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Abstract 
 In the present paper, we have proposed a predictor of finite population total under super 

population model when the study variate is subjected to measurement error. The results of the 

simulation study revealed that the percent loss in precision of the predictor varied between 26% 

and 40% depending upon the sample size and ratio of variance of measurement error to model 

error variance. The robustness of the predictor has also been examined when the assumed model 

deviates with measurement error in y. 

 

Key Words: Predictor, Robustness, Super Population Model, Finite Population, Overbalanced 

sample, Measurement Error. 

 

1. Introduction 
 In finite population survey sampling, the data on the study variate (y) are 

generally collected by personally interviewing the respondents selected in the sample 

on recall basis or sample units are measured by certain instrument to obtain the values 

of the variables of interest. Therefore, there is likelihood of response error or 

measurement error in sample surveys. If the data collected are subject to response error 

or measurement error, the precision of the estimator of finite population parameters is 

expected to be inflated in practice.  

 

 If the estimation procedure is model based/model assisted, the data on the 

auxiliary variable x related to y may also be subject to measurement error. Bolfarine 

(1991) dealt with prediction in finite population under error-in-variables super 

population models where he assumed that samples come from bivariate normal 

population and variance of error terms are constant. Mukhopadhyay (1994) has 

developed predictor for finite population mean under simple linear regression model 

with constant error  variance  when study variate y and an auxiliary variable x are 

subject to measurement error in sample surveys. Chattopadhyay and Datta (1994) 

extended the work of Bolfarine (1991) to stratified sampling under the location error-in-

variables super population model. Some contribution on this aspect have been made by 

Eltinge (1994), Stefanski (2000), Ghosh and Sinha (2007),  Arima et al. (2012) etc. 
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         In most of the economic surveys, the variance of y is generally a function of 

the auxiliary variable x related to y,  i.e. ( ) gxyV 2σ= , 2g2/1 ≤≤ , where 
2σ  is 

model-error variance (see the work of Smith; 1938, Jessen; 1942, Desh Raj; 1958, Rao 

and Bayless; 1969, Bayless and Rao; 1970). In view of this fact, Royall and Herson 

(1970, 1971, 1973a) developed prediction approach based estimation of finite 

population total in finite population survey sampling under the following super 

population model  

( )[ ] 2
1

iiii xvexy += β ,  i= 1,2,…,N,        ( ) ( )iei xvyV 2σ=        (1.1)

  

where yi
’s
 are independent random variables, ei

’s
 are error terms distributed 

independently with mean zero and variance 
2

eσ . β  is model parameter. They denoted 

this model as [ ])(:1,0 xvξ .They showed that the predictor ∑∑
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under the model (1.1) for a given sample s of size n from the population consisting of N 

units.  iŷ is predicted value of iy  for non sampled units of the population through 

fitting of the model(1.1) by least square theory. s  is the complement of s. It was shown 

by them that the estimator T̂  reduces to the usual ratio estimator for v(x)=x. It was also 

shown by them that the unbiasedness of the ratio estimator can be preserved under the 

general polynomial regression model of degree J, i.e. ( )[ ]xvJo :,....,, 1 δδδξ  by 

choice of a balanced sample. The symbol jδ  is indicator variable and takes values 1 or 

zero according to presence or absence of the term 
j

jxβ , j=0,1,2,…,J, respectively, in 

the model. They further demonstrated that the ratio estimator remained blue even under 

the model ( )xJo :,....,, 1 δδδξ  for a balanced sample. Royall and Herson (1973b) 

extended this work to stratified sampling. Scott et al. (1978) extended the work of 

Royall and Herson (1973a) and showed that the estimator T̂  under the model (1.1) 
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The sample satisfies the above condition was referred to as overbalanced sample by 

them. They further showed that under the model ):1,0( 2xξ , the estimator T̂  reduces 
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 Sisodia et.al. (2015) and  Singh et al. (2018) have developed model based 

estimators of finite population total under the following error-in-variables super 

population model when study variate is only subject to measurement error in stratified 

and single phase sampling, respectively.  

 
2/1

iiii xexy += β , i=1, 2, …, N 

               iii uyY += , ( ) iei xyV 2σ=                           (1.3 )                                     

      

where yi
’s
 are independent random variables. Yi and yi are observed and true value of y, 

respectively. The model error ei and measurement error ui are mutually independently 

distributed with mean zero and variances 
2

eσ  and 
2

vσ , respectively. They 

demonstrated through simulation study with hypothetical and real data that the standard 

error of the estimator got inflated by 4 to 8 percent due to measurement error in y. 

Chauhan and Sisodia (2018) and Chauhan et al. (2018) have studied the robustness of 

the estimators developed by Sisodia et al. (2015) Singh et. al. (2018). 

