η θ δ= = + should now be closer to y than 0

*( )η θ , and then move to 

better parameter value 1 0 0
* *θ θ δ= +  and carryout another iteration by calculating new 

residuals 1z  = 1T *( )η θ− , a new derivative matrix 0D , and a new increase. Repetition 

of the process is done until convergence is obtained, that is, until the increment is so 

small with no useful change in the elements of the parameter vector [28].  

 

 It is expected that the new residual sum of squares (RSS) should be less than 

the initial estimate but if otherwise, a small step in the direction 0δ  is introduced. A 

step factor λ  is introduced and then calculated ([28]): 

1 0 0
* *θ θ λδ= +   
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where λ  is chosen to ensure that the new RSS is less than the initial estimate. A 

common method as suggested by [28] is to begin with λ= 1 and reduce it by half until 

it is satisfied that the new RSS is less than the initial estimate.  

 

In actual practice the GLS is impracticable because the VC matrix, V, is 

unknown. Therefore, an estimated V is obtained and substituted into equation (3) and 

the term EGLS is used. There are differenttechniques for estimating the variance 

components to substitute for V in equation (3). In this research work the procedure for 

REML technique is presented. The technique is presented in section 2.2 below. 

2.2 Variance Component Estimation Via REML 

It’s known that REML procedure does not involve  θ̂ ∗  in the estimation of the 

variance component. The function of the likelihood is based on vectors in the error 

space, that is, on linear combinations of y which have expectation to be zero rather than 

y itself. To obtain these vectors in the error space the linear approximation of the 

residuals is used 0 0z D δ ε= +  as shown in (12). 

 

 To estimate the variance components from the nonlinear functions of y that 

won’t involve θ̂ ∗ , vectors of the form t yk  are formed whereby k is selected so that 

t
0 0D =k  which falls in the linear estimate to the error space. t yk  is called the error 

contrasts ([30]), that is, the part of the data that is orthogonal to the fixed effects (not 

dependent on the values of the fixed effect estimates), k is a vector from a full rank 

matrix K and maximizing the likelihood on t yK , the function of the log likelihood on

t yK , is 

 ( ) ( )( )t t t
1 1

ln  ln  (2 ) ln  K K K K  
2 2 2

tn
L π y f X , θ= − − − −Θ  V  

( ) ( )( )1
t t tK K K K  y f X , θ

−
× − V     (23) 

where ( )2 2 2
WP SP,σ σ σ′= =Θ , is then approximated by the surface and letting lnL to be 

Γ  equation (23) becomes, 

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )( )

1
t t t t t t

1 1
t t t t t t t

1
t t t t t

1 1
ln (2 ) ln K K K K ( ) K K K K ( )

2 2 2

1 1
ln K K K K ( ) K K K K ( ) K K

2 2

1 1
ln K K K K ( ) K K K

2 2

t

t

t

n
π y f x, y f x,

C y f x, y f x,

C y f x, y

θ θ

θ θ

θ

−

− −

−

= − − − − −

= − − − −

= − − −

Γ Θ  V  V 

 V  V  V 

 V  V 

 ( ) ( )( )1
t t t t

1
K K ( ) K ( ) K K

2

t
y f x, f x,θ θ

−
+ −  V     (24) 

 

The third and fourth terms of equation (24) can be expressed respectively as follows. 

( ) ( )( ) ( ) ( )( )1 1
t t t t t t

1 1
K K ( ) K K K K K ( ) K K K

2 2

t
t ty f x, y y f x, yθ θ

− −
− = − V  V 

   ( ) ( )( )1 1
t t t t

1
K K K K ( ) K K K K

2

t ty y f x, yθ
− −

= − V  V  (25) 
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and 

( ) ( )( ) ( ) ( )( )1 1
t t t t t t

1 1
K K ( ) K ( ) K K K K ( ) K ( ) K K

2 2

t
t ty f x, f x, y f x, f x,θ θ θ θ

− −
− = − V  V 

  ( ) ( )( )1 1
t t t t

1
K K K ( )K ( ) K K K ( )K

2

t ty f x, f x, f x,θ θ θ
− −

= − V  V  (26) 

respectively. Therefore, equation (24) becomes 

( ) ( ) ( )( )
( ) ( )( )

1 1
t t t t t

1 1
t t t t

1 1
ln K K K K K K ( ) K K K K

2 2

1
K K K ( )K ( ) K K K ( )K

2

t t

t t

C y y f x, y

y f x, f x, f x,

θ

θ θ θ

− −

− −

= − − −

+ −

Γ Θ  V  V  V 

 V  V 

  (27) 

2

2 2

0

t t
i i i

i

K Kσ σ
=

= = ∑V I I I andVV
-1

 can be expressed as given below. 

