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Abstract 
The analysis of lifetime data has become a popular topic in many fields such as 

engineering, medicine and social science. In this study, the Lindley-Rayleigh (LR) distribution is 
proposed and several properties are studied including ordinary moments, quantile function, 
generating function, asymptotes, entropy measures and order statistics. Parameter estimations are 
obtained via the maximum likelihood method. Then, the flexibility of the proposed distribution is 
shown by the use of lifetime data.  
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1. Introduction 
Lindley (1958) proposed the Lindley distribution for analyzing lifetime data 

which belongs to an exponential family. The Lindley distribution is an alternative to the 
exponential lifetime distributions when the failure rate is unimodal or bathtub shaped 
(Bakouch et al., 2012). The statistical properties and the parameter estimation of the 
Lindley distribution were obtained by Ghitany et al. (2008, 2011). Mazucheli and 
Achcar (2011) obtained that the Lindley distribution was more flexible than the 
exponential distribution and proposed it as an alternative to exponential or Weibull 
distributions. Ghitany et al. (2012) obtained Marshall-Olkin extended Lindley 
distribution. Then,  the gamma Lindley distribution was proposed by Nedjar and 
Zeghdoudi (2016). An extended new generalized Lindley distribution was obtained by 
Shibuand Irshad (2016). Recently, Irshad and Maya (2017) have obtained two different 
extensions of the Lindley distribution. Then, Cakmayapan and Ozel (2017) have 
introduced the Lindley family of distributions. 
 

The Rayleigh distribution was introduced by Rayleigh (1880) as a special case 
of the Weibull distribution. The probability density function (pdf) of the Rayleigh 

distribution with a shape parameter	� > 0 is given by 
 

���� = 
 �� �� �� , � > 0
0,					��ℎ������� (1.1) 

 
and corresponding cumulative distribution function (cdf) is obtained as 
 



10                                    Journal of Reliability and Statistical Studies, December 2018, Vol. 11(2) 

 

���� = �1 − ���/ � , � > 00,					��ℎ������ �                            (1.2) 

 
There have been many forms for the Rayleigh distribution to provide 

flexibility for modeling data. Dyer and Whisenand (1973) used Rayleigh distribution in 
an application for communication engineering. Voda (1975) derived the generalized 
Rayleigh distribution and obtain statistical properties, also introduced the left-truncated 
Rayleigh distribution. Voda (1976 a, b) obtained the maximum likelihood estimates 
(MLEs) of the Rayleigh distribution. Bhattacharya and Tyagi (1990) found that some 
clinical data follow the Rayleigh distribution. Fernandez (2010) mentioned the 
parameter estimation problems of the Rayleigh distribution. Gomes et al. (2014) 
obtained the Kumaraswamy generalized Rayleigh distribution for analyzing lifetime 
data.  The transmuted Rayleigh distribution was developed by Merovci (2013). Leao et 
al. (2013) introduced the beta inverse Rayleigh distribution. Cordeiro et al. (2013) 
proposed beta generalized Rayleigh distribution then provided its mathematical 
properties. Ahmad et al. (2014) introduced the transmuted inverse Rayleigh distribution 
and its properties. Recently, slashed generalized Rayleigh distribution has been 
introduced by Iriarte et al. (2017). 

 
In this paper, we propose the Lindley Rayleigh (“LR” for short) distribution to 

increase the flexibility of the Lindley distribution using Lindley generator by adding an 
extra parameter. The proposed distribution is a member of Lindley-G family introduced 
by Cakmakyapan and Ozel (2017). Here, we consider the Lindley distribution as a 
generator and the Rayleigh is considered as a baseline distribution. 

 
The main motivations of this study are: (i) toderive more flexible model with 

the less parameters for the lifetime datasets, (ii) to make the kurtosis moreflexible (iii) 
to generate symmetric, left-skewed, right-skewed, J and reversed-J shapeddistributions 
(iv) to provide better fits than other existing models. 

 

The cdf and pdf of the Lindley-G family with a parameter ! > 0	are, 
respectively, given by 

 

"��� = 
1 − #1 − $
$%& 'log�1 − �����+, '1 − ����+$

	0,					��ℎ������ � , � > 0 (1.4) 

 

-��� = . $
$%&����/1 − log01 − ����12'1 − ����+$�&

0,			��ℎ������ � , � > 0, (1.5) 

 
where G(x) is a baseline cdf and g(x) is the baseline pdf. We can define the Lindley-
Rayleigh distribution using the pdf in (1.5). Then, the random variable X is denoted by 

X~LR�!, ��. 
 

