
Journal of Reliability and Statistical Studies;  ISSN (Print): 0974-8024,  (Online): 2229-5666 

Vol. 11, Issue 2 (2018): 113-125 

BAYES ESTIMATORS OF SHAPE PARAMETER OF 

PARETO DISTRIBUTION UNDER TWO DIFFERENT LOSS 

FUNCTIONS 
 

Gaurav Shukla
1
 and Vinod Kumar

2 

1
Department of Statistics, Banda University of Agriculture and Technology, 

Banda, India 
2
Department of Mathematics, Statistics and Computer Science, G.B. Pant 

University of Agriculture and Technology, Pantnagar, India  

E Mail: 
1
gauravshuklastat@gmail.com; 

2
vinod_kumarbcb@yahoo.com 

Received May 07, 2018 

Modified November 02, 2018 

Accepted December 05, 2018 

 

Abstract 
 In this paper, Bayes estimators of the shape parameter θ of Pareto distribution have 

been attained for different priors. The paper also discusses the comparison of Bayes estimators of 

θ and other estimators like, uniformly minimum variance unbiased estimator (UMVUE) and 

Maximum likelihood estimator (MLE) of θ under Two loss functions namely, Asymmetric 

Precautionary Loss Function (APLF) and Squared Error Loss Function (SELF). The results have 

been illustrated using a simulation study with varying sample sizes through R software.  
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1. Introduction  
The Pareto distribution was discovered by a very famous economist Wilfredo 

Pareto (1848-1923). It is also known as power law probability distribution or a model 

for the distribution of income. This distribution is not only useful in economics but also 

useful in medical, demographic, biological and sociological fields. It also plays an 

important role in Reliability Theory and Queuing Models in Engineering and 

Operations Research, respectively. 

 

A random variable T is said to have a Pareto distribution with two parameters, 

if its probability density function is given by: 

1
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+
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θθα
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t
tf  t ≥ α, α > 0, θ > 0             (1)  

          = 0,   otherwise 

Where, t is a random variable, θ is a shape parameter and α is a scale parameter. 

The cumulative distribution function of (1) is given by- 
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The reliability function of Pareto distribution is 
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The hazard function of Pareto distribution is 
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Since  γ1 and γ2  are positive, hence the distribution is positively skewed and 

leptokurtic. 

2. Classical Estimation 
A lot of work has been done about the inferences of Pareto distribution. 

Quandt (1966) used some old and new techniques of estimation to obtain different 

estimators for various parameters of Pareto distribution. Hosking and Wallis (1987) 

have shown that uniform, exponential and Pareto distributions are some special cases of 

generalized Pareto distribution. Rytgaard (1990) has obtained MLE and moment 
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estimators of scale and shape parameters of Pareto distribution. A comparison has also 

been  made by him between these two methods by using simulation and it is found that  

the maximum likelihood method is superior to method of moments.  

 

In this part of the paper, the Maximum Likelihood Estimator and Uniformly 

Minimum Variance Unbiased Estimator for the shape parameter of Pareto distribution 

are discussed. 

2.1 Maximum likelihood estimators 

 Let  1 2 3, , ,....., nt t t t
 
be a random sample of size n from the proposed life testing 

model, whose p.d.f. is shown in (1). 

Then Likelihood function (L) is given by 
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To obtain MLE, we solve the following equation 
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2.2 Exponential family and uniformly minimum variance unbiased   

      estimator 

An exponential family with one parameter of density f (t,θ) can be expressed as 

f (t,θ) = a(θ) b(t) exp[c(θ) d(t)]   

     

The Pareto distribution belongs to the exponential family because its density function 

(1) can be written as 
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Now the probability density function of P is given by 
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 Here,
P

n 1−
  is unbiased estimator for θ and P represents a complete sufficient 

statistics for θ. Thus, by Lehmann-Scheffe Theorem, the UMVUE of θ denoted by 

UMBUEθ
⌢

 is given by  
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3. Bayesian Estimation 
Bayesian analysis is an important and popular approach to the statisticians. In 

this approach, parameters are considered as random variables and data are considered 

fixed. In lifetime distributions, this analysis plays a very important role but its 

implementation is so tough because if someone is interested to implement Bayesian 

analysis using lifetime models, the likelihood function and the prior provide quite 

difficult posterior forms which are mostly impossible to analyze analytically. It is also 

very challenging for the usual numerical perspective. A lot of work in Bayesian 

estimation of Pareto distribution has been done by many authors. Giorgi and Crescenzi 