( )( ) ( )( ) ( ) ( )1 1
1 2 2K K K K K K K K Q Qt t t t

h h jσ σ
− −− = = = =VV V V V V I V  

Inserting V into equation (27) we have 

( )
2

t 2

0

1 1
2 2

t t 2 t t 2

0 0

1 1
2 2

t t 2 t t 2

0 0

1
ln K K

2

1
K K K K ( ) K K K K

2

1
K K K ( )K ( ) K K K ( )K

2

t
i i i

i

t t t t
i i i i i i

i i

t t t t
i i i i i i

i i

C

y y f x, y

y f x, f x, f x,

σ

σ θ σ

σ θ θ σ θ

=

− −

= =

− −

= =

= −

− −

+ −

                

   
      
   

∑

∑ ∑

∑ ∑

Γ Θ  I I  

 I I   I I  

 I I   I I  

 
 
 
 

 (28) 

Differentiate partially equation (28) w.r.t. 2
iσ  and equate to zero. By transformation all 

other terms in the equation becomes zero since t t
0K K ( )=K ( ) 0tD f x, f x,θ θ= = . Hence we 

have 

( ) ( ) ( )
1 1

2 2

2 2

2 2
2

K K 0 0
0

1 1 1
K K K K K K K K K K

2 2t

t t t t t t t t t t
i i i i i i i i i i

ti i ii i i
i

y y

σ

σ σ
σ

− −

∑ = =
=

∂
= − +

∂

   
      
   

∑ ∑
I I

Γ Θ
I I I I I I I I  

( ) ( )
1 1

2 2

2 2

2
2

K K 0 0
0

1 1 1
K K K K K K K K K K

2 2t

t t t t t t t t t t
i i i i i i i i i i

t
i ii i i

i

y y

σ

σ σ

− −

∑ = =
=

=

 
    
        
    

 

∑ ∑
I I

I I I I I I I I  (29) 

Let 

1
2

2

0

K K K Kt t t
h i i i

i

σ

−

=

=
 
  
 

∑Q I I  then equation (29) becomes 

  ( )( ) ( )1 1
Q Q Q

2 2

t
h i h i htr y y=V V     (30) 

Multiply the left hand side of equation (30) by VV
-1

 we have  

  ( )( ) ( ) ( )2
( 1)

1 1
Q Q Q Q

2 2

t
h i j h h j h i htr y yσ + =V V V    (31) 

  ( ) ( )( ) ( )( ) ( ) ( )( )2

1
  i j ih h h hj h

ˆ ˆ ˆ ˆˆ ˆ ˆˆtr y yσ
+

× = tQ V Q V Q V Q   (32) 
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  ( )( ) ( ) ( )( ) ( ) ( )( )1
2

1
  i j ih h h hj h

ˆ ˆ ˆ ˆˆ ˆ ˆˆ tr y yσ
−

+
= × tQ V Q V Q V Q   (33) 

 The solutions to the equations might be negative when more iteration does not 

improve the log likelihood. In such a case, the negative value is retuned to zero afore 

the next iteration. 

3. Conclusion 
The estimated generalized least square (EGLS) method presented in this paper 

is often applied for estimating linear fixed, random and mixed-effect split-plot design 

models. However, in practical applications, the mean part of the model is often 

nonlinear due to dynamics involved in the system process. This paper presents the 

procedure and steps in estimating the parameters for a SP model where the mean part of 

the model can be any nonlinear function and the variance components ( )2 2 2
WP SP,σ σ σ′ =

of the model are estimated through REML technique. This is achieved by minimization 

of the objective function, ( ) ( )1t
(  ) (  )y f X , y f X ,θ θ−− −V  where the estimates of  θ̂ ∗  and 

2 2 2
WP SP,σ σ σ′ =  are iteratively obtained at the (h + 1)

st
 iteration by inserting a prior 

estimate of 2 σ ′
 to the estimating equation until it converges. To achieve these iterative 

procedures for the nonlinear SPD models parameters to be estimated, statistical 

software such as the %NLINMIX SAS macro can be used to handle all computations. 
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