The paper is organized as follows: The LR distribution is proposed and figures 
of the density, survival and hazard rate functions are presented in Section 2. 
Asymptotes, shapes, quantile function, skewness, kurtosis, moments, moment 
generating functions are given in Section 3. The Rényi entropy, reliability function and 
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order statistics are determined in Section 4. MLEs and an expression for the observed 
information matrix are given in Section 5. An application on the lifetime data set is 
considered in Section 6. Concluding remarks are presented in Section 7. 

 

2. Lindley-Rayleigh Distribution 

 

2.1The cumulative density and probability density functions 
 

The cdf of the LR distribution is obtained by inserting (1.2) in (1.4) as  
 

"��� = 
1 − 31 + $�
�$%&� �5 ��6�


�

0, ��ℎ������ ,� 		� > 0 (2.1) 

 

where ! > 0 and � > 0. Then, the pdf of the LR distribution is given by 
 

-��� = 
 $�
�$%&�� ��6�


� 71 + �

 �8 , � > 0
0,			��ℎ������

� (2.2) 

 
Figure 1 shows the plots forpdf and cdffor LR distribution with various 

parameter values. As seen in Figure 1, the density function of the LR distribution has 
several different shapes according to the values of the parameters. This proves that LR 
distribution is more flexible than Rayleigh distribution. The shape parameter θ allows 
great flexibility to the LR distribution. For a fixed σ, as θ increased, the right tail of the 
LR distribution becomes longer. Hence, the proposed model can be important to model 
positive real data sets. 

 

  
 

Figure 1: Plots for pdf of LR distribution with various values of parameters 
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Figure 2: Plots for the cdf for the LR distribution with various values of 

parameters 

 

2.2 Survival and hazard rate functions 
 

We obtain corresponding survival function (sf) as 
 

9��� = 31 + $�
�$%&� �5 ��6�


� (2.3) 

 
The LR distribution can be used in survival analysis, lifetime analysis, 

economics, etc. The hazard rate function (hrf) is the other important function for a 
random variable for characterizing life time data. Then, the hrf of the LR distribution is 
given by 

 

ℎ��� =  $��%$�:
 �;$% �;%$�� (2.4) 

 
Figure 2 shows several shapes of the sf for the LR distribution, respectively. 
 

  
 

Figure 3: Plots for sfs of LR distribution withvarious parameter values 
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3. Properties of LR distribution 
Now, the main properties of LR distribution are studied including quantile 

function, moments, skewness, kurtosis. 
 

3.1 Quantile Function 
Let G(x) be the cdf for Rayleigh distribution and	"�&�<�,		0<u<1, be the 

quantile function of the LR distribution. Then, "�&�<�is given by 
 "�&�<� = ��&01 − ��=>?�@�1  (3.1) 

where L is the cdf of the Lindley distribution. Inverting G(x)=u, the quantile function 
for the Rayleigh distribution is obtained as  

 ��&�<� = '−2� log�1 − <�+&/  (3.2) 
for 0<u<1. 
 

If X~LR(σ,θ), then quantile function of LR distribution is obtained as 
 

"�&�<� = B−2� C/�@�&��$%&�D>�6E?�2%$%&
$ F

?
 (3.3) 

 
where W is the Lambert function. 
 

The effect of the shape parameter σ on the skewness and kurtosis is obtained 
by quantile measures. The Bowley’s skewness is given using the quartiles as follows: 

 

9 = −G�3/4� − 2G�1/2� + G�1/4�G�3/4� − G�1/4�  

 
and the Moors’ kurtosis based on octiles is given by 
 

J = −G�7/8� − G�5/8� − G�3/8� + G�1/8�G�6/8� − G�2/8�  

 

where Q(.) represents the quantile function of X. For "�&�<� = G�<� in (3.3), 
skewness and kurtosis of the LR distribution can be obtained formulas given above. 
They are less sensitive to outliers and they exist even for distributions without 
moments. Skewness is a measure of degree of long tail and kurtosis measures the 
degree of tail heaviness. For a symmetric distribution, S equals to 0. For right-skewed 
distribution, S is greater than zero. Similarly, S is smaller than zero for left-skewed 
distribution. The tail of the distribution becomes heavier when K increases. 
 