(2001) have proposed Bayes estimators of Bonferroni index (B) from a Pareto type-I 

population under squared error loss function by using truncated Erlang prior and the 
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translated exponential prior. Ertefaie and Parsian (2005) have estimated Bayes 

estimators for the parameters of Pareto distribution under LINEX loss function with 

unknown scale and shape parameters. Kifayat et al. (2012) have analyzed power 

distribution by using gamma and Rayleigh as informative priors and Jeffreys and 

uniform as non-informative priors and draw some conclusions regarding Bayesian 

estimation. Setiya and Kumar (2013) have analyzed Pareto distribution and drew some 

Bayes estimators of the related parameters for different priors with SELF and APLF 

through Lindley’s approach. They also conquered Bayes estimation of reliability and 

hazard rate functions. Rasheed and Al-Gazi (2014) have obtained Bayes estimators of 

the shape parameter of the Pareto distribution under two different loss functions. Setiya 

and Kumar (2016) have used two different methods to obtain the Bayes estimators of 

the parameters of a Pareto distribution. 

 

In this part, we attain Bayes estimators of the θ of (1) considering α as fixed, 

under different priors viz. Jeffrey’s, exponential and gamma. 

 

3.1 Prior distribution 

In Bayesian inference, the prior distribution represents the information about 

an uncertain parameter θ. The posterior distribution, which is useful for future 

inferences and making decision, is the product of prior distribution and the probability 

distribution of new data set. The derivation of the prior distribution based on evidence 

other than the current data is impossible or rather problematic because the likelihood 

function and the prior provide quite difficult posterior forms which are impossible to 

analyze analytically and are even very challenging from the usual numerical 

perspective. Hence, it is necessary to employ as minor subjective input as possible, so 

that the result may look merely based on sampling model and present data set. Here we 

are using Jeffrey’s, exponential and gamma as a prior. 

 

3.1.1 Jeffrey’s prior 

Jeffrey’s suggested a proper rule for obtaining a non-informative prior. It is 

proportional to the square root of the determinant of the Fisher information: 
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Where θ = k-vector valued parameter and I(θ) kxk = Fisher's information 

matrix. 

If we consider θ as a scalar parameter, Jeffrey’s non-informative prior for θ is
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Where c is a constant. 

 

3.1.2 Exponential prior 
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3.1.3 Gamma prior 
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3.2 Posterior distribution 
The posterior distribution of θ given the random sample for fixed α   is given 

by 
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and under Gamma Prior, we have   
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3.3 Loss function  
The loss function plays an important role in Bayesian inference. A loss 

function is a background mathematical convention which requires much greater 

attention than the traditional manner. The estimator which has least expected loss is 

preferred to use as compared to the others. Most authors prefer posterior mean as the 

Bayesian estimate by using simple quadratic (symmetric) loss function. However, in 

practice, the real loss function is often not symmetric. In this part, we have used two 

loss functions (i) Squared Error Loss Function (SELF) and (ii) Asymmetric 

Precautionary Loss Function (APLF). 

   

3.3.1 Squared Error Loss Function (SELF) 

 A squared error loss function (SELF) is very commonly used loss function and 

is given as 

2)ˆ(),̂( θθθθ −=L            (28) 

It is also known as symmetric loss function because it allocates equal losses to over 

estimation and under estimation.  
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3.3.2 Asymmetric Precautionary Loss Function (APLF) 

An asymmetric precautionary loss function (APLF) is given as  
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4. Estimation Under Square Error Loss  
 In this part, we obtain posterior expected losses of Bayes estimator of θ for 

different priors under SELF. Posterior expected loss (ρ) of Bayes estimator is given by
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Under Exponential Prior 

 









+

+
−









+

++
+=

β

θ

β

θρ
1

)1(2

1

)1)(2(
2

2

P

n

P

nn E
E

⌢

⌢    (32) 

0=
∂

∂

E

Solving
θ
ρ
⌢  

We obtain Bayes Estimator as 









+

+
=

β

θ
1

1

P

n
E

⌢

      (33)

 

Under Gamma Prior 
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We obtain Bayes Estimator as 
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5. Estimation under Asymmetric Precautionary Loss 
 In this part, we obtain posterior expected losses of Bayes estimator of θ for 

different priors under APLF. Posterior expected loss of Bayes estimator is given as
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Under Exponential Prior 
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Under Gamma Prior
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We obtain Bayes Estimator as  
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6. Simulation Study 
For simulation study, we have used R = 1000 replications, for samples of sizes  

n = 20, 50, and 100 respectively from Pareto distribution for shape parameter θ =2 and 

fixed α = 4 and 5 respectively.  We have chosen β=1, 2 for the Exponential prior and 

(λ,a)= (1,1), (1,2) and (2,1), (2,2) respectively for gamma prior. After estimating the 

parameters, mean square error may be calculated by 
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The simulation study results for estimating the shape parameter (θ) of Pareto 

distribution when the scale parameter (α) is known, are précised and tabulated in Tables 

(1), (2) and (3) which comprise the MLE, UMVUE, Bayes Estimator values and MSE's 

for estimating the shape parameter (θ). 

