GENERALIZED FAMILY OF ESTIMATORS IN STRATIFIED RANDOM SAMPLING USING SUBSAMPLING OF NON-RESPONDENTS

${ }^{1 *}$ IramSaleem, ${ }^{2}$ Aamir Sanaullah, and ${ }^{3}$ Muhammad Hanif
${ }^{1,3}$ National College of Business Administration and Economics, Lahore, Pakistan
${ }^{2}$ COMSATS Institute of Information Technology, Lahore, Pakistan
E Mail: ${ }^{*}$ joshwa2005@gmail.com; ${ }^{2}$ chaamirsanaullah@yahoo.com;
${ }^{3}$ drmianhanif@gmail.com
*Corresponding author

Received April 11, 2018
Modified November 12, 2018
Accepted December 13, 2018

Abstract

Generalized family of estimators have been proposed for the estimation of population mean using two auxiliary variables in stratified random sampling under non-response. The bias and the mean square error expressions of the adapted and suggested family estimators have been derived up to first order of approximation. The mathematical conditions have been obtained for which the suggested family of estimators are more efficient than the stratified mean estimator and ratio estimator. Empirical study is also provided in support of theoretical findings. In addition, the expressions for optimum sample size of the each stratum in respect to cost of the survey have also obtained.

Key Words: Ratio Estimator, Product Estimator, Bias, Mean Square Error, Stratified Random Sampling.

1. Introduction

In sample survey, non-response creates problem for the estimation. This problem occurs due to lack of failure to obtain the desired information. Non-response cannot be removed by only increasing the sample size. It has been observed that under non-response the bias in estimates increases that eventually reduces the efficiency of the estimate. The method of sub-sampling to obtain responses has been a popular method in case of non-response, was first introduced by Hansen and Hurwitz (1946). Further, Madow et al. (1983) presented weighting adjustments and imputation adjustments are used to deal with the problem of non-response. Cochran (1977), followed Hansen and Hurwitz (1946) methodology and presented ratio estimator for simple random sampling under non-response. For this situation, many statisticians such as Rao (1986), Okafor and Lee(2000), Kadilar and Cingi (2005),Khan et al. (2008). Ismail et al.(2011),Olufadi (2013) and some more statisticians developed various estimators in simple random sampling.

Kadilar and Cingi(2003) modified the estimators introduced by Upadhyaya and Singh to stratified random sampling. Further, some authors presented their work under the situation of non-response for stratifies random sampling such as Chauhdary et al.
(2009), Chauhdary etal. (2012), Sanaullah et al. (2012), Sharma and Singh (2015), Singh and Pal (2015), Sanaullah et al.(2015) and Pal and Singh (2016,2018).

In this study, we have proposed generalized family of estimators using two auxiliary variables under stratified sampling in the presence of non-response, when non-response is observed on all variables.

2. Sampling Methodology

Consider afinite population of N and is divided into L homogenous strata, such that $\sum_{h=1}^{L} N_{h}=N$, where N_{h} is the size of $h^{\text {th }}$ stratum $(h=1,2,3, \ldots, L)$. Let a sample of size n_{h} drawn from each stratum by simple random sample such that $\sum_{h=1}^{L} n_{h}=n$, where n_{h} is the stratum sample size. Let $\left(y_{h i}, x_{h i}, z_{h i}\right)$ be the observations of study variable (y) and auxiliary variables (x and z) on the $i^{\text {th }}$ unit of $h^{\text {th }}$ stratum, respectively. Moreover, \bar{y}_{h}, \bar{x}_{h} and \bar{z}_{h} be the sample means of $h^{\text {th }}$ stratum corresponding to the population means \bar{Y}_{h}, \bar{X}_{h} and \bar{Z}_{h} of y, x and z respectively.It is assumed that $n_{h(1)}$ units respond and $n_{h(2)}$ unit will not such that $n_{h(1)}+n_{h(2)}=n_{h}$. A sub-sample of size $r_{h}\left(r_{h}=n_{h(2)} / f_{h}\right)$ drawn at random out of $n_{h(2)}$ non-respondent units by following the method of Hansen and Hurwitz (1946), where $1 / f_{h}\left(f_{h}>1\right)$ denotes the sampling fraction among the nonrespondent group in the $h^{\text {th }}$ stratum. And it is assume that allthe selected $r_{h}\left(\subset n_{h(2)}\right)$ units will respond on the second call. Assume a dummy variable as U_{h} which obtains the values of u_{hi} on the $\mathrm{i}^{\text {th }}$ population unit of stratum h and has mean \bar{U}_{h}. After this, \bar{U}_{h} may stand for $Y_{\mathrm{h}} ; X_{\mathrm{h}}$ or for a second auxiliary variable Z_{h}. Let;