3.2 Moments 
The ordinary moments O′Q, n=1,2,..., of the LR distribution are obtained as 
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O′Q = $
�$%&�� R �Q%&ST ��6�� 71 + �

 �8 U�
							= $

�$%&�� VR �Q%&ST ��6��U� + &
 � R �Q%WST ��6��U�X

							= $
�$%&�� #2Y!��YE� �Q% Γ 7Q%  8 + &

 � 2YE !��YE;� �Q%[Γ 7Q%[ 8,
 (3.4) 

 

Further, the central moments (OQ) and cumulants (\Q), ] = 1,2, . . ., of the LR 

distribution can be obtained fromOQ = ∑ �−1�`Q̀aT 7]b8 O′&QO′Q�` and \Q = O′Q −
∑ �−1�`Q̀aT 7]b8 O′&̀O′Q�`. Here, \& = O′&, \ = O′ − O′& , \W = O′W − 3O′ O′& + 2O′&W, 

\[ = O′[ − 4O′WO′& − 3O′  + 12O′ O′& − 6O′&[ etc. The skewness c& = \W/\ W/  and 

kurtosis c = \[/\    are also computed from the second, third and fourth cumulants. 
Table 1 gives moments, skewness, and kurtosis of LR distribution for different 
parameter values. 

 

 Parameters 

 ! = 2, � = 1 ! = 0.5, � = 10 ! = 7, � = 0.5 ! = 0.1, � = 0.1 

O&d  1.033931 23.63272 0.251658 0.576484 

O d  1.333333 666.6667 0.080357 0.381818 

OWd  1.994011 21269.45 0.030135 0.281036 

O[d  3.333333 746666.7 0.012755 0.225455 

Oed  6.09281 28359262 0.005948 0.194563 

Ofd  1.20E+01 1.15E+09 0.003007 0.178909 

Skewness 0.506726 0.357383 0.604859 0.351557 

Kurtosis 0.011381 -0.06948 0.180827 0.027313 

 

Table 1: Skewness, Kurtosis and Moments for the LR distribution 

 

Table 1 presents that the LR distribution is right-skewed and has thin or heavy 
tails for the selected parameter values. 

 

3.3 Moment Generating Function 
Now, we give a formula for the mgf	g���of the LR distribution as  
 

g��� = $
�$%&�� R �h�ST ���6�� 71 + �

 �8 U�
	= $

�$%&�� VR ��h��6��ST U� + &
 � R �W�h��6��ST U�X

= $
�$%&��

ij
jj
k1 + �

√$ ���
m6 no

 7��- 7 �h
√ $8 + 18

− &
[n o

$
p:
ph: q��

m6 ��-r 7− �h
√ $8stu

uu
v  (3.5) 
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where mgf of X exists, if there exists a positive constant b such that g���is finite for all 

t∈ '−b, b+. 
 

4. Other Measures 

 

4.1 Rényi Entropy 
The Rényi entropy of a random variable X with the pdf		f�x� is defined as  
 																																																				Ι|�c� = }

&�} log R -}���U�ST  (4.1) 

 

for c > 0 and which implies that  
 

R -}���U�ST = R V $�
�$%&�� ��6�


� 71 + �

 �8X
} U�ST

																						= $~
�$%&�~�~∑ 7c� 8}�aT &

 ��� R �}% �ST ��6~�� U�
																							= $~

�$%&�~�~∑ 7c� 8}�aT &
 �E?�� 7 $}

 �8
>�~E�E?� Γ 7}% �%& 8

 (4.2) 

 
Then, the Rényi entropy of  LR distribution is obtained as 
 

Ι|�c� = }
&�} log V $~

�$%&�~�~∑ 7c� 8}�aT &
 �E?�� 7 $}

 �8
>�~E�E?� Γ 7}% �%& 8X (4.3) 

 

4.2 Stress-Strength Reliability 
In reliability, the stress-strength shows a component life which has a random 

strengthX&that is subjected to a random stress X . Therefore, R = P�X < X&�shows 

component reliability measure. In this section, we derive reliability functionR ifX& ∼LR�θ&, �&� and X ∼ LR�θ , � � are independent random variables.  
 