 

N α θθθθ 
MLEω⌢  MSE 

UMVUEω
⌢

 MSE 

20 4 2 2.09661 0.29902 1.99178 0.233065 

5 2 2.09661 0.29902 1.99178 0.233065 

50 4 2 2.039578 0.093875 1.998786 0.084956 

5 2 2.039833 0.093897 1.999036 0.084976 

100 4 2 2.02073 0.043398 2.000523 0.041283 

5 2 2.01381 0.043083 1.993672 0.040984 

 

N α θθθθ J

SELFω⌢  
MSE J

APLFω⌢  MSE 

20 4 2 2.09661 0.253066 

 

2.173701 

 

0.280438 

 

5 2 2.09661 0.262054 

 

2.148386 

 

0.287265 

 

50 4 2 2.039578 0.087722 

 

2.059873 

 

0.091464 

 

5 2 2.039833 0.087716 

 

2.06013 

 

0.091467 

 

100 4 2 2.02073 0.044962 

 

2.030809 

 

0.045927 

 

 5 2 2.01381 0.042759 

 

2.023854 

 

0.043563 

 

 

Table 1: Bayes Estimators ofθ and their corresponding MSE’s under Jeffrey’s 

Prior  
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N     

α 

 

θ 

 

β MLEθ
⌢

 
 

MSE UMVUEθ
⌢

 
 

MSE 

20 4 2 1 2.1085 0.3021 2.0031 0.2355 

5 2 1 2.100975 0.298054 1.995927 0.232313 

4 2 2 2.07663 0.29189 1.972799 0.227508 

5 2 2 2.096164 0.298432 1.991356 0.232607 

50 4 2 1 2.041914 0.094077 2.001076 0.085139 

5 2 1 2.051249 0.094859 2.010224 0.085846 

4 2 2 2.027894 0.092915 1.987336 0.084087 

5 2 2 2.047207 0.094663 2.006263 0.085669 

100 4 2 1 2.009327 0.042868 1.989233 0.040779 

 5 2 1 2.011255 0.0429 1.991142 0.040809 

 4 2 2 2.01662 0.043165 1.996454 0.041061 

 5 2 2 2.027961 0.043707 2.007681 0.041577 

 

N     α  

θ 

 

β 

E

SELFθ
⌢

 
MSE E

APLFθ
⌢

 
MSE 

20 4 2 1 1.993232 

 

0.1774 

 

2.040138 

 

0.187451 

 

5 2 1 1.987943 

 

0.156399 

 

2.034724 

 

0.164900 

 

4 2 2 2.067829 

 

0.202798 

 

2.11649 

 

0.221205 

 

5 2 2 2.085902 

 

0.223879 

 

2.134988 

 

0.245032 

 

50 4 2 1 1.999487 

 

0.075522 

 

2.018995 

 

0.077363 

 

5 2 1 2.008328 

 

0.07293 

 

2.027922 

 

0.075069 

 

4 2 2 2.026475 

 

0.086924 

 

2.046246 

 

0.090052 

 

5 2 2 2.045391 

 

0.088773 

 

2.065347 

 

0.092683 

 

100 4 2 1 1.989064 

 

0.037862 

 

1.998886 

 

0.038117 

 

 5 2 1 1.990981 

 

0.033366 

 

2.000813 

 

0.033615 

 

 4 2 2 2.016263 

 

0.038429 

 

2.02622 

 

0.039229 

 

 5 2 2 2.027461 

 

0.044446 

 

2.037473 

 

0.045529 

 

 

