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Abstract  
In this paper, an attempt is made to obtain the estimators for the parameters of one 

parameter Binomial type Rayleigh class Software Reliability Growth Model (SRGM) using 

Bayesian paradigm. The failure intensity of this model has been characterized by a mathematical 

function of total number of failures η� and scale parameter	η�. The total numbers of failures 

present in the software initially and the rate at which the failures occurred before testing is 

unknown to the software tester due to this reason the non-informative priors are proposed for 

both the parameters. The estimators for the parameters η� and η� using Bayesian method have 

been obtained under squared error loss function. The performance of both the proposed Bayes 

estimators is compared with their related MLEs on the basis of risk efficiencies. The risk 

efficiencies are obtained by Monte Carlo simulation technique. It is observed that both the 

proposed Bayes estimators perform well for proper choices of execution time t�. 
 

Key Words: Binomial Process, Non-Informative Prior, Maximum Likelihood Estimator 

(MLE), Rayleigh Class, Software Reliability Growth Model (SRGM). 

 

1. Introduction 
 The software is an essential part of many systems and these systems are 

dependent on reliable operation of software components. Day by day, the software are 

updating in features and institutions/industries are trying to make it very portable. Now 

days, the portability of software in the sense of quality, reliability, size and its cost 

become the issue of great competition among various companies. It becomes mandatory 

to produce the software with better quality which can satisfy the user’s requirement. 

Since, the software is manmade, complex and of large magnitude, hence, the chances of 

occurring failures are high. The failure of software may caused due to programming 

errors related to memory, language-specific, calling third party libraries, extra 

compilation, standard library etc. The operational effects of failures are large as well as 

often vital and may break down the system. Recently, the operation and development 

cost, magnitude, complexity of software are increased. The software has both harmful 

and beneficial nature. It is beneficial for failure free, smooth working and fast execution 

of software however, it is harmful because no one knows when, where and how 

software will fail [5]. Therefore, the reliability of software is essential to be assessed for 
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better results which satisfy the needs of customer. 

 

The Binomial type of occurrence of software failures which follows one 

parameter Rayleigh distribution is characterized as failure intensity for software failure 

data. The failure intensity of this model is assumed to be a function of total number of 

failures present initially (at time � = 0) in the software i.e. 	� and scale parameter i.e. 

	� involved in Rayleigh distribution. Many researchers like [4], [7], [9]-[11], [13]-[15] 

have also demonstrated use of Rayleigh Class failure intensity in software reliability. In 

this paper, the Binomial type Rayleigh Class Software Reliability Growth Model is 

proposed and their Bayes estimators are obtained. The Bayesian estimators performs 

better than estimators obtained by classical estimation procedures if the sample size is 

small and the choice of priors are done properly.  Both the parameters are estimated 

using Bayesian technique as given in [6], [12] and their performance is compared with 

the corresponding maximum likelihood estimators. 

 

2. Model Evaluation 

2.1 Assumptions 
i) Failure occurrence process is Binomial. 

ii) The fault that causes failure will be removed immediately. 

iii) There are finite inherent faults present in software. 

iv) Each failure occurs independently and randomly in time according to the constant 

per fault hazard rate. 

 

2.2 Failures Intensity and Mean Value Function 
 Let T be the positive random variable representing time to failure with 

realization t then Rayleigh Class failure intensity λ�t
 and mean value function is given 

by  

 

λ�t
 = η�tη���e�
�
��������

� 	       (1) 
 

μ�t
 = 	η� �1 − e�
�
��������

�� where t > 0, η� > 0, η� > 0  (2) 

 

2.3 Failures experienced up to time " 
 If M�t
 is random variable representing failures experienced in software up to 

time t then probability of obtaining M�t
 = m failures is 

 P&M�t
 = m	' = ��()� �1 − e�
�
��������

��
)
�e������������

��(�)

  (3)  

where, m = 0,1,… , η�. 
 

2.4 Failures remaining by time " 
 If Q�t
 is random variable representing failures remaining in software by time 

t then probability of obtaining Q�t
 = q failures is 

  P&Q�t
 = q	' = -�(. / e�
0
��������

� �1 − e������������
�(�.

   (4)  

where q = 0,1, … , η�. 
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3. Maximum likelihood estimators 
 Suppose software is executed up to t� time and if t�, t�, … , t)1�= t
 be failure 

times of m� failures experienced upto execution time	t�. The likelihood can be written 

as 

 L�η�, η�3t� = e�
�
���1���(�)1
45∗�����η���)1η�

)1�∏ t8)189� �         (5) 

 

where η�
)1

 is Falling Factorials falling up to m� (cf. [2], [3] and [8] etc.). The MLEs of 

η� and η� can be obtained by solving simultaneous equations 

 

 ∑ �η;)� − i + 1
��)189� = t��η��� 2⁄   

 
and 

η;)� = @&t���η;)� −m�
 + T∗'m��� 2⁄ A� �B 	  
 

where T∗ = ∑ t8�)189� . 

 

4. Priors 
 Generally, the total number of failures present initially at time t = 0 in the 

software is unknown to the tester or he may have very little past experience about it. 