 

   In view of the above discussion on the recent literature on the topic and  

motivated by the model considered by Scott et al( 1978) , an attempt has been made in 

the present paper to develop predictor for finite population total under the model (1.3) 

replacing the error term by eixi  and ( ) ii xyV 2σ=  by ( ) 22

iei xyV σ=   , i.e. the 

model now becomes ( )2:1,0 xξ , when study variate is subject to measurement error. 

Robustness of the predictor has also been examined if the assumed model deviates. 

Some simulation studies have been conducted to examine the extent of loss in precision 

of the predictor due to measurement error in y. 

2. Predictor of finite population total under the model ):1,0( 2xξ  when the 

study variate is subject to measurement error 
 We consider the following error-in-variable super population model 

iiii xexy += β ,   
iii vyY += ,   ( ) 22

iei xyv σ=  ,  i=1,2,…,N                (2.1) 
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where notations and assumptions are mentioned in (1.3). 

 The objective is to predict ∑
=

=
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. Consider that a sample s of size n, by 

whatever manner not necessarily by probability sampling, is drawn from the finite 

population consisting of N units. The population total T can be decomposed as 
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non- sampled units from the population. A predictor of T is, therefore, given by  
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                  (2.3) 

This shows that estimator is model unbiased estimator of T, even if there is 

measurement error in observing yi. We derive the model variance of  1T̂
 
as follows   
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v σσδ = , the above expression (2.4) can alternatively be expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 12 2 2ˆ 2 (2.5)
1

N n N n
V T N n x x n N n x x nx x

e s s s s s sn n
σ δ

    − −  − − = − + + + − +                 

 It can be observed from the variance expression of 1T̂  given in (2.4) that its 

first term is the variance of T̂  when there is no measurement error in yi. The second 

term of (2.4) will be always positive and this is due to measurement error. It shows that 

if there is measurement in y, there will be loss in precision of the model based estimator 

1T̂ , although it remains model unbiased. The extent of loss in precision, however, 

depends on the magnitude of 
22

ev σσδ = . Therefore, two important conclusions are 

as follows :(i) If 02 =vσ , i.e., there is no variation in measurement error in y, there will 

be no loss in precision. That means if same magnitude of measurement error is 

committed in observing syi ∈ , then the estimator 1T̂  will remain unbiased and it will 

have same variance as it is in case of [ ]TV ˆ  given in (1.2) indicating thereby no loss in 

precision, and  (ii) if 
2

vσ  is relatively small in comparison to 
2

eσ  (model-error), then 

the loss in precision will be relatively smaller. The extent of loss in precision will be 

studied in later section by conducting a limited simulation study. 

3. Robustness of 1T̂  when model ):1,0( 2xξ  deviates and the study variate 

is subject to measurement error 

A model based unbiased predictor 1T̂  has been developed under the model 

(2.1) in the preceding section, which is reproduced here with variance 
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Suppose that model ):1,0( 2xξ  is not true but the true model is ( )2:1,1 xξ ,i.e. 

 iiii xeβxαy ++= , iii vyY += , i=1,2…….,N                    (3.3)         

( ) 22

iei xyv σ= , ( ) 2

eiev σ=  and ( ) ( ) 0== ii vEeE  for all i 
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where other notations and terms in the aforesaid model are already defined in (1.3) and 

α  is y-intercept. We wish to examine the property of 1T̂
 
under the model ):1,1( 2xξ . 

We derive the model expectation of 1T̂  under the model )x:1,1( 2ξ  as follows 
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Obviously 1T̂  is biased estimator if it is used in ):1,1( 2xξ .The mean square 

error(MSE) of 1T̂  under the model ):1,1( 2xξ is obtained as
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 It is evident from the expression (3.4) that the bias is zero if  
( )

ss xx 1−
=1. That 

means a given sample s satisfies the overbalancing condition as described in section-1 

for j=0and 1.                                                                                                 

 Therefore, if the drawn sample s is overbalanced, then 1T̂  will be unbiased 

with variance given in (2.5) even if the true model is ( )2:1,1 xξ .This result is 

summarized in the following theorem.  

Theorem 3.1: For overbalanced sample s satisfying the criteria given in the Section-1, 

if the estimator 1T̂  developed in the model ( )2:1,0 xξ  is used in ( )2x:1,1ξ
,
 it 

remains unbiased with variance given in (2.5). 

 Under the overbalanced sample condition given in the section-1 for j=0,1, the 

variance of T̂  without measurement error in y will remain same, denoted as 
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 Oviously,the value of E will be less than one indicating that there is loss in precision in 

the estimate due to measurement error in y. The % loss in precision (% LP) is worked 

out as  

  ( ) 1001% ×−= ELP
,  i.e. 
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           (3.8)   

It is evident that % LP will depend upon the sampling fraction f and different sample 

and non-sample means of auxiliary variable x. A limited simulation study has been 

carried out to find out the extent of loss in precision.  