Table 2: Bayes Estimators of  θ and their corresponding MSE’s under 

exponential prior 
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N     

α 

(θ) λ A 
MLEθ
⌢

 
MSE 

UMVUEθ
⌢

 
MSE 

20 4 2 1 1 2.105278 0.300151 2.000014 0.233947 

4 2 1 2 2.087662 0.295894 1.983279 0.230629 

4 2 2 1 2.096918 0.2999 1.992072 0.233752 

4 2 2 2 2.096866 0.298296 1.992022 0.232502 

5 2 1 1 2.093407 0.298093 1.988736 0.232343 

5 2 1 2 2.083026 0.294643 1.978875 0.229654 

5 2 2 1 2.095028 0.29998 1.990277 0.233814 

5 2 2 2 2.087704 0.295921 1.983319 0.23065 

50 4 2 1 1 2.045345 0.094408 2.004438 0.085438 

4 2 1 2 2.049513 0.094782 2.008522 0.085777 

4 2 2 1 2.045357 0.094415 2.00445 0.085445 

4 2 2 2 2.040399 0.09408 1.999591 0.085142 

5 2 1 1 2.048544 0.094651 2.007573 0.085658 

5 2 1 2 2.050968 0.094766 2.009948 0.085763 

5 2 2 1 2.047524 0.094431 2.007434 0.085472 

5 2 2 2 2.045761 0.094349 2.004846 0.085385 

100 4 2 1 1 2.026022 0.043585 2.005761 0.041461 

4 2 1 2 2.021627 0.043363 2.00141 0.04125 

4 2 2 1 2.02069 0.043348 2.000483 0.041236 

4 2 2 2 2.020108 0.043321 1.999907 0.04121 

5 2 1 1 2.024666 0.043533 2.00442 0.041412 

5 2 1 2 2.021688 0.043416 2.001471 0.041301 

5 2 2 1 2.024325 0.042353 2.00321 0.041251 

5 2 2 2 2.020456 0.043354 2.000251 0.041242 
 

 

 

N    

α 

 

θ 

 

λ 

 

A 

G

SELFθ
⌢

 
MSE G

APLFθ
⌢

 
MSE 

20 4 2 1 1 1.991094 0.166548 

 

2.03795 

 

0.175836 

4 2 1 2 2.069711 

 

0.193883 

 

1.927635 

 

0.13971 

 

4 2 2 1 2.077223 

 

0.209428 

 

2.123908 

 

0.228066 

 

4 2 2 2 2.078078 

 

0.19344 

 

1.934853 

 

0.137044 

 

5 2 1 1 1.980166 

 

0.180782 

 

2.026765 

 

0.189695 

 

5 2 1 2 1.971624 

 

0.173619 

 

1.838463 

 

0.149495 

 

5 2 2 1 2.075058 

 

0.219762 

 

2.121695 

 

0.238671 

 

5 2 2 2 2.06974 

 

0.194075 

 

1.927653 

 

0.139841 
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50 4 2 1 1 2.002699 

 

0.076515 

 

2.022238 

 

0.078502 

 

4 2 1 2 2.045972 

 

0.081346 

 

1.985991 

 

0.069044 

 

4 2 2 1 2.041977 

 

0.081332 

 

2.061518 

 

0.084885 

 

4 2 2 2 1.997947 

 

0.081118 

 

2.017439 

 

0.083008 

 

5 2 1 1 2.045077 

 

0.079567 

 

2.064648 

 

0.083205 

 

5 2 1 2 2.008116 

 

0.070424 

 

1.949654 

 

0.063695 

 

5 2 2 1 2.043717 

 

0.078657 

 

2.063128 

 

0.083356 

 

5 2 2 2 2.04245 

 

0.077108 

 

1.982767 

 

0.065682 

 

100 4 2 1 1 2.005258 

 

0.038516 

 

2.015161 

 

0.039099 

 

4 2 1 2 2.020837 

 

0.036509 

 

1.990933 

 

0.033721 

 

4 2 2 1 2.019897 

 

0.038692 

 

2.029774 

 

0.039558 

 

4 2 2 2 1.999531 

 

0.037365 

 

2.009406 

 

0.037824 

 

5 2 1 1 2.023778 

 

0.040382 

 

2.033675 

 

0.041341 

 

5 2 1 2 2.001039 

 

0.039888 

 

1.97148 

 

0.038004 

 

5 2 2 1 2.022876 

 

0.039842 

 

2.028769 

 

0.040125 

 

5 2 2 2 2.019652 

 

0.040193 

 

1.989753 

 

0.03722 

 
 

Table 3: Bayes Estimators of  θ with their corresponding MSE under gamma 

prior
 

 

7.  Conclusion 
By comparing the results of our study, it is found that in most of the cases 

Bayes estimators with squared error loss function (SELF) under exponential priors have 

the least MSE whereas UMVUE has least MSE than MLE, Bayes estimators with SELF 

and APLF under Jeffrey prior. Bayes estimator with APLF has least MSE than MLE, 

UMVUE and Bayes estimator with SELF under gamma prior when α =5 and Bayes 

estimator with SELF has least MSE than MLE, UMVUE and Bayes estimator with 

APLF under gamma priors when α =4. Thus, Bayes estimator of shape parameter θ 

under SELF using exponential prior is more efficient than MLE, Bayes estimator under 

APLF and UMVUE. 
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