
Journal of Reliability and Statistical Studies;  ISSN (Print): 0974-8024,  (Online): 2229-5666 

Vol. 11, Issue 2 (2018): 69-80 

 

REDESCENDING M-ESTIMATOR FOR ROBUST 

REGRESSION 

 
*

1
Muhammad Noor-Ul-Amin, 

2
Salah Ud Din Asghar, 

3
Aamir Sanaullah 

and 
4
Muhammad Ahmad Shehzad 

*
1,2,3

COMSATS University, Lahore, Pakistan 
4
BahauddinZakariya University, Multan, Pakistan 

E Mail: *
1
nooramin@ciitlahore.edu.pk 

 

Received February 21, 2018 

Modified August 21, 2018 

Accepted October 05, 2018 

 

Abstract 
 In the linear regression problem, redescending M-estimators are used as an alternative 

method to the ordinary least square method when there are outliers in the data. Using the 

nonlinear transformations on the data one cannot remove the effect of outliers completely. In this 

paper, a redescending estimator is introduced for the robust regression to remove the effect of 

outliers in the data. The proposed estimator rejects the effect of outliers and provides efficient 

results about the parameter. The Ψ-function of the proposed objective function attains more 

linearity in the center before it redescends as compared to Insha (2006), Tukey (1974), Qadir 

(1996) and Andrews et al. (1972). The weight function of the proposed redescending M-estimator 

also gives improved results for the purpose it is introduced. To evaluate the prescribed results, a 

simulation study is conducted. A real data application is presented to demonstrate the 

performance of proposed estimator. 
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1. Introduction 
 All-embracing work has been done by authors in the classical statistics during 

the last three decades. In classical statistics, ordinary least squares (OLS) method is 

very popular to estimate the population parameter. When there are outliers in the data it 

is not simple task to fit regression line as OLS estimates cannot retain their properties 

and do not provide efficient results to the population parameters. Due to outliers, 

information about the population absconds and they create a high variation in the data. 

To avoid this problem an alternative approach is considered to overcome this problem.  

 

 Robust regression is used when there are outliers in the data. By an 

improvement in the OLS method, robust regression analysis has been developed that 

provide efficient results in the presence of outliers. The aim of the robust regression M-

estimator is to fit a model as close as to the population model. Kadilar et al. (2007) and 

Noor-ul-Amin et al. (2016) have used the robust regression in ratio method of 

estimation. The goal of the present study is to propose a robust estimator to improve the 

regression estimation results. A comparative study is conducted on the basis of 

numerical result of the proposed estimator with the other estimators i.e. Andrews et al. 

(1972), Ali and Qadir (2005),Insha-ullah et al. (2005), Alamgir et al. (2013) and Khalil 

et al. (2016). 
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M-estimator was introduced by Huber (1964) as a generalization of the familiar  least 

squares criterion replacing the quadratic loss function with a symmetric function  ρ (.) 

as, 

 ���������	 ∑ ρ(�)����             (1) 

where	�  represents the residuals. Most of the M-estimators can be solved by iteratively 

reweighted least square method. This estimator should satisfy the standard properties 

which are generally associated with an objective function of redescending M-estimator. 

An M-estimator is called a redescending M-estimator if it fulfills the standard 

properties related to it and the derivative of theρ-funtion will be a Ψ-function. 

However, M-estimator is not robust to the high leverage points, so it should be used in 

the situations where high leverage points do not occur. The weight functionw(�) gives 

less weight to the outliers and thus the estimates are less affected by outlying 

observations. 

 

Differentiating equation (1) with respect to ��� we obtain Ψ(�) function which gives us 

the following equation, 

 ∑ Ψ(�) = 0����                                      (2) 

Dividing Ψ(�) by r we obtained weight function given below, 

∑ w(�)�� =���� ∑ �(��)��� �                                                                                 (3) 

 It is a weighted function which assigns a weight closer to zero to the outlier 

very close to the zero and gives a weight very close to one if the observation lies in 

center of the data. It is also a weighted least square problem which requires an iterative 

solution called iteratively reweighted least squares. 