$$
\begin{gather*}
\bar{u}_{n_{h}(1)}=\frac{\sum_{i=1}^{n_{h(1)}} u_{i(1)}}{n_{h(1)}}, \bar{u}_{r_{h}}=\frac{\sum_{i=1}^{r_{n}} u_{i(2)}}{r_{h}}, \\
\text { So } \bar{u}_{h}^{*}=\frac{n_{h_{(1)}}}{n_{h}} \bar{u}_{(1) n_{h 1}}+\frac{r_{h}}{n_{h}} \bar{u}_{(2) r_{h}} . \tag{1}
\end{gather*}
$$

where $\bar{u}_{(1) n_{h(1)}}$ and $\bar{u}_{(2) r_{h}}$ is mean of $n_{h(1)}$ respondents on first call and is mean of r_{h} units respond on the second call respectively, and \bar{u}_{h}^{*} denotes the unbiased HansenHurwitz (1946) of \bar{U}_{h} for stratum h.

- A modified Hansen and Hurwitz (1946) unbiased estimator for stratified sampling may be given as,

$$
\begin{equation*}
t_{H H}=\sum_{h=1}^{L} P_{h} \bar{u}_{h}^{*}, \tag{2}
\end{equation*}
$$

The variance of $t_{H H}$ may be formed as

$$
\begin{equation*}
\operatorname{Var}\left(t_{H H}\right)=\sum_{h=1}^{L} \lambda_{h} P_{h}^{2} S_{u_{h}}^{2}+\sum_{h=1}^{L} \lambda_{h}^{*} P_{h}^{2} S_{u_{h}(2)}^{2} . \tag{3}
\end{equation*}
$$

where $S_{u h}^{2}=\sum_{i=1}^{N_{h}}\left(u_{h i}-\bar{U}_{h}\right)^{2} /\left(N_{h}-1\right)$, and $S_{u h(2)}^{2}=\sum_{i=1}^{N_{h(2)}}\left(u_{i}-\bar{U}_{h(2)}\right)^{2} /\left(N_{h(2)}-1\right)$, be the mean square error of the entire group and the non-response group of the study variable with

$$
P_{h}=N_{h} / N, \quad \lambda_{h}=\left(\frac{1}{n_{h}}-\frac{1}{N_{h}}\right), \lambda_{h}^{*}=\left(\frac{f_{h}-1}{n_{h}}\right) W_{h(2)}, W_{h(2)}=N_{h(2)} / N_{h}, \text { and } f_{h}=n_{h(2)} / r_{h} .
$$

- The modified ratio and product estimator presented by Cochran (1977)for stratified random sampling under non-response may be written as:

$$
\begin{align*}
& t_{R}=\bar{y}_{s t}^{*}\left[\frac{\bar{X}}{\overline{\mathrm{x}}_{s t}^{*}}\right]\left[\frac{\bar{Z}}{\bar{z}_{s t}^{*}}\right], \tag{4}\\
& t_{p}=\bar{y}_{s t}^{*}\left[\frac{\overline{\mathrm{x}}_{s t}^{*}}{\bar{X}}\right]\left[\frac{\bar{z}_{s t}^{*}}{\bar{Z}}\right], \tag{5}
\end{align*}
$$

where $\bar{y}_{s t}^{*}=\sum_{h=1}^{L} P_{h} \bar{y}_{h}^{*}$ and $\bar{Y}=\sum_{h=1}^{L} P_{h} \bar{Y}_{h}$ are the sample and populations means of Y respectively. Similarly, we can define notations for $\bar{x}_{s t}^{*}$ and $\bar{z}_{s t}^{*}$.
The mean square error of the estimators t_{R} and t_{P} are given respectively as,

and

- A ratio estimator for stratified sampling when non-response is present only on study variable was presented by Chaudhary et al. (2009) as,

$$
\begin{equation*}
t_{c}=\bar{y}_{s}^{*}\left[\frac{a \bar{X}+b}{\alpha\left(a \bar{x}_{s t}+b\right)+(1-\alpha)(a \bar{X}+b)}\right]^{g} \tag{8}
\end{equation*}
$$

The mean square error of t_{c} is

$$
\begin{equation*}
\operatorname{MSE}\left(t_{c}\right) \approx \approx_{h=1}^{L} P_{h}^{2} \lambda_{h}\left[S_{y h}^{2}+\alpha^{2} v^{2} g^{2} R^{2} S_{x h}^{2}-2 \alpha v g R \rho_{x y h} S_{x h} S_{y h}\right]+{ }_{h=1}^{L} P_{h}^{2} \lambda_{h}^{*} S_{y h(2)}^{2} . \tag{9}
\end{equation*}
$$

