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Abstract  
 Diabetes is a complex, chronic illness that occurs either when the pancreas does not 

produce enough insulin or when the body cannot effectively use the insulin it produces. Globally, 

415 million (340-536 million) people have diabetes in 2015 with regional prevalence of 8.8% 

(7.2-11.4%) by 2040 this figure will expect rise to 642 million (521-829 million) with predicted 

prevalence rate of 10.4% (8.5-13.5%) and more than 22 million people in the African Region; by 

2040 this figure will almost double (IDF, 2015).The statistical result of World health organization 

estimated that the number of cases of diabetics in Ethiopia to be about 796,000 in 2000, and 

projected that it would increase to about 1,820,000 by the year 2030 (WHO, Diabetes estimates 

and Projections, 2003).But,according to the report of international diabetes federation atlas in 

2017 there were around 2,567,900 [1,094,000-3,795,400] million diabetes cases in Ethiopia in 

2017 (IDF atlas, 2017).  The general objective of the study is to identify the determinant risk 

factors for the survival of Diabetic mellitus patients. From 2474 patients a sample of 451 diabetes 

patients administered the treatment in Tikur Anbessa specialized Hospital between September 11/ 

2008-9/5/2014 were included in the study. The data were analyzed using classical and Bayesian 

Accelerated failure time model because of the failure in proportional hazard assumption. 

Bayesian Accelerated failure time model was better model than Classical Accelerated failure time 

model because it contains smaller AIC. Descriptive statistics and the Kaplan-Meier survival 

curves were used to estimate and compare the survival time of diabetes patients among different 

categorical characteristics of the patients. From the result, the survival time until death is 

significantly related to the age category, BMI, types of diabetic disease, alcohol use, diabetic 

complication, blood pressure, cholesterol level, family history of diabetic, fasting blood sugar, 

comorbidity, density lipoprotein, triglyceride level and smoking habit. The patients should keep 

their normal body weight and change their life style such as smoking habit, alcohol consumption, 

and take care of on their lipid cholesterol level.  

 
Key Words: TIKUR Anbessa, Diabetes Mellitus, Accelerated Failure Time, Bayesian 

Analysis, Winbugs. 

 
1. Introduction  
 Insulin is a sugar regulator hormone produced in the pancreas that regulates 

blood sugar, or glucose (Alvin C., 2012).  A person already known who is with diabetes 

does not absorb glucose in his or her body properly, because of this glucose remains 
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circulating in the blood which leads to damaging body tissues over time. This damage 

can lead to different disabling and plenty life threatening health complications such as 

heart attack, stroke, kidney failure, leg amputation, vision loss and nerve damage. 

Diabetes and its complications bring about substantial economic loss in people, health 

systems and national economies through direct medical costs and loss of work and 

wages (Alvin C., 2012). During the last decade, diabetes mellitus has emanating and 

emerged as an important clinical, public health and economic problem throughout the 

world including the developing counties.  

 

2. Methodology  

2.1 Study Area and Data 
 For this study, retrospective cohort data on adult diabetes patient’s history card 

with follow up from Tikur Anbessa specialized hospital, Addis Ababa was collected 

which is a teaching hospital and Addis Ababa university of medicine and health. The 

researcher would use a secondary data and simple random sampling technique to select 

a sample data from patient’s under the follow up period of from September 10/8/2008 

up to August September 1/8/2014 (six year data). All patients with age greater than 18 

were included in the study. But, the study could exclude those patients who were under 

18 years old and diagnosed with Gestational diabetes mellitus. 

 

2.2 Study Population  
 A total of 2474 diabetic patients were on active follow up. All diabetic patients 

greater than or equal to 18 years old and placed under treatments that have started the 

follow up between September 11/2008 and August 10/2014 with six years data with the 

exception of Gestational Diabetic mellitus were included. Patents’ follow up time was 

one, two, three and six months gab according to the order of the doctor.  

 

2.3 Sample Size Determination 
 According to the sample size determination formula (Cochran, W. 3rd Edt. 

1977, page 86-89) 

 

� = ��� �� ��
	�

1 + � ���� �� ��
	� − 1� = n�1 + � �n� − 1� 

� = 5%is a level of significance, the estimated proportion of death due to DM disease 

was p=0.07 (According to Bekele, T., Hymete, A., Tadesse, M. and Mekonnen, Y. 

2008), the researcher have been used a maximum error of 0.0213 and 5% significance 

level. The sample size would be 451. 

 

2.4 Study Variable  

2.4.1 Dependent Variable 
 The dependent variable also called outcome variable, of this study is the 

length of time in month of a given patient until the occurrence of event which is death 

happens T� , Survival time to event (days since acceptance). 
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2.4.2 Independent Variable  
 There were many covariates that might produce variations on the survival of 

DM patients. Covariates may be quantitative or qualitative. Such as,  Sex, Baseline age, 

Height, Initial weight, Diabetic type, Smoking habit, Region, Diabetic complications, 

Alcohol use, Body mass index, Blood pressure(systolic & diastolic blood pressure), 

Cholesterol level, Triglyceride, Protein level (high density lipoprotein and low density 

lipoprotein), baseline Fasting blood sugar, Family History, Comorbidity, etc.   

 

2.5 Data and Model  
 Survival analysis is the phrase used to describe the analysis of data in the form 

of a well-defined time origin until the occurrence of some particular event or end point 

& for which the response variable of interest is the length of time until a certain event 

occurs. If the end point is the death of a patient or time to cure from a certain disease 

for a patients in given hospital, the resulting data are indicates and refers to survival 

times. To determine the survival time denoted by ��,  three basic elements are needed 

such as, Starting time (an unambiguous time origin or the beginning of the study), A 

measurement scale for the passage of time or a time scale like real time (days, years), 

An ending event of interest (a definition of when the endpoint occurs) (Lee, E. T., & 

Wang, J. 2003).   