2. Redescending M-estimator 
 Redescending M-estimators are non-decreasing near the origin.One of the 

known popular M-estimators is Huber (1973) estimator. The ρ(. ) function of the Huber 

(1973) estimator is, ρ(r) = 	 �#$ 																																					%&																			|| < )    

				= ) *|| − ,$- 																						%&																			|| ≥ )  

           (4) 

 The graph of the Huber (1973) objective function is not smoothly 

redescending as Fig. 1 shows, 
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Fig.1: Huber’s objective function 

An objective function is redescending if its derivative is aΨ-function and fulfills the 

standard properties. Huber (1973)Ψ-function is, Ψ(r) = r																																							%&																|| < )  			= c																																						%&																	|| ≥ )                       

                           (5) 

Andrews et al. (1972) proposed a three part redescending M-estimator whose	Ψ-

function become zero for large residuals. Andrews et al. (1972)Ψ-function is, 

Ψ(r) = r																																					%&																		|| < )  				= 0sign(r)																							%&										0 < || ≤ 6 

						= 0 ) − ||) − 6 7�8�()												%&										6 < || ≤ ) 	= 0																																			%&																			|| > ) 

                           (6) 

where0,b and c are positive constant and 0 < 0 ≤ 6 < ) < ∞. This function led to 

smoothly redescending M-estimator. After the development of this smoothly 

redescending M-estimator, several redescending M-estimators have been proposed. 

Andrews (1974) sine function or also known and Andrews wave function is another 

redescending M-estimator. It has the following Ψ-function, 

																																							Ψ(r) = c sin *;<- %&																|| < )  

   = 0																																			%&																	|| ≥ ) 
           (7) 

Qadir (1996) beta function has the followingΨ-function, 				Ψ(r) = ��=,>(c + r)$(c − r)$ 							%&				|| ≤ )
 = 0																																											%&					|| > ) 

         (8) 

Alamgir et al. (2013) proposed a modified tangent hyperbolic typeΨ-function as, 
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         Ψ(r) = �=�@A#(B/D)#(�E@A(B/D)#)# 																						%&						|| ≤ )	 
 = 0																																								%&						|| > ) 

         (9) 

Khalil et al. (2007)proposed aΨ-function as, 

 Ψ(r) = r *F$- G1 − *�,-IJ$ sin K*$F- G1 − *�,-IJ$L 							%&								|| ≤ ) 

          = 0																																																											%&									|| > ) 

         (10) 

 

3. Proposed Redescending M-estimator 
 We propose a new redescending M-estimator on the basis of standard 

properties related to it. A new objective function, 

ρ(r) = ,#I KMN�A *#BD -
#

I + �#,#,>E�=�>L %&									|| ≥ 0                                        (11) 

where c[0,∞] is a tuning constant. We also discuss the shape of the objective function. 

The proposed function is redescending and fulfills the standard properties.The standard 

properties are: 

• ρ(�) ≥ 0 

• ρ(0) = 0 

• ρ(�) = ρ(−�) 
• ρ(�) ≥ 	ρO�P for |�| ≥ |�| 
• ρ  is continuous ( ρ  is differentiable) 

also Fig.2 shows the redescending nature of the proposed function. 

 

Fig. 2: Graph of Proposed objective function 

Differentiating objective function w.r.t. r we obtained 	Ψ(�), i.e. 

-4 -2 0 2 4

0
1

2
3

4
5

6
7

r

O
b
je

c
ti
v
e
.f
u
n
c
ti
o
n



Redescending M-estimator for robust regression                         73 

 

= QQ R)
$S0�T� *I�#,# -16 +	 )I$64I + 4)IW 

= )$16 . QQ KS0�T� X4$)$ YL + )I. QQ K $64I + 4)IL 
=

�
Z>B#D# [#E�

	 . \\� ]I�#,# ^ . )$
16 	+ 	 \\� _$`. (64I + 4)I) −	$. \\� _64I + 4)I`(64I + 4)I)$ )I 

= I,# 	 . \\� _$`. )$16 *�=�>,> + 1- 	+ 	
)I *2(64I + 4)I) − 	*64. \\� _I` + \\� _4)I`- $-(64I + 4)I)$  

= 24 *�=�>,> + 1-	+ 	)
I(2(64I + 4)I) − 	(64.4F + 0)$)(64I + 4)I)$  

= 2 *�=�>,> + 1-	+	)
I(2(64I + 4)I) − 	256c)(64I + 4)I)$  

Simplifying we get, 

= )d(16I + )I)$ =  K1+Z2) [
ILT$ 

Hence, Ψ(�) is, 

 

Ψ() =  e1+ *$�, -IfT$ 																		%&													|| ≥ 0                              (12)
 

The graph of the Ψ-function of the proposed estimator is given in Fig. 3. 

Dividing Ψ(�)by r we obtained weight as, 

w() = . e1+ *$�, -IfT$ 																				%&														|| ≥ 0                               (13) 

the proposed weight function covers the drawbacks of the preceding redescending M-

estimators and provides less weights to the outliers. 

