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Abstract 

The study proposes various choices for shrinkage factors (weights) for the scale 

parameter of an exponential distribution under LINEX loss function. Shrinkage factor based on 

the test statistic has been considered. Another choice of shrinkage factor is also considered. It is 

observed that these testimators perform better than other estimators in this class, as the risk (s) of 

these compared to best available estimator turns out to be smaller. Some of the values of degree 

of asymmetry and level of significance for the best performance have been reported. 

 

Key Words: Exponential Distribution, Scale Parameter, Shrinkage Factors, Asymmetric Loss 

Function, Relative Risk. 

 
1. Introduction 

Exponential distributions play a vital role in life testing and reliability 

estimation. Of late, R.V. Hogg and S.A. Kingman (1984) modeled exponential 

distribution as a Loss Distribution to settle down the insurance claims and for some 

problems of Re-insurance also it fits well. So, estimation or testimation of its parameter 

assumes more importance. For insurance policy claims, it may be very easy to have an 

idea of it, from the past claims i.e. we have some knowledge about the parameter to be 

estimated and this may be used to get some improved estimator. 

 

 If, we do not want to utilize this prior information (a point guess) of 

insurance claims indiscriminately, a pre-test estimator along the lines of Thompson 

(1968, a) can be proposed, involving the shrinkage factor ‘k ‘. Pandey (1983), 

Srivastava and Pandey (1985) and Srivastava and Pandey (1987) have proposed 

shrinkage testimators with different choices of shrinkage factors. It has been observed 

that by taking higher powers of shrinkage factor, the proposed testimators perform 

better, which was established by taking the Square of the shrinkage factor by Srivastava 

and Shah (2012, 2015) among others. 

 

 Several authors have considered many choices of shrinkage factor and it 

should lie between ‘0’ and ‘1’. But in all the choices of ‘k’ or ‘k
2
 these limits are not 

attained unless 1
2
 = 0 or 2

2
 = . So, we have proposed another choice of and then it 

exactly lies between ‘0’ and ‘1’. By taking the shrinkage factor as  
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limits ‘0’and’1’ are attained.                    

We have proposed two testimators for  , viz. 
1

ˆ
ST (which considers the shrinkage 

factor square) and 
2

ˆ
ST using k. 

 First utilizing the sample information we compute the sample mean,  
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which is UMVUE, when no other information is available.  

 Next we test the hypothesis Ho: θ = θo against two sided alternative H1: θ ≠ θo at α % 

level of using the test statistic 
0

2


xn
  which follows χ

2
 - distribution with 2n degrees 

of freedom. If the null hypothesis is accepted, it is suggested that shrinkage estimator 

with shrinkage factor ‘k’ be used; else  do not consider the guess value and use x , in 

case the null hypothesis is rejected. 

 

 Symmetric loss function penalizes the under and over estimation equally. 

Hence, several authors have used and advocated the use of ‘asymmetric’ loss functions, 

particularly in situations where the over / under estimation are not of same 

consequences, especially while dealing with claim settlements etc. Varian (1975), 

Zellner (1986), Basu and Ebrahimi (1991) are prominent among others, for suggesting 

the convenience and supremacy of the asymmetric loss function, which includes SELF 

as a special case. 

 

The loss function proposed by Basu and Ebrahimi is defined as: 

 

L (∆) = b[ e
a∆ 

- a∆ - 1], b>0, a ≠ 0                         (1.1) 
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Where ‘a’ indicates the degree and direction of asymmetry and when overestimation 

appears to be more serious than underestimation ‘a’ assumes positive values, where as 

in the situations. When  under estimation is more serious negative values of ‘a’ are 

considered. For ∆ < 0 the loss function rises exponentially and it is almost linear for 

positive values of ∆. 

 

In section 2, we define the shrinkage testimators. The risk(s) expressions have 

been given in section 3. Section 4 is devoted to obtain the Relative Risk(s). Proposed 

testimators are compared with the best estimator for its performance in section 5. 

 

2. The Testimator (s) 

We define the shrinkage testimator 
1

ˆ
ST  of θ as: 

 
1

01 , if Ho is acceptedˆ

     ,    Otherwise
ST

k x k

x




   
  
  

            (2.1) 
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where k = 2
0

2



xn

 , and 
0

2


xn
  follows ᵡ² distribution with 2n degrees of freedom. 

The performance of this estimator has been studied by Srivastava and Shah (2010).  

 Now, squaring ‘k’,  
1

ˆ
ST  can be re-written as: 

 

1

2 2

02 2
0 0

2 2
1 , if Ho is not rejectedˆ

           ,    Otherwise 

ST

nx nx
x

x


    

     
                  
  

                (2.2) 

 With the other choice of shrinkage factor ‘k’we have proposed another 

testimator 
2

ˆ
ST  which is given as follows  
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where 2  is defined earlier. 