 

 Most of the time, we cannot fully observe this random variableT� but only 

observe some boundaries for this time. This is called censoring. The data that are 

collected over a finite period of time and consequently the “time to event” may not be 

observed for all the individuals in our study population or sample.  This result in what 

is called Censored data. That is the “time to event” for those individuals who have not 

experiencing the event under study is censored (by the end of the study). It is also 

common that the amounts of follow-up for the individuals in the sample vary from 

subject to subject(Lee, E. T., & Wang, J. 2003).The combination of censoring and 

differential follow-up creates some unusual difficulties in the analysis of such data that 

cannot be handled properly by the standard statistical methods. Because of this, a new 

research area in statistics has emerged which is called Survival Analysis or Censored 

Survival Analysis (Lee, E. T., & Wang, J. 2003).The researcher considers only right 

censoring – events would necessarily take place after the follow-up period.  

 

2.5.1 Semi-Parametric Survival Model 
 Cox's semi-parametric model is widely used in survival analysis to model the 

effect of covariates on hazard rates. The model assumes that the effect of explanatory 

variables is to multiply the hazard by some constant. In this model, the conditional 

hazard of an individual, given the covariates values,X�, X�,  X�,…., X� is defined λ�t|X� = λ��t�e%&'&(%�'�(⋯(%*'* = λ��t�e%+, 

Where,  λ��t� is the baseline hazard which indicates the hazard of patients when the 

independent variables are zero.Independent variables in Cox proportional hazard model 

areentering the model linearly in the exponential scale.  Many model assumption 

checking procedures are based on quantities known as residuals such as Schoenfeld 

residuals and scaled Schoenfeld residuals. 
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2.6 Accelerated Failure Time Model 

2.6.1 Classical Accelerated Failure Time Model 
 When the possibility of proportionality assumption of the Cox proportional 

hazard model is not valid, the model cannot be used in modeling length of time to the 

occurrence of an event rather some parametric survival models and approaches are 

appropriate. In a parametric survival model, the distribution of the response variable, 

length of time to the happening of an event is specified in term of a finite number of 

unknown parameters.  One of the well-known parametric models is accelerated failure 

time (AFT) model.In which the length of time is to happening of the event is assumed 

to be a function of explanatory variables. In this model the covariates are acting 

multiplicatively effect on time and so affect the ‘rate of passage’ to the event. This 

model also assumes that the relationship of logarithm of length of time to the happening 

of the event (T) and x is linear related like as follows log���� = 01 + 23� 
3� = 4log���� − 5� − 5�x��−5�x�� − 5�x�� − ⋯ − 57x��82  

 

Let ε~F<�. |σ�, such that F<�. |σ� is the known cumulative probability distribution 

associated with probability density function f<�. |σ� with scale parameter σ.  The 

survival and hazard function of ε are S<�. |σ� = 1 − F<�. |σ� and h< = BCDC  respectively. 

Where,E FGH are vectors of coefficients and 3� is a residual error term with a specified 

probability distribution.  The commonly used distributions for the random error 

termεare extreme, logistic and normal; these three distributions are, respectively, log-

transformation of Weibull, the log-logistic and the log-normal distributions. These 

distributions are appropriate parametric distributions for analyzing the length of time to 

event data (Christensen R, 2011).    

 

The survivor function  I�t�� = J�T� ≥ t�� = J�LMNT� ≥ LMNt��,so I�t�/P�� = J�3� ≥ 4log���� − 5� − 5�x��−5�x�� − 5�x�� − ⋯ − 57x��8/2�  
As an example 3�follows a logistic probability distribution with a density & survival 

function as follows Q�ε� = RS
��(RS�� and I�ε� = ���(RS� 

Then, substitute another expression of  3� in the above survival function. S�t�|x�� = 1T1 + U4VWX�YZ�[\][\&^_&[\�^_�[\`^_`[⋯[\a^_*8/bc 

Suppose we observe"�” independent vectors of the form denoted by �e� , f� , P��, where e�  is the length of time to the occurrence of an event, f� is indicator variable telling us 

whether f� is uncensored (unobserved) or censored (observed) and P� is the vector of 

explanatory variables that are expect to affect the survival of diabetes patients.  f� = g0 iU�jMkl�N MmjUkno�lM� 1 UnU�� Mk pUop �QolLqkU�r e�~ste�tu , v|x�� 

Let the precision parameter be denoted byw = �√b, then  I�t�/P� , v� = 1 − tuy�LMN���� − 0z1�√w{ 
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I�t�/P� , v� = √w�� Quy�LMN���� − 0z1�√w{ 
ℎ�t�/P� , v� = √w�� ℎuy�LMN���� − 0z1�√w{ 

Accelerated failure time model assumes that the effects of the explanatory variables are 

to decelerate or accelerate the life of patients.  It is possible to show that the coefficients 

from Cox proportional hazard and accelerated failure time model are linked in the 

following manner i.e 5}~�� = [\���7�  and  5}�� = [\����b� .  Thus, the estimated coefficients 

are equivalent up to a scale factor equal to   2�, where, Ĵ = �b�. In accelerated failure time 

models, the sign of the regression coefficient shows how the explanatory variables 

affect the log survival times. Thus, a positivevalue ofregression coefficient increases 

the log survival time and, hence, the expected duration. A negative value of regression 

coefficient decreases the log survival time and, hence, the expected duration.  

 

2.6.2 Bayesian Accelerated Failure Time Model  
 The researcher can use this type of inference to estimate the parameter by 

considered them as a random variable and by specifying their own probability 

distribution to describe the uncertainty of parameters called prior distribution. 

 

The likelihood function for the set of unknown vectors of parameters denoted by,� 

� The likelihood function of the set of unknown parameters, � in the this types of 

censoring (right censoring) can be written as   

L�v� = �yQ���|�� , v����Z��� ∗ I���|�� , v����Z���{�
���

 

Log-likelihood would be as follows 

L�v� = �yQ���|�� , v����Z��� ∗ I���|�� , v����Z���{�
���

 

L�v� = LMN ��yQ���|�� , v����Z��� ∗ I���|�� , v����Z���{�
���

� 

L�v� = � LMN�yQ���|�� , v����Z��� + I���|�� , v����Z���{��
���

 

 

Where,  Q���|�� , v� and I���|�� , v�are the density and survival distributions respectively 

(Ganjali, M., & Baghfalaki, T. 2012, Ibrahim, J. G., Chen, M. H., and Sinha, D. 2001). 