The graph of the weight function of the purposed estimator is given in Fig. 4. 
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Fig. 3: Proposed	g-function 

 

Fig. 4: Proposed weight function 

 

4. Comparison 
 For the graphical comparison purpose, a multiple weight function and Ψ-

function drawn on a same graph. All of the above stated redescending M-estimators 

work well in the presense of outliers but with some drawbacks. Andrews et al. (1972) 

three part estimator requires three tuning constants in the Ψ-function which is 

undesireable and not easy to analyze. Tukey (1974) biweight function covers some 

drawbacks of the Andrews et al. (1972) estimator by sacrificing some good 

observations. 
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 Fig. 5 (a) represents the graph of Ψ-function and (b) represents the graph of 

weight function. In these graphs a comparison of the proposedweight and Ψ-function, 

Insha (2006), Qadir (1996) and Tukey (1974) redescending estimators has been 

presented. In generally Ψ-function is that better which is linear in the center so we need 

an estimator that treats the centeral observations linearly like ordinary least square 

(OLS) method and then redescends. Fig. 5 (a) and (b) shows that the proposed estimator 

contains more linearity in the center than any other esitmator and its Ψ-function is 

continuous everywhere.Grphical display of Tukey (1974) and Qadir (1996) weight and Ψ-function overcome so there are only three lines can be seen in Fig.5 (a) and (b). 

 

  (a) 

 

   (b) 

Fig. 5: Comperison Graphs of  Proposed, Insha’s, Tukey’s, 

Qadir’s and Insha’s g and weight function 

 

5. Real Data Example 
To verify the effectiveness of the proposed estimator as compared to other estimators 

we compare the proposed redescending M-estimator with the other redescending M-
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estimators using the real life data example and simulation study through program R-

language.  

5.1 Telephone Data Example 
 A data of telephone calls which contains some outliers is taken from Ali and 

Qadir (2005) where the dependent variable is years and the independent variable is the 

number of phone calls made from Belgium. The scatter plot of the data is sketched in 

the Fig. 6. It is observed from the scatter plot that the telephone calls from 1964 to 1969 

are outliers. Rousseeuw and Leory (1987) state that another recording system was used 

in the years where outliers occur. 

 

 In the Fig. 6 OLS line (solid line) pulled towards the outliers which is the 

effect of y-values towards the x-values from 1964-1969 and it is an unrepresentative fit. 

We also fit a line by using the proposed estimator (dotted line) and it provides the best 

representative fit towards the data by ignoring the effect of outliers. 

 

Fig. 6: Scatter plot of Telephone Calls data 

 The regression estimates obtained from OLS are given in Table 1 which 

indicates a bad fit. OLS estimates are highly influenced by outliers thus the fit 

represents not good estimates. From all the redescending M-estimators given in the 

literature Andrews (1974) gives the worst results than any other redescending M-

estimator for this data. From the Table 1 it can also be observed that the proposed 

redescending estimator provides the most efficient results as compared to the other 

estimators. An estimator that has least amount of residual sum of squares (RSS) that is 

considered to be efficient than any other and the proposed estimator has the least RSS 

which represents the best fit to the data. RSS are to be used so that a real comparison 

can be made among difference robust methods. 
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Method Used 

Estimates  

RSS �h �� 

OLS -26.0059 0.5041 695.4354 

Andrews -25.6723 0.4976 218.8465 

Tukey -5.3060 0.1110 0.1362 

Qadir -5.2347 0.1099 0.1366 

Asad -5.2494 0.1102 0.1423 

Insha -5.2502 0.1103 0.3195 

Uk -5.2410 0.1101 0.3200 

Proposed -5.1981 0.1091 0.1317 

 

Table 1: Regression estimates from different methods. 

 

5.2 Annual Growth Rates of Price in China Example 
 To show the superiority of the proposed estimator another example is used. 

This example is taken from the Rousseeuw and Leroy (1987) for the years of 1940 to 

1948, where the explanatory variable is the year and the dependent variable is the 

annually average growth of price. Same is scatter plot of telephone calls data in section 

5.1, another scatter plot of annual growth rates of price in China is sketched in Fig. 7.In 

the Fig. 7 OLS line (solid line) do not provide good fit due to outliers. There are two 

outliers in this data. There is also a dotted line fitted through the proposed estimator 

which shows good fit as compared to OLS fitted line. 

  

 Numerical results of the proposed estimator as compared to other redescending 

M-estimators available in the litrature have been discussed in the Table 2. It can be 

clearly seen that the residual sum of square value of the proposed estimator is minimum 

which shows the better performance of the proposed estimator and gived close 

estimated to other robust methods. On the other hand OLS method is bad everywhere in 

the presence of outliers. 