 

 Now we derive the risk(s) of 1
ˆ

ST  and
2

ˆ
ST  in section-3. 

 

3.  Derivation of Risk(s)                                          

The risk of 
1

ˆ
ST using L (∆) can be defined as 
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Now integrating (3.5) using standard integration results we obtain 
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4.  Relative Risk(s) 
 In order to see the performance of the proposed testimators we compare its risk 

with the Uniformly Most Powerful Estimator x . 

 To facilitate this, risk of x   using L() is defined by 
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Again integrating (4.1) we get  
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 Using equations (4.2) and (3.2) we obtain the mathematical expression for RR1 in 

(4.3), it indicates that RR1 depends on, n, α, and ‘a ‘.The performance of
1
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ST is 

studied for,  = 0.2 (0.2)…1.6, α = 1%, 5%, 10%, n = 5, 8, 10 and a = ±1, ±2, ±3. 
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The equations (4.2) and (3.4) are used for RR2 expression (4.4).  Again RR2  can be 

evaluated for , n,  and ‘a’.  

  The performance of
2

ˆ
ST is studied for several values of above mentioned 

quantities considered earlier  for 
1

ˆ
ST with these many choices there will be several 

tables of the relative risk(s). Few graphs of RR1 and RR2 for the numerical values 

considered are provided in the appendix. However, our conclusions based on all the 

graphs are given in the next section. 

 

5.  Conclusions 
 Following are the conclusions for the proposed testimators. 

 

For   

For different  values of n = 5,8,10  we  fix α = 1% and the degree of 

asymmetry  is varied for ‘a’ = ±1, ±2, ±3, the values of  relative risk of 
1

ˆ
ST  are 

higher  for the  different choices of n
s
 and a

s 
and the range

 
 of Ø considered here. All the 

positive values ‘a’ may be considered in particular a=3.Therefore it is recommended to 

use this estimator for a=3, α = 1%. 

 Now take α = 5% for the same data set, again 
1

ˆ
ST performs better than the 

simple mean for complete range of ‘Ø’ taken here. It is observed further that magnitude 

of relative risk is higher for α = 1% than for α = 5%. 
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 Next a higher value of  α = 10% is taken to see the impact of higher level of 

significance still  it is found that 
1

ˆ
ST fairs better  for positive values of ‘a’ specially  

for a=2. It is observed that the testimators perform better for ‘lower’ values level of 

significance whenever ‘a’ assumes positive values. 

So,
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ST  is recommended for different data sets considered here, as the 

proposed testimator performs better than usual estimator. Specially one may consider α 

= 1% and a=3.  
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entire range of Ø = 0.2(0.2) 1.6. Risk decreases for large values  in particular  when n = 

10. A lower negative value  of’a’with a lower  value of  α  can be considered. Further, 

for smaller values of n i.e. n = 5 and n = 8 also  
2

ˆ
ST  has smaller risk values and in 

particular for n = 5 and a = 3 its performance is the best. 

Considering α = 5% for different values of n = 5, 8, and 10,  
2

ˆ
ST behaves nicely for 

positive values of ‘a’ and for different values in particular take a small sample i.e. n=5, 

however other values may be also be considered but with little lower gain in relative 

risk values. The performance remains true for the whole range of Ø. 

 

   Considering a high level of significance at  α = 10%  and same set of values 

for sample sizes and degree of asymmetry  again 
2

ˆ
ST  outperforms  the conventional  

estimator  for almost all the values considered here particularly  for n = 5 and a = 2, a = 

3 the risk values are lowest. 

1. Testimators 
1

ˆ
ST and 

2

ˆ
ST outperform the UMVUE for entire range of Ø = 0.2 

(0.2) 1.6, different sample sizes considered for risk evaluation and in those situations 

where over estimation is more serious than the underestimation. Does not perform so 

nicely in the reverse situations. 

2. A comparison of values of relative risk(s) of 
1

ˆ
ST  and 

2

ˆ
ST  , reveals  that the 

relative risk is higher for 
1

ˆ
ST  ,so a test statistic dependent ‘square’ of shrinkage 

factor  (weight) is suggested. 

It is observed that using the LINEX  los function the effective range of Ø for which 

1

ˆ
ST  or 

2

ˆ
ST  perform better than the usual estimator increases  as compared to the 

same when a symmetric loss function is used. In fact the ranges are Ø= 0.2(0.2) 1.6  for 

LINEX loss function  where as it is Ø = 0.6 (0.2) 1.2 for SELF. 
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3. The proposed testimators perform better for small sample size, small level of 

significance and in the situations where overestimation is more penalized than the 

underestimation which is mostly the case in insurance and re-insurance problems. 
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Appendix 

 Graphs of Relative Risk(s)  
1

ˆ
ST   
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Graphs of Relative Risk for  
2

ˆ
ST  
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