In these models, when both of the regression coefficients 5 and scale parameters, 2 are 

unknown, no joint conjugate prior is available. A typical joint prior specification can be 

expressed as a product of a multivariate normal (for parameterβ|σ�) and an inverse 

gamma prior (for σ�), that is 5|2�~�7���, ��2���, 2�~���o, m� 

 

Let combining the likelihood function above with the prior probability distribution on 

(5, 2�) and the full conditional probability distributions for these unknown parameters 

is as follows 
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��5|2�, �, �� ∝ �yQ���|�� , v����Z��� ∗ I���|�� , v����Z���{�
���

∗ ��5|2�� 

∏�2�|5, �, �� ∝ ∏ yQ���|�� , v����Z��� ∗ I���|�� , v����Z���{���� ∗ ∏�5|2��  * ∏�2�� 

 

 The posterior probability distribution for the model specification above does 

not have closed form solution for the parameters. For these models, Markov chain 

Monte Carlo (MCMC)simulation type like the Gibbs sampler can be implemented 

using the WinBUGS software (Ganjali, M., & Baghfalaki, T. 2012, Ibrahim, J. G., 

Chen, M. H., and Sinha, D. 2001).  

 

 To high light & derived final form of baseline models for Posterior probability 

distribution of the three parametric probability distribution in the above equations,  as 

follows.  A straightforward way to state the Weibull accelerated failure time models is 

to let e�~¡UlmqLL�¢� , �� and log �¢�� = −�£5. And a joint probability distribution 

specification is to take  5~����, ���and�~���o, m� 

IG = 
¤¥¦§¥§&R§ ©̈ª�«�  

 

 The posterior probability distribution for the model specification above does 

not have final solution or closed form solutions for the unknown parameters. To apply 

the Bayesian analysis, Markov chain Monte Carlo simulation techniques can be used to 

sample a data from the joint posterior distribution of these models. One of the special 

Markov chain Monte Carlosimulation typeis the Gibbs sampler, which need only the 

specification of the conditional posterior probability distribution for each parameter. In 

situations where those probability distributions are simple to sample from the approach 

is easily implemented. The final form by combining the likelihood function with the 

prior distribution on �β, σ�� and the full conditional probability distributions for 

unknown parameters in log-logistic probability and log-normal probability models are 

given by:   

i. Density and Survival distribution of log-logistic distribution e~¬¬�P£5, √w�,   (Christensen,  2011 ) 

Q��|�, 5, w� = √wU{�VWX�Y�[®+\�√¯}
41 + U{�VWX�Y�[®+\�√¯}8� 

I��|�, 5, w� = 1 − tu[�LMN��� − P£5�w] = 11 + U{�³´µ�Y�[®+\�√¯}= y1 + U{�³´µ�Y�[®+\�√¯}{[�
 

� Posterior Distribution for Log-logistic  

 

Posterior  

¶�5|2�, �, �� = ∏ yQ���|�� , v��Z ∗ I���|�� , v��[�Z{���� ¶�5|2��· ∏ [Q���|�� , v��Z ∗ I���|�� , v��[�Z]¶�5|2��p���� 5[̧¸  

5~N���, 2�� 
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¶�5|σ�, t, x�
= ∏ º» √¯R{�¼½¾�¿�§À+Á�√Â}

T�(R{�¼½¾�¿�§À+Á�√Â}c�ÃÄ_ ∗ T ��(R{�¼½¾�¿�§À+Á�√Â}c�[Ä_Å ∗Æ��� �√�Çb U§&� TÁ§È]É] c

· ∏ º» √¯R{�¼½¾�¿�§À+Á�√Â}
T�(R{�¼½¾�¿�§À+Á�√Â}c�ÃÄ_ ∗ T ��(R{�¼½¾�¿�§À+Á�√Â}c�[Ä_Å ∗Æ��� �√�Çb U§&� TÁ§È]É] cd5[̧¸

 

 

 Full conditional probability distributions for the vectors of unknown 

parameters in log-logistic probability 

 

��5|2�, �, �� ∝ �yQ���|�� , v����Z��� ∗ I���|�� , v����Z���{�
���

∗ ��5|2�� 

¶�5|σ�, �, x� ∝ � ËÌ √wU�4VWX�Y�[®+\8√¯�
41 + U��VWX�Y�[®+\�√¯�8�ÍÄ_ ∗ � 11 + U��VWX�Y�[®+\�√¯���[Ä_ÎÆ

���
∗ 1√2¶2 U§&� TÁ§È]É] c

 

 

ii. Density and Survival distribution of lognormal distribution e~¬� TP£5 , �̄c  (Christensen, 2011 ) 

Q��|�, 5, w� = 1√2¶ √w� UÐ[ Â�[³´µ�Y�[®+\]�Ñ
 

I��� = 1 − Φ »LMN� − P£52 Ã � > 0 

� Posterior distribution for lognormal distribution   

P~�� = 
¤¥¦§¥§&R§ ©̈ª�«�  

Then the prior for 

σ�~ m«�σ��[«[�U § ¨�Ô��Õ�o�  

Posterior= ¶�5|2�, �, ��=
∏ Ö×�YZ|¦Z,v�ØZ∗Ù�YZ|¦Z,v�&§ØZÚÛZÜ& Ç4\|b�8Ç4b�8

· ∏ Ö×�YZ|¦Z,v�ØZ∗Ù�YZ|¦Z,v�&§ØZÚÇ�\|b��Ç�b��ÝÛZÜ& \Ýb�Þ§Þ  

 

¶�5|σ�, t, x� = �A ∗ B�/ 2
* .A B d dβ σ

+∞

−∞∫  

where 

 

A=∏ Ö� �√�Ç √Ȳ UÐ[ Â�[VWX�Y�[®+\]�Ñ�Ä_ ∗ �1 − Φ�³´µY[®+\b ���[Ä_ÚÆ���  

 