where $\quad v=\frac{a \bar{X}}{a \bar{X}+b} \quad$ and $\quad R=\frac{\bar{Y}}{\bar{X}}$.
The value of $\operatorname{MSE}\left(t_{C}\right)$ is minimum for $\alpha=\frac{{ }_{h=1}^{L} P_{h}^{2} \lambda_{h} \rho_{x y h} S_{y h} S_{x h}}{v g R_{h=1}^{L} P_{h}^{2} \lambda_{h} S_{x h}}$.
In this study we have provided a generalized class of estimators for estimating population mean using two auxiliary variables and also considering a situation of nonresponse in stratified random sampling. Hansen and Hurwitz's (1946) sub-sampling has been used to deal with the survey non-response. Also it has been shown that the proposed class of estimators is more efficient as they attain minimum mean square errors than the some existing estimator. Further the estimators discussed in the study are simpler and can be implemented into computer software and also are cost effective
estimators as more efficient results can be obtained at minimum cost and with minimum mean square error. What sample size is desired to achieve these objectives has also been discussed in the study. In the following, the study is presented in seven sections. Section-II presents basic notation used in the text, and estimation results in stratified random sampling under the situation of non-response. Some existing estimators are also presented along their mean square errors. In Section-III an adapted family of estimators is presented with some properties of the estimators. Similarly, we propose a generalized family of estimators in Section-IV and some properties e.g. bias, mean square of errors, optimal conditions to get minimum mean square errors. SectionV is given for mathematical comparisons and to derive some conditions under which the proposed estimator perform better than some existing estimators. Further issues such as optimal sample size, and minimum survey cost to attain maximum efficiency of the estimates are discussed in Section-VI, and in Section-VII a numerical study is given to show the performance of the proposed estimators. Finally in Section-VIII conclusion based on numerical illustration is drawn.

3. Adapted Family of Estimators

Ismail et al. (2011) introduced an estimator for population mean for non-response in two-phase simple random sampling given by

$$
\begin{equation*}
t_{I}=\bar{y}^{*}\left[\frac{\bar{x}^{*}-w\left(\bar{x}^{*}-\bar{x}_{1}\right)}{\bar{x}_{1}+w\left(\bar{x}^{*}-\bar{x}_{1}\right)}\right], \tag{10}
\end{equation*}
$$

we adapt this estimator to a generalized family of estimatorsusing two auxiliary variablessay x and z under stratified sampling in the presence of non-response as,
$k_{a}=\bar{y}_{s t}^{*}\left[\frac{\bar{x}_{s t}^{*}-w_{X}\left(\bar{x}_{s t}^{*}-\bar{X}\right)}{\bar{X}+w_{X}\left(\bar{x}_{s t}^{*}-\bar{X}\right)}\right]^{s_{x}}\left[\frac{\bar{z}_{s t}^{*}-w_{Z}\left(\bar{z}_{s t}^{*}-\bar{Z}\right)}{\bar{Z}+w_{Z}\left(\bar{z}_{s t}^{*}-\bar{Z}\right)}\right]^{g_{z}}$,
Where g_{X} and g_{Z} are known constants, w_{X} and w_{Z} are assumed to be unknown, whose values are to estimate such that the MSE ofkis minimum. Further, it is observed that for various values of w_{x} and w_{z}, some ratio and product estimators are obtained. The class of estimators for adapted family has been given in Table 1.
In order to obtain the bias and the MSE, if we assume that
$\bar{y}_{s t}^{*}=\bar{Y}\left(1+e_{o}^{*}\right), \bar{x}_{s t}^{*}=\bar{X}\left(1+e_{1}^{*}\right), \bar{z}_{s t}^{*}=\bar{Z}\left(1+e_{2}^{*}\right)$ and $E\left(\mathrm{e}_{i}^{*}\right)=0$ where $i=0,1,2$,
then in stratified random sampling (without replacement)

Ratio Estimator	Product Estimator	g_{x}	g_{z}	w_{x}	w_{z}
$k^{1}=\bar{y}_{s t}^{*}\left[\frac{\bar{X}}{\bar{x}_{s t}^{*}}\right]\left[\frac{\bar{Z}}{\bar{z}_{s t}^{*}}\right]$	$\left.\bar{y}_{s t}^{*}\right]\left[\frac{\bar{x}_{s t}^{*}}{\bar{X}}\right]\left[\frac{\bar{z}_{s t}^{*}}{\bar{Z}}\right]$	1	1	0	0
$k_{a}^{3}=\bar{y}_{s t}^{*}\left[\frac{\bar{x}_{s t}^{*}-2\left(\bar{x}_{s t}^{*}-\bar{X}\right)}{\bar{X}+2\left(\bar{x}_{s t}^{*}-\bar{X}\right)}\right]\left[\frac{\bar{Z}}{\bar{z}_{s t}^{*}}\right]$	1	1	1	1	