 
Fig. 7: Scatter plot of Telephone Calls data 
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Method Used 

Estimates  

RSS �h �� 

OLS -1049.47 24.845 130878 

Andrews -2.7710 0.1093 0.6175 

Tukey -2.8351 0.1108 0.6209 

Qadir -2.7535 0.1089 0.6166 

Asad -2.7294 0.1084 0.6149 

Insha -2.6514 0.1066 0.6100 

Uk -2.7711 0.1093 0.6174 

Proposed -2.6165 0.1058 0.6075 

 

Table 2: Regression estimates from different methods. 

 

5.3 Simulation Study 
 One of the common means of the comparison of different estimators is to do 

simulation study because the parameters of the population are unknown in the real life 

so for this purpose simulation study is conducted as in this situation we know the 

parameter of the data. The following regression equation is used, 

i� = �h + ��j� + ��            (13) 

where �h = 2,�� = 1 and ��~l(0,1) and  the independent variables are generated 

asj�~l(20,10) for n = 1,2, … , p.Weight function depends onresiduals which depend 

upon the coefficients that are estimated and these estimated coefficientsdepend upon 

the weights. 

 An iteratively reweighted procedure is used by starting with the least square 

fitting. There are two cases for the simulation study. In the first case we use normal 

data. In the second case we took 95% observations from the first case and remaining 

5% observations of the data replace by introducing outliers in the dependent variable. 

For this purpose we generate residuals as ��~l(50,1). The results are shown in the 

following Tables 3, 4 and 5. These results are obtained by using the average of 5000 

Monto Carlo simulations where the number of samples in Table3, 4 and 5 are 100, 200 

and 500 respectively. The main purpose of the simulation study is to measure the extent 

of the parameter estimates from the true value of the population parameter in the 

presence of outliers. From the following tables it is clear that the proposed estimator is 

providing as almost same results in the presence of outliers as the results of OLS 

method without outliers. The proposed estimator is also providing efficient results in 

the absence of outliers as OLS method. 

 

Method Used 

Case 1:Normal Case 2: Outlier in y �h �� �h �� 

OLS 2.0044 0.9997 4.9665 0.9762 

Andrews 2.0163 0.9996 3.5441 0.9983 

Tukey 1.9959 1.0002 1.9901 1.0003 

Qadir 2.0023 0.9999 2.0109 0.9994 

ALARM 2.0141 0.9992 2.0119 0.9994 

Insha 2.0173 0.9990 1.9930 1.0002 
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Uk 1.9933 1.0003 2.0110 0.9993 

Proposed 2.0100 0.9997 2.0044 0.9998 

 

Table 3: Simulation results of regressionestimates from different methods, n=100 

 

 

 

Method Used 

Case 1: Normal Case 2: Outlier in y �h �� �h �� 

OLS 1.9962 1.0001 4.6254 0.9941 

Andrews 2.0058 0.9995 3.4412 1.0027 

Tukey 2.0700 0.9999 2.0038 0.998 

Qadir 2.0053 0.9998 2.0060 0.9997 

ALARM 2.0008 0.9999 2.0119 0.9993 

Insha 2.0068 0.9997 1.9931 1.0003 

Uk 1.9976 1.0000 2.0155 0.9993 

Proposed 1.9962 1.0001 2.0025 0.9998 

 

Table 4: Simulation results of regressionestimates from different methods, n=200 

 

 

Method Used 

Case 1: Normal Case 2: Outlier in y �h �� �h �� 

OLS 2.0007 0.9999 4.5271 0.9986 

Andrews 1.9987 0.9999 3.3883 1.0054 

Tukey 2.0026 0.9997 2.0030 0.9998 

Qadir 2.0056 0.9997 1.9985 1.0000 

ALARM 2.0006 0.9999 1.9968 1.0001 

Insha 2.0013 0.9999 1.9931 1.0002 

Uk 2.0006 0.9999 1.9918 1.0004 

Proposed 1.9997 1.0000 1.9996 1.0000 

 

Table 5: Simulation results of regression estimates from different methods, n=500 

 

6. Conclusion 
The main purpose of this study is to get information from the data more 

precisely in the situation where outliers exist in the data. For this purpose, a 

redescending M-estimator is proposed and compared with renowned estimators by 

conducting a simulation study. The proposed estimator is very easy to apply and it used 

only one tuning constant. Estimates of parameters are obtained by applying iterative 

least square technique. A comparative study is also presented using real life data 

examples for detection of outliers. The results of the real data examples showed that 

proposed redescending M-estimator is more efficient than other redescending M-

estimators. The results of simulation study also show the superiority of the proposed 

estimator and the proposed estimator rejects the effect of outliers completely. It 

provides more precise results than any other redescending M-estimators discussed in 

the literature. Further, the proposed estimator is equally efficient as OLS method in the 

absence of outliers. 
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