B=
�√�Çb U§&� TÁ§È]É] c ¤¥�á��§¥§&R § ¨�Ô��

â�«�  
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Full conditional probability distributions for unknown parameters in log-normal 

probability distribution 

 ¶�2�|5, �, �� ∝ ∏ yQ���|�� , v��Z ∗ I���|�� , v��[�Z{���� ∗ ¶�5|2�� * ¶�2�� 

¶�σ�|5, t, x� ∝ � Ë» 1√2¶ √w� UÐ[ Â�[VWX�Y�[®+\]�ÑÃÄ_ ∗ Ì1 − Φ »LMN� − P£52 ÃÍ�[Ä_ÎÆ
���

∗ 1√2¶2 U§&� TÁ§È]É] c m«�σ��[«[�U § ¨�Ô��Υ�o�  

 

Where,  π�5|σ�� andπ�σ�� are prior distributions for 5 and σ� in the log-logistic 

probability and lognormal probability model. Also, the full conditional probability 

distributions for Weibull probability model are given in the same notations, where  σ� 

replaced by � and π�5� and π��� independent prior distributions (Ganjali, M. and 

Baghfalaki, T. 2012, Christensen et al. 2011).  

 

iii. Density and Survival distribution of Weibull distribution e~¡Ulm�√w, U[®+\√¯,�, (Christensen R.,  2011 ) I��� = exp �−exp [�log��� − P£5�√w]� Q��|�, 5, w� = √wU  [�³´µ�Y�[®+\�√¯]�U�J �−U�J [�LMN��� − P£5�√w]� 

Where,  2 = �ç and ¢ = U[ ÈÉ 

P~�� = 
¤¥¦§¥§&R§ ©̈ª�«�  

 

Then the prior for  

α~ m«�α�[«[�U§ ¨���Õ�o�  

� Posterior distribution for Weibull distribution 

Posterior= ¶�5|2�, �, ��=
∏ Ö×�YZ|¦Z,v�ØZ∗Ù�YZ|¦Z,v�&§ØZÚÛZÜ& Ç�\|ç�Ç�ç�

· ∏ Ö×�YZ|¦Z,v�ØZ∗Ù�YZ|¦Z,v�&§ØZÚÇ�\|ç�Ç�ç�ÝÛZÜ& \ÝçÞ§Þ  

 ¶�5|α, t, x� = sé            êℎUkU  
 

A = � Ö4√wU  [�VWX�Y�[®+\�√¯]� exp4− expy�log��� − P£5�√w{88Ä_Æ
��� ∗ 4exp4− expy�log��� − P£5�√w{88�[Ä_Ú. 

1√2¶2 U§&� TÁ§È]É] c m«�α�[«[�U§ ¨�ë�Õ�o�  

 

and 
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é = ì � � Ö4√wU  [�VWX�Y�[®+\�√¯]� exp �−exp [�log��� − P£5�√w]�8Ä_Æ
���

Æ
���

¸
[¸ ∗ 4exp �−exp [�log���

−  P£5�√w]�8�[Ä_Ú . 1√2¶2 U§&� TÁ§È]É] c m«�α�[«[�U§ ¨�ë�Õ�o� p 5dα 

 

 The denominator of the above three posterior probability distributions is a 

constant called normalizing constant it makes to integrating to one to the posterior 

probability. Full conditional distributions for unknown parameters in Weibull 

distribution     ¶�5|α, t, x� ∝ 

� Ö4√wU  [�VWX�Y�[®+\�√¯]� exp �−exp [�log��� − P£5�√w]�8Ä_Æ
��� ∗ 4exp �−exp [�log���

− P£5�√w]�8�[Ä_Ú 1√2¶2 U§&� TÁ§È]É] c m«���[«[�U§ ¨���Õ�o�  

 

 Even when an analytical solution exists, it is often easier to use simulations 

(Christensen et al, 2011). For these models, MCMC type like the Gibbs sampler 

simulation can be apply by using the WinBUGS software (Spiegelhalter et al., 2003, 

Ganjali, M. & Baghfalaki, T., 2012, Christensen et al, 2011).  

 

2.6.2.1 Simulation Convergence Test Statistic  
 The Markov Chain Monte Carlo simulation convergence diagnostics tests are 

widely used to determine how many initial “burn-in” iterations should be discarded 

from the output of a MCMC sampler in the hope that the remaining samples are 

representative of the target posterior probability distribution of interest. The best way to 

do this is choosing the number of burn-in iterations “r” by applying convergence 

diagnostics to one or more plot chains, and then basing estimation and inference on a 

separate long chain from which the first “r” iterations have been discarded (Ntzoufras 

I., 2009). 

 

 Tests used for checking convergence of a Bayesian analyses were as follows: 

Time series plot: Time series plot of the different independent initial values of the 

chains should be mix together or overlapped. Kernel Density plot: The plots for the 

parameters of predicator variables should be resemble the curves of normal distribution 

if so the simulated parameter values will be converged. Gelman-Rubin Statistic, 

Bayesian Gelman - Rubin diagnostic compares the values of within-chain variability 

and the between-chain variability of the MCMC simulated values and if the ratio 

(converges approximately to one or if lines for each chain on the Bayesian Gelman-

Rubin are nearly together, this is an indication for the convergence of statistics 

(Spiegelhalter, 2004). 

Gelman-Rubin Statistics =  √í = îï«ð�\��ñ  
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V �5}�  = overestimates variance (variations between the chains), W = underestimates 

total posterior variance (variation within the chains)  The ratio R of W and V �5}�  close 

to 1 to be called convergence of Gelman-Rubin statistic was achieved.  

 

 

� Autocorrelation plot  

 The simulated values of Markov Chain Monte Carlo expect that the “k
th

” lag 

autocorrelation values must smaller as “k” increases, which mean that the “2
nd

” and 

“50
th

” draws should be less correlated than our “2
nd

” and “4
th

” draws. If autocorrelation 

function is still relatively high for higher values of “k”, this shows that there is a high 

degree of correlation between our draws and slow mixing. The degree of 

autocorrelation can be quantified using the autocorrelation function as follows 

(Christensen R, 2011).  