Table 1: Class of Estimator for Adapted Family of Estimators

$$
\begin{align*}
& E\left(e_{0}^{*}\right)^{2}=\frac{1}{\bar{Y}^{2}} \sum_{n=1}^{L} P_{n}^{P}\left(\lambda_{h} S_{y h}^{2}+\lambda_{h}^{*} S_{y k 2}^{2}\right)=V_{\infty 0}^{*}, E\left(e_{1}^{*}\right)^{2}=\frac{1}{\bar{X}^{2}} \sum_{n=1}^{L} P_{n}^{P}\left(\lambda_{h} S_{s h}^{2}+\lambda_{h}^{*} S_{x 22}^{2}\right)=V_{20}^{*}, \\
& E\left(e_{2}^{*}\right)^{2}=\frac{1}{\bar{Z}^{2}} \sum_{h=1}^{L} P_{h}^{2}\left(\lambda_{h} S_{z 1}^{2}+\lambda_{h}^{*} S_{z 22}^{2}\right)=V_{02}^{*}, E\left(e_{o}^{*} e_{1}^{*}\right)=\frac{1}{\overline{X X}} \sum_{h=1}^{L} P_{h}^{2}\left(\lambda_{h} S_{y p h}+\lambda_{h}^{*} S_{y x 22}\right)=V_{100}^{*}, \tag{12}
\end{align*}
$$

$$
\begin{aligned}
& \text { where } \\
& V_{r, s, t}^{*}=\sum_{h=1}^{L} P_{h}^{r+s+t} \frac{E\left(\left(\bar{x}_{h}^{*}-\bar{X}_{h}\right)^{r}\left(\bar{y}_{h}^{*}-\bar{Y}_{h}\right)^{s}\left(\bar{z}_{h}^{*}-\bar{Z}_{h}\right)^{t}\right)}{\bar{X}^{r} \bar{Y}^{s} \bar{Z}^{t}}
\end{aligned}
$$

On rewriting (11) as,

$$
\begin{equation*}
k_{a}=\bar{Y}\left(1+e_{0}^{*}\right)\left[\left(1+e_{1}^{*}-w_{X} e_{1}^{*}\right)\left(1+w_{X} e_{1}^{*}\right)^{-1}\right]^{g_{X}}\left[\left(1+e_{2}^{*}-w_{Z} e_{1}^{*}\right)\left(1+w_{Z} e_{2}^{*}\right)^{-1}\right]^{g z} \tag{13}
\end{equation*}
$$

Expanding the right hand side of (13) up to first order approximation, we obtain,
$k_{a}=\bar{Y}\left[1+e_{0}^{*}-e_{1}^{*}\left(2 w_{x}-1\right) g_{x}-e_{2}^{*}\left(2 w_{z}-1\right) g_{z}+e_{1}^{*} e_{2}^{*}\left(2 w_{x}-1\right)\left(2 w_{z}-1\right) g_{x} g_{z}-e_{0}^{*} e_{1}^{*}\left(2 w_{x}-1\right) g_{x}-e_{0}^{*} e_{2}^{*}\left(2 w_{z}-1\right) g_{z}\right]$
Or

$$
\begin{equation*}
k_{a}-\bar{Y}=\bar{Y}\left[e_{0}^{*}-\omega_{X} e_{1}^{*}-\omega_{z} e_{2}^{*}+\omega_{X} \omega_{z} e_{1}^{*} e_{2}^{*}-\omega_{X} e_{0}^{*} e_{1}^{*}-\omega_{z} e_{0}^{*} e_{2}^{*}\right] \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(2 w_{x}-1\right) g_{x}=\omega_{x} \operatorname{and}\left(2 w_{z}-1\right) g_{z}=\omega_{z} \tag{15}
\end{equation*}
$$

Taking expectations of both sides in(15), we get the expressionof the bias as,

$$
\begin{equation*}
\operatorname{Bias}\left(k_{a}\right)=\bar{Y}\left[\omega_{X} \omega_{z} V_{101}^{*}-\omega_{X} V_{110}^{*}-\omega_{Z} V_{011}^{*}\right] \tag{16}
\end{equation*}
$$

Squaring both sides of(15) and retain terms up to the order n^{-1} then we take expectation to get the MSE of the estimator k_{a} as,

$$
\begin{equation*}
\operatorname{MSE}\left(k_{a}\right)=\bar{Y}^{2}\left[V_{020}^{*}+\omega_{X}^{2} V_{200}^{*}+\omega_{Z}^{2} V_{002}^{*}-2 \omega_{X} V_{110}^{*}-2 \omega_{z} V_{011}^{*}+2 \omega_{X} \omega_{Z} V_{101}^{*}\right] \tag{17}
\end{equation*}
$$