Similarly, past information about the rate or intensity at which failures are occurs may 

not be beneficial, if lines of code in the software are different. Similarly, since η� is 

unknown, the experimenter may not have guess about the, how frequently the failures 

occur i.e. about the scale parameter of Rayleigh density 	�. Hence, in this situation, it 

can be assumed that no or very little information is available about both the parameters 

η� and η�. Hence, the non-informative prior for η� and 	�are more suitable and are  

C�	�
 = D	�
��			; 								� > 0	
0						; F�ℎHIJKLH M 

and  

C�	�
 = D	�
��				; 								� > 0	
0								; F�ℎHIJKLHM 

Consider that η� and η� are independent. Then, the joint prior distribution will be as 

 

 g�η�, η�� ∝ Dη�
��η���				; 						0 < η�, η� < ∞

0							; 									Otherwise
M         (6) 

 

5. Bayesian Estimation 

5.1 Joint Posterior of VW and VX 
The joint posterior of η� and η� given t is  

 

 π�η�, η�3t� ∝ e�
�
���1���(�)1
45∗�����η���)1��η�

)1η���            

 

where, t� > 0, 0 < η� < ∞	and	m� < η� < ∞. 
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The normalizing constant D is given as 

  

 D = K�∑ S)1�)
)1)9� m�	∗ 	�F��1,m� − 1;	m� −m+ 1, T∗∗
  (7) 

 

where S)1�)
 is Stirling numbers of first kind, 	�F��a, b; 	c, z
 is Gauss’s 

Hypergeometric series [1] T∗∗ = 1 − �t��m�/T∗
, m�∗ = m�)�m� −m
�� and K� =
2)1���T∗
�)1Γ�m�
.   

 

5.2 Marginal Posteriors of VW and VX 
 The marginal posterior of η� given t is  

 

 π�η�3t� ∝ 2)1��Γ�m�
η�
)1η���&t���η� −m�
 + T∗'�)1    (8) 

 

where, η� > m�. 
 

The marginal posterior of η� given t is  

 

 π�η�3t� ∝ e�
�
��5∗��1�)1�����η���)1��η�∗          (9) 

 

where, η�∗ = ∑ S)1�)
)1)9� -�1��/
�) η��)Γ�m, η���t��m�/2
. 

 

5.3 Bayes Estimators 
The Bayes estimator of η� is posterior mean i.e.  

 

  η;g� = K�∑ S)1�)
)1)9� m�	∗∗	�F��1,m� + 2;	m� −m+ 1, T∗∗
   (10)  

 

where, K� = 2)14��T∗
�)1��m�Γ�m� + 2
 and m�∗ = m�)�m� −m+ 1
��.  

 

Similarly, the Bayes estimator of η� is posterior mean of (9), is 

 

 η;g� = Kh∑ S)1�)
)1)9� m�	# 	�F� -1,m� − �
� ; 	m� −m+

�
� , T∗∗/  (11)  

 

where, Kh = 2)1�
j
��T∗
�)14��m�Γ-m� − �

�/ and m�# = m�) -m� −m− �
�/
��

. 

 

6. Discussion and Graphical Evaluation 
 The performance of above proposed Bayes estimators i.e. η;g� and η;g� is 

compared with corresponding MLEs. The comparison is made on the basis of risk 

efficiencies under squared error loss calculated by generating m� failures upto 

execution time t� using Monte Carlo simulation technique. To study the performance, 

the variations over the parameters are considered as η��= 2.0�0.2
3.8
, η��=
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20�1
29
 and for t��= 4.0�0.5
5.0
. It is noticed that the difference in the risk 

efficiencies using Monte Carlo simulation technique is very meager between the 

simulations of generating 1000 and 5000 samples, so to do the fast computation, the 

study is done for generating 1000 samples and the same is presented here in figures 

from Fig. 1 to Fig. 3. From these figures, it is seen that the risk efficiencies of proposed 

Bayes estimator η;g� are increasing as the value of execution time t� increases. It is also 

seen that η;g� is performing better than its corresponding MLE for increasing	t�.  
Further, it observed that the performance of proposed Bayes estimator η;g� remains 

constant as the value of t� increases.  

 
Fig. 1 Risk Efficiencies of VqrW and VqrX for "s = t. W.  

 
 

Fig. 2 Risk Efficiencies of VqrW and VqrX for "s = t. u. 
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Fig. 3 Risk Efficiencies of VqrW and VqrX for "s = u. W. 

 

7. Conclusion 

 On the basis of risk efficiencies, it can be concluded that proposed Bayes 

estimators for the parameters of Binomial Type Rayleigh Class SRGM are having less 

risks than their corresponding MLEs when non-informative priors are considered. It can 

also be suggested that the Bayes estimators i.e. vqwW and vqwX can be preferred over 

MLEs when proper execution time xy is chosen.   
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Appendix 

														η�
)1

 is Falling Factorials falling upto m�. S)1�)
 is Stirling numbers of first kind 

and can be calculated by using Stirling numbers of second kind. The term 

	�F��a, b; 	c, z
 is Gauss’s Hypergeometric series. 

 