 òó = ô´õ�®¿,®¿ö÷�øõ«ð�®¿�øõ«ð�®¿ö÷� = ù[�®¿[ú��®¿ö÷[ú�]øù[�®¿[ú��]øù[�®¿ö÷[ú��]                                         
 

3. Result of the Study  

3.1 Results of the Descriptive Statistics 
 Out of 451 patients included in the study 380 (84.3%) and 71 (15.7%) were 

right-censored (dropout, transferred, loss and alive till the study period)and dead 

patients respectively. From 451 patients in the study 237(52.5%) of the patients were 

females and 214(47.5%) were males. Out of 451 patients included in the study 380 

(84.3%) and 71 (15.7%) were censored and dead patients respectively. From 237 

female patients 192 (81%) and 45(19%) of which were censored and death respectively 

and out of 214 male patients 188 (87.9%) and 26(12.1%) were censored and death 

respectively.A summary of the data for each level of variables is provided intable 1 

below. 

 
 

 

Variable 

 

Category 

                    Status of patients  

 

Censored 

(%) 

 

Death (%) 

Number in the sample 

(%)  

Age  =<30 

30<Age=<45 

45<Age=<60 

>60                         

48(96%) 

102(94.4%) 

175(88.4%) 

55(57.9%) 

2(4%) 

6(5.6%) 

23(11.6%) 

40(42.1%) 

50(11.1%) 

108(23.9%) 

198(43.9%) 

95(21.1%)  

Sex Female 

Male                            

192(81%) 

188(87.9%) 

 

45(19%) 

26(12.1%) 

 

237(52.5%) 

214(47.5%) 
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BMI Normal(18.5-24.5) 

Under 

weight(<18.5) 

Over W (24.5-29.9) 

Obese(>=30)                           

181(93.3%) 

15(83.3%) 

131(85.6%) 

53(61.6%) 

 

6(6.7%) 

3(16.7%) 

22(14.4%) 

33(38.4%) 

194(43%) 

18(4%) 

153(33.9%) 

86(19.1%) 

Types of DM Type 1 

Type 2 

10(95.2%) 

380(82.5%) 

53(4.8%) 

8(17.5%) 

63(14%) 

388(86%) 

Alcohol 

Use  

 

Yes 

No 

 

15(26.3%) 

365(92.6%) 

42(73.7%) 

29(7.45) 

57(12.6%) 

394(87.4%) 

 

DM compl. No complication 

D_Kidney failure  

D_eye disease 

Neuropathy  

Heart (CVD) 

Diabetic foot ulcer  

More than 2 comp.  

241(98.4% 

31(70.5%) 

33(82.5%) 

21(70%) 

32(62.7%) 

15(65.2%) 

7(38.9%) 

4(1.6%) 

13(29.5%) 

7(17.5%) 

9(30%) 

19(37.3%) 

8(34.8%) 

11(61.1%) 

245(54.3%) 

44(9.8%) 

40(8.9%) 

30(6.7%) 

51(11.3%) 

23(5.1%) 

18(4%) 

SBP Normal (<120) 

Pre-HTN(120-139) 

Stage 1 (140-159) 

Stage 2 (>=160) 

77(96.2%) 

179(90.4%) 

69(75%) 

55(67.9%) 

3(3.8%) 

19(9.6%) 

23(25%) 

26(32.1%) 

80(17.7%) 

198(43.9%) 

92(20.4%) 

81(18%) 

Cholesterol 

level  

Normal <200 

High >=200 

339(95%) 

41(43.6%) 

18(5%) 

53(56.4%) 

357(79.25) 

94(20.8%) 

Family 

history  

Positive  

Negative 

15(23.4%) 

365(94.3%) 

49(76.6%) 

22(5.7%) 

64(14.2%) 

387(85.8%) 

Comorbidity  No 

HTN 

Dyslipidemia 

Obesity 

Others  

184(95.8%) 

69(22.5%) 

32(84.2%) 

22(56.4%) 

73(77.7%) 

8(4.2%) 

20(22.5%) 

6(15.8%) 

17(43.6%) 

21(22.3%) 

192(42.6%) 

89(19.7%) 

38(8.4%) 

23(8.6%) 

94(20.8%) 

HDL levels Normal = above 60 

Borderline 40-59.9 

Undesirable <  39.9  

93(91.2%) 

163(84.9%) 

124(79%) 

9(8.8%) 

29(15.1%) 

33(21%) 

102(22.6%) 

192(42.6%) 

157(34.8%) 

LDL level Normal <100 

Above normal 100-

12.9 

Borderline 130-

159.9 

High >=160 

115(95%) 

103(96.3%) 

 

103(82.4%) 

59(62.8%) 

6(8%) 

8(7.2%) 

 

22(17.6%) 

35(37.2%) 

121(26.8%) 

111(24.8%) 

 

125(27.7%) 

94(20.8%) 

Triglyceride  Normal < 150 

High >=150 

184(90.6%) 

211(79%) 

19(9.4%) 

52(21%) 

203(45%) 

281(55%) 

Smoking 

habit  

Non-smoker  

Smoker  

367(92.9%) 

13(23.2%) 

28(7.1%) 

43(76.8%) 

395(87.6%) 

56(12.4%) 

 

Table 1:  Descriptive statistics for each level of the covariates 
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Comparisons of Survival Curves  

 In order to investigate if there is significant difference between the survivals of 

a patient between categories of covariates, Kaplan-Meier survivor estimates all 

significant covariates in the log-rank test.  

 
  Log-Rank Breslow 

Variable Mean survival  Chi-sq df Sig Chi-sq Df Sig 

Age C 

=<30 

30<age=<45 

45<age=<60 

>60 

 

78.689 

77.927 

70.524 

44.199 

125.843            3 0.000 115.393 3 0.000 

Sex 

Female  

Male  

 

68.70 

71.236 

3.17           1  0.075 0.995 1 0.318 

BMI 

Normal    

Underweight 

Overweight 

Obese  

 

74.825  

66.747   

71.231         

55.27         

52.094         3  0.000 44.899 3 0.000 

Types_ DM 

Type 1 

Type 2 

 

68.781 

78.781 

10.712        1 0.001 10.98 1 0.001 

Alcohol 

Yes  

No 

 

60.25 

75.24 

 205.91 1 0.000 156.29 1 0.000 

DM_com 

No com 

D_Neph 

D_retino 

D-Hear 

D_Neurophat. 