The MSE of k_{a} is minimizedfor the optimal values of ω_{x} and ω_{z} as,
$\omega_{X}=\frac{\left(V_{011}^{*} V_{101}^{*}-V_{110}^{*} V_{002}^{*}\right)}{\left(V_{101}^{* 2}-V_{002}^{*} V_{200}^{*}\right)}$ and $\omega_{Z}=\frac{\left(V_{011}^{*} V_{101}^{*}-V_{011}^{*} V_{200}^{*}\right)}{\left(V_{101}^{* 2}-V_{002}^{*} V_{200}^{*}\right)}$,
Substitute the optimal values of (18) in (17), results the minimum value of $\operatorname{MSE}\left(k_{a}\right)$ as,

$$
\begin{equation*}
\operatorname{MSE}\left(k_{a}\right)=\bar{Y}^{2}\left[V_{020}^{*}-\left(\frac{V_{002}^{*} V_{110}^{* 2}+V_{200}^{*} V_{011}^{* 2}-2 V_{101}^{*} V_{011}^{*} V_{110}^{*}}{V_{200}^{*} V_{002}^{*}-V_{101}^{* 2}}\right)\right] \tag{19}
\end{equation*}
$$

For ratio estimators presented in Table 1, we can express the MSE expression in (19) as,

$$
\operatorname{MSE}\left(k_{a}^{j}\right)=\left(\begin{array}{ll}
\bar{Y}^{2}\left[\begin{array}{l}
\left.V_{020}^{*}+V_{200}^{*}+V_{002}^{*}-2 V_{110}^{*}-2 V_{011}^{*}+2 V_{101}^{*}\right]
\end{array}\right. & i=1 \tag{20}\\
{\left[\begin{array}{l}
V_{020}^{*}+v_{x\left(\frac{i-1}{2}\right)}^{2} V_{200}^{*}+v_{z\left(\frac{i-1}{2}\right)}^{2} V_{002}^{*} \\
-2 v_{x\left(\frac{i(2)}{2}\right)} V_{110}^{*}-2 v_{z\left(\frac{i(2}{2}\right)} V_{011}^{*} \\
+2 v_{x\left(\frac{i-1}{2}\right)} v_{z\left(\frac{i-1}{2}\right)} V_{101}^{*}
\end{array}\right]} & i=3,5,7
\end{array}\right.
$$

and for product estimators, the MSE expression can be given as,
where $\quad v_{X 1}=\frac{\bar{X}}{\bar{X}+\rho_{x y}}$ and $v_{z 1}=\frac{\bar{Z}}{\bar{Z}+\rho_{y z}}$,

$$
v_{x 2}=\frac{\sigma_{X} \bar{X}}{\sigma_{X} \bar{X}+1} \text { and } v_{z 2}=\frac{\sigma_{z} \bar{Z}}{\sigma_{z} \bar{Z}+1}
$$

$$
v_{x 3}=\frac{\rho_{x y} \bar{X}}{\rho_{x y} \bar{X}+1} \text { and }_{v_{z 3}}=\frac{\rho_{y z} \bar{Z}}{\rho_{y z} \bar{Z}+1} .
$$

4. Proposed Family of Estimators

In this section, we have proposed a generalized family of estimatorsgiven by,

$$
\begin{equation*}
k_{p}=\eta \bar{y}_{s t}^{*}\left[\frac{\bar{x}_{s t}^{*}-w_{X}\left(\bar{x}_{s t}^{*}-\bar{X}\right)}{\bar{X}+w_{X}\left(\bar{x}_{s t}^{*}-\bar{X}\right)}\right]^{s X}\left[\frac{\bar{z}_{s t}^{*}-w_{Z}\left(\bar{z}_{s t}^{*}-\bar{Z}\right)}{\bar{Z}+w_{Z}\left(\bar{z}_{s t}^{*}-\bar{Z}\right)}\right]^{8 Z} \tag{22}
\end{equation*}
$$

where $\eta(\neq 0)$ is a constant. We develop some ratio-cum-ratio, and product-cum-product estimators by assuming different values of parameter in (22)as shown in Table 2.
On rewriting we may get (22) as

$$
\begin{equation*}
k_{p}=\eta \bar{Y}\left(1+e_{0}^{*}\right)\left[\left(1+e_{1}^{*}-w_{X} e_{1}^{*}\right)\left(1+w_{X} e_{1}^{*}\right)^{-1}\right]^{g X}\left[\left(1+e_{2}^{*}-w_{Z} e_{2}^{*}\right)\left(1+w_{Z} e_{2}^{*}\right)^{-1}\right]^{g Z} \tag{23}
\end{equation*}
$$

Solving (23), neglecting terms of e's having power higher than two, we have

$$
\begin{align*}
k_{p}-\bar{Y}= & \eta \bar{Y}\left[1+e_{0}^{*}-e_{1}^{*}\left(2 w_{X}-1\right) g_{X}-e_{2}^{*}\left(2 w_{Z}-1\right) g_{Z}-e_{0}^{*} e_{1}^{*}\left(2 w_{X}-1\right) g_{X}\right. \\
& \left.-e_{0}^{*} e_{2}^{*}\left(2 w_{Z}-1\right) g_{Z}+e_{1}^{*} e_{2}^{*}\left(2 w_{X}-1\right)\left(2 w_{z}-1\right) g_{X} g_{Z}\right]-\bar{Y} \tag{24}
\end{align*}
$$