4. Empirical study 

  Two simulation study have been conducted by generating hypothetical data 

through the model for examining the loss in precision of the estimator due to 

measurement error in y.

 
Simulation study-1

 A limited simulation study has been conducted by generating hypothetical 

population of size N= 500 using the following model 

iiii xexy += β , 
22)( iei xyv σ= ,    i=1,2,…,N                      (4.1)                                       

We have assumed that 50.1=β , the error term follows normal distribution with 

mean zero and variance 22 =σ . It is assumed that x follows chi-square distribution 

with 5 degree of freedom. A population of Chi-Square of size N= 500 with 5 degree of 

freedom has been generated. Similarly, 500 values of ei using normal distribution with 

mean 0 and variance 2 were generated. Using these values in model (4.1), a 

hypothetical population of N= 500 values of y were generated. Random sample of size 

n= 75 and n= 100 were drawn by simple random sampling without replacement 

(SRSWOR). This process of selection of sample for each size of 75 and 100 were 

repeated 20,000 times. That means 20,000 samples of each of the size 75 and 1000 

were drawn from the population of size N= 500. R-software has been used for the 

simulation study. The variance of T̂ given in (1.2), denoted as V1 and variance of 1T̂  

given in (2.5), denoted as V2, were computed for each sample of size n=75 and n=100 

for 
2

2

e

v

σ
σ
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where s= 20000 denotes the simulation run. 

 Percent loss in precision (% LP) was worked out as 1001%
2

1 ×



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LP  and the 

simulation results are presented in the Table 4.1. 
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  Variance 

 

 Sample size                        δ            

      0.75     1.00    1.25 

         
1V ′  

 

     n=75 29760.65 29760.65 29760.65 

     n=100 27928.77 27928.77 27928.77 

          

          
2V ′  

     n=75 42053.04 46150.51 50247.97 

    % LP 29.23 35.51 40.77 

    n=100 37921.46 41252.36 44583.26 

   % LP 26.35 32.29 37.35 

Table 4.1: The average estimate of variance for n=75, 100 and 
2

2

e

v

σ
σ

δ = =0.75, 1.00 

and 1.25 
 

It is very obvious from the results of the Table (4.1) that there is considerable 

percent loss in precision varying from 26.35 to 40.75 percent depending upon the 

values of n and δ , when there is measurement error in y. It is also evident that the % 

loss in precision depends on δ . For lower value of δ , the % LP is smaller and it 

increases when δ  increases. Therefore, if the variability in measurement error is 

relatively small as compared to model error variability
2

eσ , the % LP is expected to be 

smaller. 

The results, of course, suggest that a caution has to be taken up by the 

investigator/ survey statisticians to collect/ measure reliable data from the sampled units 

from the population. A rigorous training needs to be provided to the field investigators 

in this regard in order to get precise estimate of population parameters in finite 

population survey sampling.  

Simulation study-II 
Using the same procedure of generation of hypothetical data under the model (4.1), 

   

we have generated the population of N= 500 values of y and x. 20,000 samples of each 

size n=75 and 100 were drawn from the population satisfying the criteria of 

overbalance sampling, i.e. 
( ) 11 =−

ss xx  by simple random sampling without 

replacement. R-software was used for the simulation. % LP was computed using the 

formula given in equation (3.8) for individual sample and for different values of 

75.0=δ , 1.00 and 1.25. The average value of % LP was obtained as 
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 % ALP = ∑
=

S

is 1

%LP
1

 

Here s=20,000. The value of  % ALP are presented in the Table 4.2. 

 

Table 4.2: Percent Average loss in precision (% ALP) for different values of n=75, 

and 100 and δ =0.75, 1.00 and 1.25 

 

 It is evident from the result of the Table 4.2  that % ALP increases with 

increase in the value of  δ . Percent loss in precision decreased with increases in sample 

size. If sample selected is overbalanced, then by comparing the results of the Table 4.1 

and 4.2 we find that % ALP (S) where of low order in later case, i.e. 10.75 to 14.16 % 

for n=75 and 8.76  to 13.25 % for n=100. 

5. Concluding Remarks 

 A predictor of population total under the model  ( )2x:1,0ξ  has been 

developed with measurement error in y. Simulation results have shown substantial loss 

in precision that varied between 26 to 40 percent depending on sample size and 
2

e

2

v σσ=δ . If the sample selected is overbalanced, then theoretical findings and 

results of another simulation study show that choosing a overbalanced sample enable us 

two-fold advantages: (i) it reduces the loss in precision considerably due to 

measurement error in y and (ii) it also protects the property of the predictor against the 

deviation of the model. 
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