Let f� denote the pdf of X�  and "� denote the cdf of X�  for � = 1,2, then the 
reliability function for the LR distribution is obtained as 

 																				� = R -&���" ���U�ST
																							= R $?��$?%&��? �

�6?��? 71 + �
 �?8ST �1 − 31 + $��$%&� �5 �

�6�� � U�(4.4) 

 
After some algebra, we obtain 
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� = $?�$?%&��? ij
jj
kR ���6?��?ST U� − R ����� 6?�?%

6��ST U�
− $�$%&� � R �W���� 6?�?%

6��ST U� tu
uu
v

								+ $?�$?%&� �?; ij
jj
kR �W��6?��?ST U� − R �W���� 6?�?%

6��ST
− $�$%&� � R �e���� 6?�?%

6��ST U� tu
uu
v (4.5) 

 
and hence the reliability function of the LR distribution takes the form 
 

� = $?�$?%&��? #�?


$? − &
 7 $? �? + $ �8

�& − $�$%&� �
&
 7 $? �? + $ �8

� ,
								+ $?�$?%&� �?; #2 7�?


$?8

 − &
 7 $? �? + $ �8

� − $�$%&� � 7 $? �? + $ �8
�W, . (4.6) 

 

4.3 Order Statistics 
Order statistics is especially important for the estimation and hypothesis tests. 

Hence, the order statistics for the proposed distribution is studied now. Let X�:Q denote 

the ith order statistic. Then, pdf	-�:Q���of the ith order statistic for a random sample X&, X , . . . , XQ from Lindley-G family is given by 
 

-�:Q��� = ]!�� − 1�! �] − ��! -���"�����&'1 − "���+Q��
 

																																																						= Q!���&�!�Q���! �−1�� B] − �� F -���"����%��&. (4.7) 

 

Then, the pdf of X�:Q for the LR distribution is obtained as 
 

-�:Q��� = Q!
���&�!�Q���!∑ �−1�Q�&�aT � B] − �� F 71 + ∑ �����

`S̀a& 8∑ �−1�ℓ$�&ℓaT 7! − 1ℓ 8
× �ℓ��� $

$%&����∑ �−1�� 7� + � − 1� 8�%��&�aT
 (4.8) 

  

where ��. �and��. �arepdf and cdf of the Rayleigh distribution, respectively. 
 

5. Maximum Likelihood Estimation 
Now, parameter estimatorss of the LR distribution using maximum likelihood 

method are obtained. Let �&, � , . . . , �Q be observed values from LR distribution with 

parameters ! and �. The likelihood function for �!, �� can be written as 
 

� = ∏ . $���$%&�� ��
6��� 71 + �� �8�Q�a&  (5.1) 

 
and the log-likelihood function is obtained as 
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log� = ]log! + ∑ log�� − $
 �∑ �� Q�a&Q�a& − ]log�! + 1� − 4]log� (5.2) 

																														+∑ log�2� + �� �Q�a& − ]log2. 
 

The first derivatives of the log-likelihood function with respect to the parameters 
are given by 

 p����
p� =  �

� − �
�%&− &

  ∑ x¡ �¡a& 	 �5.3�		 p����
p  = �

 :∑ x¡ − [�
 �¡a& +∑ [ 

  %¢£
�¡a& 	 �5.4�	

 
 

The MLEs of �θ, ��, say �θ¤, �¥�, are the simultaneous solutions of the equations p���=
p$ = 0 and 

p���=
p� = 0. Maximizing of (5.2) is performed using nlm or optimize in R 

statistical package. The Fisher information matrix is required for the interval estimation 

of �θ, ��. The observed Fisher information matrix for �θ, ��can be written as 
 

Ι = #¦&& ¦& ¦ & ¦  , (5.5) 

 
The elements of the Fisher information matrix are as follows: 
 ¦&& = p���=

p$ p$ = −  Q
$ + Q

�$%&�, (5.6) 

 

¦  = p���=
p� p� = − W$

�;∑ �� + [Q
�Q�a& +∑ [���§�� �%���

Q�a& , (5.7) 

 ¦& = ¦ & = p���=
p$ p� = &

�:∑ �� Q�a& . (5.8) 

 
 

6. Simulation Study 
Now, a Monte Carlo simulation is used to perform of the MLEs of the parameters 

for the LR distribution. The results of all simulation are obtained from 5000 replications 
using R-Project. In each replication, a random sample of size N is obtained from ¨~����, !�. The random number generation for the LR distribution is performed by 
the inversion method using the quantile function Q(u) given in Section 3.1.  