Applying similar procedure to (24) as described in section 2, the expression of the bias and MSE of k_{p} can be easily obtained as,

$$
\begin{equation*}
\operatorname{Bias}\left(k_{p}\right)=\bar{Y}\left[\eta\left\{1-\omega_{X} V_{110}^{*}-\omega_{z} V_{011}^{*}+\omega_{X} \omega_{Z} V_{101}^{*}\right\}-1\right] \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{MSE}\left(k_{p}\right)=\bar{Y}^{2}\left[\eta^{2}\left\{V_{020}^{*}+\omega_{X}^{2} V_{200}^{*}+\omega_{Z}^{2} V_{002}^{*}\right\}-2\left(2 \eta^{2}-\eta\right)\left\{\omega_{X}\left(V_{110}^{*}-\omega_{z} V_{101}^{*}\right)+\omega_{Z} V_{011}^{*}\right\}+(\eta-1)^{2}\right] \tag{26}
\end{equation*}
$$

Minimization of (26) with respect to η, ω_{X} and ω_{Z} yields the optimum values as,

$$
\begin{equation*}
\omega_{X}=\frac{\left(V_{011}^{*} V_{101}^{*}-V_{11}^{*} V_{002}^{*}\right)}{\left(V_{101}^{* 2}-V_{002}^{*} V_{200}^{*}\right)}, \omega_{Z}=\frac{\left(V_{011}^{*} V_{101}^{*}-V_{011}^{*} V_{200}^{*}\right)}{\left(V_{101}^{* 2}-V_{002}^{*} V_{200}^{*}\right)}, \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta=\frac{1}{1+V_{020}^{*}-\left(\frac{V_{002}^{*} V_{110}^{* 2}+V_{200}^{*} V_{011}^{* 2}-2 V_{101}^{*} V_{011}^{*} V_{110}^{*}}{V_{200}^{*} V_{002}^{*}-V_{101}^{* 2}}\right)} . \tag{28}
\end{equation*}
$$

Thus, the minimum $\operatorname{MSE}\left(k_{p}\right)$ is obtained as

$$
\begin{equation*}
\operatorname{minMSE}\left(k_{p}\right)=\bar{Y}^{2}\left[1-\frac{1}{1+V_{020}^{*}-\left(\frac{V_{002}^{*} V_{110}^{*}+V_{200}^{*} V_{011}^{*}-2 V_{101}^{*} V_{011}^{*} V_{110}^{*}}{V_{200}^{*} V_{002}^{*}-V_{101}^{*}}\right)}\right] \tag{29}
\end{equation*}
$$

For ratio-cum-ratio estimators presented in Table 2, we can express the MSE expression in (27) as,

$$
\begin{align*}
\operatorname{MSE}\left(k_{p}^{1}\right)= & \bar{Y}^{2}\left[\hat{\eta}^{2}\left\{V_{020}^{*}+V_{200}^{*}+V_{002}^{*}\right\}-2\left(2 \hat{\eta}^{2}-\hat{\eta}\right)\left(V_{110}^{*}-V_{101}^{*}+V_{011}^{*}\right)+(\hat{\eta}-1)^{2}\right] \\
\operatorname{MSE}\left(k_{p}^{i}\right)= & \bar{Y}^{2}\left[\eta^{+2}\left\{V_{020}^{*}+v_{\left(\left\{\frac{(i-1}{2}\right)\right.}^{2} V_{200}^{*}+v_{\left\{\left(\frac{i-1}{2}\right)\right.}^{2} V_{002}^{*}\right\}\right. \tag{30}\\
& \left.-2\left(2 \eta^{+2}-\eta\right)\left(v_{\left\{\left(\frac{i-1}{2}\right)^{2}\right.} V_{110}^{*}-v_{\left(\frac{i-1}{2}\right)} v_{\left\{\left(\frac{i-1}{2}\right)\right.} V_{101}^{*}+v_{\left\{\left(\frac{i-1}{2}\right) V_{011}^{*}\right.} V_{01}^{*}\right)+\left(\eta^{+}-1\right)^{2}\right]
\end{align*}
$$

where $i=3,5,7$

Ratio Estimator	Product Estimator	w_{x}	w_{z}	η
	$k_{p}^{2}=\eta \bar{y}_{s t}^{*}\left[\frac{\bar{x}_{s t}^{*}}{\bar{X}}\right]\left[\frac{\bar{z}_{s t}^{*}}{\bar{Z}}\right]$	0	0	η