Others  

 

79.20 

58.15 

67.59 

52.15 

52.79 

49.96 

120.068      5 0.000 105.19 5 0.000 

SBP 

Normal 

Pre-HTN 

Stage 1 HTN 

Stage 2 HTN 

 

78.23 

74.24 

63.15 

57.07 

44.73      3 0.000 36.054 3 0.000 

DBP 

Normal  

Pre-HTN 

Stage 1HTN 

Stage 2 HTN 

 

77.15 

74.29 

64.06 

58.27 

79.82  3 0.000 60.31 3 0.000 

Cholesterol 

Normal  

High 

 

76.06 

49.24 

169.59        1 0.000 128.48 1 0.000 

F_His 

Positive 

Negative 

 

46.24   

74.16                

244.59       1 0.000 174.27 1 0.000 

Comorbidity 

No com 

HTN 

Dyslipidemia 

 

78.14 

65.14 

68.22 

54.71 4 0.000 47.01 4 0.000 
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Table 2: Comparisons of Survival Curves on different level of covariates using numerical 

hypothesis testing 

 

 The researcher used the graph of Kaplan-Meier survival function and the 

numerical comparison like log-rank (mantel-cox) and Breslow (generalized Wilcoxon) 

to compare the survival experience of the diabetes patients from the different groups of 

the covariates.  From the groups of the covariates included in the study with the above 

curve had a highest survival than the category with lower Kaplan-Meier curve. Because 

of this patients with age category less than or equal to 30 had more survival time than 

the other age group of patients.  

 

 

Figure 1:Kaplan-Meier Curve for age Category 

 

 The difference in survival were supported by numerical Statistical hypothesis 

tests, since log-rank (p-value=0.000 and Chi-square=125.84, 3 df) test and Breslow (p-

value=0.000 & Chi-square 115.4, 3 df) output revealed in Table 2 shows that there is 

significant difference between survival time of the different age groups of patients. The 

survival variation of patients on the other level covariates is present in Table 2. 
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Age_C = =<30 Age_C = 30<age=<45

Age_C = 45<age=<60 Age_C = >60

Kaplan-Meier survival estimates

Obesity 

Others   

61.26  

63.29  

HDL_ca 

Normal 

Borderline 

Undesirable  

 

73.05 

72.10 

64.10 

8.13           2 0.037 6.567 2 0.039 

LDL_C 

Normal 

Above normal 

Borderline 

High 

 

77.24 

76.18  

66.25 

56.12 

64.73  3 0.000 73.613 3 0.000 

Triglyceride 

Normal 

High 

 

75.04              

66.33 

13.52             1 0.000 19.13 1 0.000 

Smoking Hab 

Non-smoker 

Smoker 

 

74.12 

49.26 

368.61             1 0.000 344.25 1 0.000 
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3.2 Results of the Proportional Model 

3.2.1 Proportional Hazard Model Assumption Checking  
 The proportionality of Cox proportional hazard model can be tested using rho 

statistic, p-value and Scaled Schoenfeld residuals. The large value of rho showed that 

strong correlation between residuals and time because of this there is the existence of 

systematic patter on the graph this showed that proportional hazard assumption is not 

satisfied. The p-value of rho statistic is less than 5% for a given covariate indicates the 

rejection of null hypothesis of the proportionality of cox proportional hazard model.  

 
Variable Rho Chi2 Df Prob>chi2 

SBP 0.22124                   4.23                1 0.0397 

Comorbidity -0.25565                      4.39                1 0.0318  

LDL_ca -0.26563                    4.72                1 0.0298 

Trig -0.34923                     8.99              1 0.0027 

Global test                                                             43.78 18 0.0001 

 

Table 3: Test of proportional-hazards for covariates violate the assumption only  

 

 

 

Figure 2:  Scaled Schoenfeld residuals of covariate triglyceride 

 

 The reference line and Lowess curve never cross to each other and is 

approximately horizontal (parallel) if the assumption fulfilled. This shows that there 

was some evidence of a departure from the proportional hazards assumption for the 

covariates that are included in the model like triglyceride, LDL, SBP and comorbidity.   

The effect of “ties” in this model is leads to make the parameter estimates biased 

towards zero. As a rule of thumb if more than 10% of the observation are tied we have 

recommend to deal with them. Breslow’s approximation, Efron’s approximation etc, 

but these approximations told us there were no effect of tie values on our estimators and 

lie survival times are not more than 10% of the observation. 
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3.3 Bayesian Accelerated Failure Time Model  
3.3.1 MCMC Estimation methods 

 The researcher use non-informative normal prior distribution with mean zero 

and variance 1000 variance and inverse gamma distribution with scale =0.01, 

shape=0.01 parameters. In this simulation study of Bayesian inference using MCMC 

the researcher used 40,000 Markov Chain samples by fixing the burn-in state at 15,000 

using WinBugs & SAS software. This implies the parameters of the covariates were 

estimated by 25,001 Markov chain sample values, simply using the Markov Chain 

samples after the burn-in state. After this simulation study additional covariates that are 

not significant in classical AFT model, like sex, are statistical significant.  

 
Distribution  AIC AICC BIC DIC pD 

Weibull 203.655 213.877 388.671 210.122 37.305 

Lognormal 210.527 220.749 395.543 218.987 41.500 

Loglogistic 207.943 218.165 392.959 220.434 42.674 

Table 4:  Bayesian Model comparison for probability models (SAS output) 

 

From the above table, Weibull distribution has smallest AIC, AICC, BIC, and DIC 

because of this Bayesian Weibull accelerated failure time model is preferable to analyze 

the data in Bayesian Paradigm.  

Convergence diagnosis  

beta[7] chains 3:1

iteration

399003985039800

   -5.0
   -2.5
    0.0
    2.5
    5.0
    7.5

 

Figure 3:Trace plot of the parameter weight 

 

The plot indicates  the convergence of the Markov chain samples. 