Five different combinations of true parameter values in the first row in Table 2 are 

used for the data generating processes. Table 2 lists the MSEs (MSE1 for �, MSE2 for !) for parameter estimation with their corresponding biases with five different sample 
sizes.  
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Parameters 
� = 2,! = 5 

� = 7,! = 3 

� = 19,! = 13 

� = 0.1,! = 0.5 

� = 5,! = 5 

N=50 

MSE1 0.25999 2.94723 0.76714 0.00701 0.78544 

MSE2 0.20728 1.67598 0.54967 0.12122 1.909517 «¬ 1.92024 6.70869 18.86398 0.07520 4.67605 ® 4.93235 2.94664 12.96974 0.53773 4.56897 

N=100 

MSE1 0.22587 2.39933 0.53002 0.00529 0.79180 

MSE2 0.40159 1.40631 0.50191 0.03014 1.56879 «¬ 1.92116 6.99192 18.90658 0.08075 4.89462 ® 4.91285 3.11305 12.93325 0.50350 4.96854 

N=200 

MSE1 0.22372 0.96272 0.41254 0.00208 1.41657 

MSE2 0.05541 0.53115 0.50468 0.04566 0.74738 «¬ 1.94561 6.85442 18.91327 0.09494 4.83748 ® 4.99978 2.94426 12.93074 0.52102 4.97364 

N=500 

MSE1 0.13814 0.99659 0.13544 0.00288 1.30531 

MSE2 0.16281 0.62720 0.15705 0.01252 0.88236 «¬ 1.96107 7.10561 18.97481 0.08087 4.89864 ® 4.98047 3.12999 12.98116 0.45952 5.04560 

N=1000 

MSE1 0.03645 0.23258 0.14443 0.00022 0.85197 

MSE2 0.01337 0.13205 0.20389 0.00142 0.34684 «¬ 1.99123 6.97853 18.96817 0.09974 4.92507 ® 4.99906 2.997881 12.97179 0.50711 5.02179 

 

Table 2: MSEs for the estimated parameters of the LR distribution for several 

values 

 
Table 2 shows that the estimates are close to true values for a large sample size. 

As seen in Table 2, MSE values decrease if n increases.  
 

7. Application 
Now, a real data set is used to compare LR distribution with other distributions 

presented in Table 3.  
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Distribution Abb. References 

Lindley Rayleigh LR 
Proposed 

Exponentiated Weibull EW 
Mudholkar and Srivastava 
(1993) 

Kumaraswamy-Generalized Exponentiated Exponential KGEE 
Mohammed (2014) 

Kumaraswamy Fréchet KF 
Nead and Abd-Eltawab (2014) 

Beta Fréchet BF 
Nadarajah and Gupta (2004) 

Exponentiated Fréchet EF 
Nadarajah and Kotz (2003) 

Exponentiated Exponential EE 
Gupta and Kundu (1999) 

Kumaraswamy inverse exponential KIE 
Oguntunde et al. (2014) 

Zografos-Balakrishnan log-logistic ZBLL 
Zografos and Balakrishnan 
(2009) 

Kumaraswamy Pareto KP 
Bourguignon et al., 2013) 

Kumaraswamy inverse Rayleigh KIR 
Roges et al. (2014) 

Lindley L 
Lindley (1958) 

Exponential E 
 

Fréchet F 
 

Table 3: Fitted distributions and their abbreviations 

 
We use one hundred observations on breaking stress of carbon fibres (in Gba) in 

Nichols and Padgett (2006). The observations are as follows: 
 

3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 
3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 
4.2, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 
2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 
5.56, 1.73, 1.59, 2, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 
4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61, 2.12, 
1.89, 2.88, 2.82, 2.05, 3.65.  

 
The parameter estimates are obtained using the maximum likelihood method. 

Then, we present comparison criteria values: Akaike Information Criterion (AIC), 
Consistent Akaike Information Criterion (CAIC) and Bayesian Information Criterion 
(BIC). The smaller are the values of these statistics, the better is the fit to the data. 
Furthermore, we give results of Kolmogorov-Smirnov (K-S) statistics for the best three 
models. 
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Distribution Estimated Parameters AIC CAIC BIC 