$$
\begin{array}{lllll}
k_{p}^{1}=\eta \bar{y}_{s t}^{*}\left[\frac{\bar{X}}{\bar{x}_{s t}^{*}}\right]\left[\frac{\bar{Z}}{\bar{z}_{s t}^{*}}\right] & 1 & 1 & \eta \\
k_{p}^{3}=\eta \bar{y}_{s t}^{*}\left[\frac{\bar{x}_{s t}^{*}-2\left(\bar{x}_{s t}^{*}-\bar{X}\right)}{\bar{X}+2\left(\bar{x}_{s t}^{*}-\bar{X}\right)}\right]\left[\frac{\bar{Z}}{\bar{z}_{s t}^{*}}\right] & 2 & 1 & \eta \\
\hline \hline & k_{p}^{4}=\eta \bar{y}_{s t}^{*}\left[\frac{2 \bar{x}_{s t}^{*}-\bar{X}}{2 \bar{X}-\bar{x}_{s t}^{*}}\right]\left[\frac{\bar{z}_{s t}^{*}}{\bar{Z}}\right] & -1 & 0 & \eta \\
k_{p}^{5}=\eta \bar{y}_{s t}^{*}\left[\frac{\bar{X}}{\bar{x}_{s t}^{*}}\right]\left[\frac{\bar{z}_{s t}^{*}-2\left(\bar{z}_{s t}^{*}-\bar{Z}\right)}{\bar{Z}+2\left(\bar{z}_{s t}^{*}-\bar{Z}\right)}\right]\left[\frac{\bar{x}_{s t}^{*}}{\bar{X}}\right]\left[\frac{2 \bar{z}_{s t}^{*}-\bar{Z}}{2 \bar{Z}-\bar{z}_{s t}^{*}}\right] & 0 & -1 & \eta \\
\hline \hline k_{p}^{7}=\eta \bar{y}_{s t}^{*}\left[\left[\begin{array}{cccc}
\left.\bar{x}_{s t}^{*}-2\left(\bar{x}_{s t}^{*}-\bar{X}\right)\right]\left[\bar{z}_{s t}^{*}-2\left(\bar{z}_{s t}^{*}-\bar{Z}\right)\right. \\
\bar{X}+2\left(\bar{x}_{s t}^{*}-\bar{X}\right)
\end{array} \frac{1}{\bar{Z}+2\left(\bar{z}_{s t}^{*}-\bar{Z}\right)}\right]\right. & 2 & \eta \\
\hline
\end{array}
$$

The optimal values of $\eta^{\prime} s$ given as, $\hat{\eta}=\frac{\hat{A}}{\hat{B}}, \eta^{+}=\frac{A^{+}}{B^{+}}, \dot{\eta}=\frac{\dot{A}}{\dot{B}}$ and $\eta^{\circ}=\frac{A^{\circ}}{B^{\circ}}$
where
$\hat{A}=1-V_{110}^{*}-V_{011}^{*}+V_{101}^{*} \hat{A}=1-V_{110}^{*}-V_{011}^{*}+V_{101}^{*}, \hat{B}=1+V_{020}^{*}+V_{200}^{*}+V_{002}^{*}-4\left(V_{110}^{*}-V_{101}^{*}+V_{011}^{*}\right)$,
$A^{+}=1-v_{x\left(\frac{i-1}{2}\right)} V_{110}^{*}-v_{z\left(\frac{i-1}{2}\right)} V_{011}^{*}+v_{x\left(\frac{i-1}{2}\right)} v_{=\left(\frac{i-1}{2}\right)} V_{101}^{*}$
$B^{+}=1+V_{020}^{*}+v_{x\left(\frac{i-1}{2}\right)}^{2} V_{200}^{*}+v_{\left(\left(\frac{i-1}{2}\right)\right.}^{2} V_{002}^{*}-4\left(v_{x\left(\frac{i-1}{2}\right)} V_{110}^{*}+v_{\left(\frac{i-1}{2}\right)} V_{011}^{*}-v_{x\left(\frac{i-1}{2}\right)} v_{\left(\frac{i-1}{2}\right)} V_{101}^{*}\right)$
$\dot{A}=1+V_{110}^{*}+V_{011}^{*}+V_{101}^{*}, \dot{B}=1+V_{020}^{*}+V_{200}^{*}+V_{002}^{*}+4\left(V_{110}^{*}+V_{101}^{*}+V_{011}^{*}\right)$
$A^{\circ}=1+v_{x\left(\frac{j-1}{2}\right)} V_{110}^{*}-v_{z\left(\frac{j-1}{2}\right)} V_{011}^{*}+v_{x\left(\frac{j-1}{2}\right)} V_{z\left(\frac{j-1}{2}\right)} V_{101}^{*}$
$B^{\circ}=1+V_{020}^{*}+v_{x\left(\frac{j-1}{2}\right)}^{2} V_{200}^{*}+v_{z\left(\frac{j-1}{2}\right)}^{2} V_{002}^{*}$

$$
+4\left(v_{x\left(\frac{j-1}{2}\right)} V_{110}^{*}+v_{z\left(\frac{j-1}{2}\right)} V_{011}^{*}-v_{x\left(\frac{j-1}{2}\right)} v_{z\left(\frac{j-1}{2}\right)} V_{101}^{*}\right)
$$