 

beta[7] chains 1:3

iteration

15000 20000 25000 30000

   -5.0

    0.0

    5.0

   10.0

Figure 4: Time series plot of covariates weight 
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� Time series plot of covariate weight indicates a good convergence and three 

independently generated chains will mix together or overlapped. 

 

beta[7] chains 1:3

start-iteration

15075 18000 20000 22000

    0.0

    0.5
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Figure 5: Gelman Rubin test for covariate weight 

 

� For covariate weight R ratio of W and V45}8 close to 1.This implies 

convergence of Gelman-Rubin statistic was achieved. 

 

  

 

 
 

 

 

Figure 6: Autocorrelation of the estimated covariate weight 

 

 The plot of Autocorrelation indicates that the sampled values of the Markov 

are independent since the Autocorrelation are diminishing before lag 20.  

 

beta[7] chains 1:3 sample: 45003
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Figure 7: Kernel density of estimated parameter for covariate weight 

 

 The plot for the predicator variables weight in the Figure 7 is resembles the 

curve of normal distribution.  This clearly indicated that the coefficient has normal 

distribution. Hence the simulated parameter values were converged. 
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node   Mean S.D  5%*S.D MC 

error   

2.5%  median  97.5% Variable 

beta[1]* 0.2133 0.1473 0.007365 0.00331 0.179 1.589 2.998 Constant 

beta[2] -0.7709 0.2588 0.01294 0.00316 -0.8389 -0.912 -1.1 Age-c1 

beta[3]* -0.1692 0.1364 0.00682 0.00229 -0.6968 -0.4205 -0.1442 Age-c2 

beta[4]* -0.2661 0.09001 0.004501 0.00208 -0.445 -0.233 -.017 Age-c3 

beta[5]*  
-0.0721 0.04985 

0.002493 
0.00141 

-0.1649 -

0.06801 

-0.0064 Trt type 

beta[6]* 0.1142 0.134 0.0067 0.00409 0.009 0.22525 0.4415 Sex 

beta[7]* -0.0131 2.68E-03 0.000134 2.41E-05 -0.0485 -0.0415 -0.0045 Weight 

beta[8] -0.597 0.48 0.024 0.01332 -1.556 -0.951 -0.345 BMI1 

beta[9]* -0.143 0.05993 0.002997 0.00131 -1.276 -0.646 -0.016 BMI2 

beta[10]* -0.183 0.2062 0.01031 0.00865 -1.138 -1.789 -0.102 BMI3 

beta[11] -0.9654 0.6608 0.03304 0.0059 -1.098 -0.9554 0.0537 Gl_typ_hyper 

beta[12]* 0.1406 0.522 0.0261 0.01101 0.0275 0.66625 1.305 Alco-no 

beta[13]* -0.2575 0.09927 0.004964 0.00246 -0.2678 -0.1829 -0.0979 D-neph 

beta[14]* -0.1754 0.8926 0.04463 0.03533 -0.797 -0.0734 -0.049 D-retino 

beta[15]* -0.234 0.6629 0.033145 0.01472 -1.450 -0.7545 -0.059 D-hear 

beta[16]* -0.1965 0.7147 0.035735 0.01646 -1.6533 -0.8569 -0.0605 D-Neuro 

beta[17]* -0.2695 0.06451 0.003226 0.001569 -0.672 -0.3555 -0.0389 Others 

beta[18] -0.1487 0.15431 0.007716 0.00473 -0.6085 -0.4358 0.179 Sys. Pre-HTN 

beta[19]* -0.1373 0.2132 0.01066 0.01019 -1.130 -0.5831 -0.0362 Sys. Stage 1 

beta[20]* -0.1989 0.5809 0.029045 0.01632 -1.594 -0.844 -0.094 Sys. Stage2 

beta[21]* -0.0327 0.434 0.0217 0.01206 -0.9713 -0.7848 -0.0274 FBS 

beta[22] -0.993 0.3426 0.01713 0.01289 -1.284 -0.6875 0.091 Dia. Pre-HTN 

beta[23]* -0.1133 0.4784 0.02392 0.01613 -2.033 -1.912 -0.087 Dia. Stage1 

beta[24]* -0.1491 0.3334 0.01667 0.01199 -2.47 -1.2813 -.0925 Dia. Stage 2 

beta[25]* -0.2283 5.79E-04 0.000029 5.21E-06 -0.6283 -0.1083 -0.0814 Chole-high 

beta[26]* 0.175 0.14155 0.007078 0.00364 0.091 1.317 2.543 F_his_Nega 

beta[27]* -0.187 0.19992 0.009996 0.00591 -0.3032 -0.1877 -0.0690 Com_HTN 

beta[28] -0.844 0.2932 0.01466 0.0106 -1.218 -0.6633 0.1085 Com-Dysli 

beta[29]* -0.061 0.2995 0.014975 0.02709 -0.252 -0.134 -0.015 Com_Obesity 

beta[30]* -0.2623 0.09126 0.004563 0.00451 -0.9177 -0.557 -0.196 Com-Others 

beta[31] -0.5032 0.07367 0.003684 0.00655 -0.9178 -0.506 0.0933 HDL-c-border 

beta[32]* -0.097 0.298 0.0149 0.01154 -0.885 -0.4565 -.0279 HDL_C-undes 

beta[33] -0.0585 0.05075 0.002538 0.00137 -0.1405 -0.0608 0.04258 LDL-1-abo-no 

beta[34] -0.2086 0.09781 0.004891 0.00444 -0.2979 -0.1531 0.0057 LDL_2-border 

beta[35]* -0.2435 0.19993 0.009997 0.00533 -0.484 -0.324 -0.212 LDL_C3-high 

beta[36]* -0.2047 0.19583 0.009792 0.0058 -1.666 -0.8905 -0.115 Trig_high 

beta[37]* -0.2466 0.1001 0.005005 0.00189 -1.3552 -0.744 -0.233 Typ_ dm 

beta[38]* -0.161 0.49883 0.024942 0.02465 -1.152 -0.6145 -0.077 Smoker 

beta[39] 0.171 0.2968 0.01484 0.01239 -0.358 3.333 2.37 Height 

beta[40] -0.197 0.18188 0.009094 0.0073 -0.7561 -0.6171 0.025 Oromia 

beta[41] -0.2705 0.2831 0.014155 0.01293 -0.4461 -0.3279 

 