���!, �� 0.075738 0.3943670 - - 286.729 286.852 291.939 

¯°�±, ², γ� 1.24278 2.31161 2.76753 - 289.913 290.163 297.728 

J�¯¯�², ±, ´, µ� 0.110961 4.95024 0.660032 66.246 290.637 291.058 301.057 

J"�´, µ, !, ¶� 6.76357 904.3435 2.90998 0.38843 292.926 291.035 303.347 

·"�´, µ, !, ¶� 0.42934 138.0664 34.38484 0.72474 293.733 291.842 304.154 

¯"�µ, !, ¶� 52.0491 26.173 0.6181 - 296.174 294.755 303.989 

¯¯�², ±� 1.01317 7.78824 - - 296.365 298.474 301.575 

J¦¯�´, µ, !� 2.34352 9.06108 2.6446 - 308.482 307.064 316.298 

¸·���´, !, ¶� 1.55009 1.90903 3.61259 - 331.826 330.408 339.642 

J¹�´, µ, !, ¶� 4.69523 236.2335 0.39 0.19204 339.502 338.084 347.318 

J"�!, ¶� 1.89156 1.76902 - - 350.288 349.342 355.498 

J¦��´, µ, !� 1.35232 1.13974 1.62816 - 355.681 354.263 363.497 

��!� 0.617342 - - - 365.507 366.561 368.112 

¯�²� 0.381476 - - - 394.742 395.796 397.347 

 

Table 4: MLEs and AIC, CAIC and BIC statistics 

 

 

 

 

Distribution K-S Statistics 

���!, �� D = 0.062338, p-value = 0.8319 

¯°�±, ², γ� D = 0.082516, p-value = 0.5038 

J�¯¯�², ±, ´, µ� D = 0.064496, p-value = 0.7998 

 

Table 5: K-S statistics for the best three models 
 
Tables 4 and 5 show that LR distribution is a good fit and can be the considered 

best model for this data set. We provide more information from a histogram of the data 
given in Figure4 with fitted lines which are the best three models: LR, EW and KGEE. 
In Figure 5, the plots of empirical cdf with cdf of LR are presented. 
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Figure 4: Fitted densities of LR, EW and KGEE distributions  

 

 
Figure 5: Plot of empirical cdf and cdf for LR distribution 

 

7. Conclusion 
In this study, we introduce the Lindley Rayleigh distribution as a lifetime 

distribution with two parameters by extending the Rayleigh distribution. We provide 
properties of this distribution including moments, moment generating function, 
reliability, and order statistics. The maximum likelihood method is used for parameter 
estimation of the LR distribution. A simulation study and a real data set are used to 
show performance distribution of the LR distribution. The results present that the LR 
distribution provide better fits than existing distributions.  
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Appendix 

Application Code 

 
lr_pdf<- function(par,x){ 
sigma = par[1] 
t = par[2] 
f=x*exp(-x^2/(2*sigma^2))/sigma^2 
F=1-exp(-x^2/(2*sigma^2)) 
g=t^2/(t+1)*f*(1-F)^(t-1)*F*(1-log(1-F)) 
return(g) 
} 
lr_cdf<- function(par,x){ 
sigma = par[1] 
t = par[2] 
f=x*exp(-x^2/(2*sigma^2))/sigma^2 
F=1-exp(-x^2/(2*sigma^2)) 
G=1-(t+1-t*log(1-F))*(1-F)^t/(t+1) 
return(G) 
} 
goodness.fit(pdf=lr_pdf,cdf=lr_cdf, starts=c(1,1),data=x, method="C",   
domain=c(0,Inf),mle=NULL) 
 

Generate LR code 

j=1 
while (j<5001){ 
for(i in 1:5){ 
m=matrix(0,5000,2) 
N=c(50,100,200,500,1000) 
u=runif(N[i]) 
sigma=7 
teta=3 
z=(u-1)*(teta+1)*exp(-teta-1) 
lamda=1-exp((lambertW_base(z, b = -1, maxiter = 1000, eps = .Machine$double.eps, 
min.imag =1e-09)+(teta+1))/teta) 
x_lr=(-2*sigma^2*log(1-lamda))^0.5 
s=goodness.fit(pdf=lr_pdf,cdf = lr_cdf, starts=c(1,1),data=x_lr, method="C", 
domain=c(0,Inf),mle=NULL) 
m[j,]=s$mle 
j=j+1 
real.par=c(sigma,teta) 
mse1[i]=sum((m[1:j,1]-real.par[1])^2)/j 
mse2[i]=sum((m[1:j,2]-real.par[2])^2)/j 
est.par[i]=c(mean(m[,1]),mean(m[,2])) 
 
} 
} 