0.062 

 

Amara 

beta[42] 0.066 0.2001 0.010005 0.0089 -0.1302 0.6667 0.7885 SNNPRS 

beta[43] 0.1672 0.5982 0.02991 0.02673 -0.616 0.189 0.6095 Others 

Sigma 0.14897 0.1473 0.007365 0.00331 0.00216 0.00396 0.01455  

 

Table 7: Bayesian posterior summary for parameter Estimate for covariates with their 

corresponding credible interval ( * indicates statistically significant ) 
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 In the above value the MC error (SEM) indicates that how much uncertainty 

there is about the true posterior mean via the sampled mean. As a rule of thumb, the 

Markov Chain Monte Carlo simulation should be run until the Monte Carlo error for 

each parameter of interest is less than about 5% of the sample standard deviation 

(JESA,2011).Table 7 above shows the Monte Carlo error (MC-error), sample standard 

deviation (SD), 5% of the SD and the 5% credible intervals for all parameters. It can be 

seen that for all parameter estimates the Monte Carlo error (MC-error) is less than 5% 

of standard deviation. So we can use this parameter estimate for inferential purpose. 

Using the relationship between parameter estimates of accelerated failure time and 

proportional hazard model interpret the final model using hazard ratio or directly using 

time ratio.    

 

4. Discussion and Conclusion on the Results 
 The variables like triglyceride level, low density lipoprotein level, comorbidity 

and systolic blood pressure did not satisfy or fulfill the cox proportional hazard 

assumption. Because of this the researcher used Bayesian accelerated failure time 

model rather than to concern with stratify (time dependent covariates) the variable 

which not satisfy proportional hazards model assumption.      

4.1 Discussion  
 The first factor which affects the survival of diabetes patients was age, the 

hazard of patients for the age group 45 to 60 year age group and age group greater than 

60 was higher compared with the 18 to 30 year age group. This result is similar with 

other finding obtained by like Gurjeet S., (2009).  The hazard of older age groups had 

higher hazard rate than younger age groups similar result with Mbanya V. (2008). 

 

 The hazard of patients with overweight and obese was higher compared with 

those having normal body weight this result also coincide with the result obtained by 

Gurjeet S,( 2009), Josepha J, (2010), Fatimatou K. (2013). Blood cholesterol level also 

has a great impact on the survival of diabetes patients. The result revealed that patients 

who have high blood cholesterol had higher risk as compared to the others who had a 

normal blood cholesterol level. The find is similar with pervious study, by Josepha et 

al. (2010). The survival of patients without family history of diabetic had more survival 

time than patients with positive family history; it is also in line with the result obtained 

by Rajiv T., (2012). Density lipoprotein is one of the factors which affect the survival 

of diabetic patients, the result revealed that patients with low level of HDL had higher 

hazard rate than patients with high level of HDL, this result also coincides with the 

study done by Josepha J, (2010).   

 

 Smoking cigarette is an important predictor of survival of patients. This study 

revealed that the hazard rate of patients who smoke cigarette is higher than nonsmokers. 

The present result concord with earlier results in Josepha J. et al. (2010), similarly, 

alcohol is the stronger predictor of survival of diabetic patients.  

 

 Blood pressure has been found to be significant factor which influence the 

survival of diabetic patients. According to the study of Josepha J. et al. (2010), 

hypertension is consistently and independently associated with the risk of mortality 

from DM. and had higher hazard rate than patients without hypertension on the other 

hand, LDL level also has a great impact on the survival of diabetic patients. The result 
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depict that patients who have high LDL had higher risk as compared to the others who 

had a regular blood LDL. The finding is confirmed by pervious study, Josepha et al. 

(2010). In addition to those variables, type of diabetic also has a significance effect on 

the survival time of patients. The finding illustrate that, the risk of death due to type 1 

diabetes mellitus disease is higher than for patients who had type 2  diabetes mellitus  

than those who had negative family history of DM. The result is analogous with earlier 

study Josepha J. et al. (2010).   

 

 Patients with type 1 diabetes have higher hazard than patients with type 2, 

patients without comorbidity (like HTN) have higher survival than   patients’ 

comorbidity this result is similar with the result obtained by Josepha J. et al. (2010). 

Patients with higher values of triglyceride had more hazard than patients with normal 

triglyceride Josepha J. et al. (2010). Finally patients with higher values of low density 

lipoprotein level had higher hazard rate than patients with normal LDL.  

4.2 Conclusion on the Results  
 Bayesian accelerated failure time model showed that the major factors that 

affect the survival of diabetes patients are age group, BMI, weight, types of diabetic 

mellitus, alcohol use, diabetic complications, blood pressure, family history, fasting 

sugar level,  cholesterol level, comorbidity, density lipoprotein, triglyceride and 

smoking habit.  

 

 Patients elder than 45 in general have higher hazard rate than that of younger 

than 45. Patients associated with obese and over body weight had higher hazard and 

lower survival time than patients with normal body weight. Similarly alcohol users, 

patients who had a habit of smoking cigarette have higher death rate and lower survival 

time. Similarly, patients with poor health indicators like stage 1 and stage 2 blood 

pressures, high blood cholesterol level, diabetic complications, and high amount of 

fasting blood sugar level, lower level of high density lipoprotein, high value of low 

density lipoprotein, positive family history and higher level of triglyceride, were 

unlikely to survive and had higher hazard rate. The result of this study also indicated 

that survival probability of a patient is not statistically different among groups classified 

by types of treatment, sex, region and glycemic type.  

 

 To analyze and model the survival time of diabetes patients, various 

parametric accelerated failure time regression models were applied. Among which the 

Weibull accelerated failure time regression survival model is better fits to analyze the 

survival time of diabetes patients of this data than log-logistic and log-normal 

parametric models. Bayesian accelerated failure time model used to survival analysis of 

diabetes patients because it’s AIC (203.655) is smaller than its classical counterpart 

(AIC= 204.4898). 
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