By substitution the above values of $\eta^{\prime} s$, the $\operatorname{MSE}\left(k_{p}^{i}\right)$ and $\operatorname{MSE}\left(k_{p}^{j}\right)$ are minimized as,

$$
\operatorname{MSE}\left(k_{p}^{i}\right)=\left\{\begin{array}{lc}
\bar{Y}^{2}\left\{1-\frac{\hat{A}^{2}}{\hat{B}}\right\} & i=1 \tag{32}\\
\bar{Y}^{2}\left\{1-\frac{A^{+2}}{B^{+}}\right\} & i=3,5,7
\end{array}\right.
$$

and
$\operatorname{MSE}\left(k_{p}^{j}\right)=\left\{\begin{array}{lr}\bar{Y}^{2}\left\{1-\frac{\dot{A}^{2}}{\dot{B}}\right\} & j=2 \\ \bar{Y}^{2}\left\{1-\frac{A^{\circ 2}}{B^{\circ}}\right\} & j=4,6\end{array}\right.$

5. Efficiency Comparison

Now we compare the generalize family of estimator with stratified mean estimator, ratio estimator and the class of estimators. The following notations will be considered for comparison

$$
\pi_{1}=\left(\frac{V_{002}^{*} V_{110}^{* 2}+V_{200}^{*} V_{011}^{* 2}-2 V_{01}^{*} V_{011}^{*} V_{110}^{*}}{V_{200}^{*} V_{002}^{*}-V_{101}^{* 2}}\right)
$$

i) $\quad \operatorname{Var}\left(t_{H H}\right)>\operatorname{MSE}\left(k_{p}\right)$

$$
\begin{equation*}
\text { If } \quad \eta>1-V_{020}^{*} \tag{34}
\end{equation*}
$$

ii) $\operatorname{MSE}\left(k_{a}\right)<\operatorname{Var}\left(t_{H H}\right)$

If $\quad \pi_{1}>0$
iii) $\operatorname{MSE}\left(k_{p}\right)<\operatorname{MSE}\left(t_{R}\right)$,

If $\eta>1-\left(V_{020}^{*}+V_{200}^{*}+V_{002}^{*}-2 V_{011}^{*}-2 V_{110}^{*}+2 V_{101}^{*}\right)$
iv) $\operatorname{MSE}\left(k_{a}\right)<\operatorname{MSE}\left(t_{R}\right)$,

If $\pi_{1}>2 V_{011}^{*}+2 V_{110}^{*}-2 V_{101}^{*}-V_{200}^{*}-V_{002}^{*}$
v) $\operatorname{MSE}\left(t_{p}\right)<\operatorname{MSE}\left(k_{a}\right)$,

If $\eta>1-V_{020}^{*}-\pi_{1}$

6. Cost Function and Sample Size Estimation

In this section we are discussing a general procedure for how survey cost can be minimized and also what would be the optimal sample size to attain the minimum variance as given in (19) or (32).

The cost function is considered tobe
$C^{\prime}=\sum_{h=1}^{L} c_{h o} n_{h}+\sum_{h=1}^{L} c_{h 1} n_{h}+\sum_{h=1}^{L} c_{h 2} \frac{n_{h(2)}}{f_{h}}$
where
$c_{h o}=$ The per unit cost of making first attempt
$c_{h 1}=$ The per unit cost for processing the result of all characteristics in first attempt
$c_{h 2}=$ The per unit cost for processing the result of all characteristics in second attempt inthe $h^{\text {th }}$ stratum.
The total expected cost of the survey could be given as

$$
\begin{equation*}
C=E\left(C^{\prime}\right)=\sum_{h=1}^{L}\left(c_{h o}+c_{h 1} W_{h 1}+\frac{c_{h 2} W_{h 2}}{f_{h}}\right) n_{h} \tag{40}
\end{equation*}
$$

Let the variance of an estimator t in the presence of non-response be represented by
$\operatorname{Var}(t)=\frac{V_{0}}{n_{h}}+\frac{f_{h}}{n_{h}} V_{1}+\left(\right.$ terms independent of n_{h} and $\left.r_{h}\right)$
where V_{o} and V_{1} are the coefficients of the terms of $\frac{1}{n_{h}}$ and $\frac{f_{h}}{n_{h}}$ in the expressions of variance of $t=k_{a}$ or k_{p}.
For the fixed cost $C \leq C^{\prime}$, let us define a function by

$$
\begin{equation*}
\varphi=\operatorname{Var}(t)+\delta\left[\sum_{h=1}^{L}\left(c_{h o}+c_{h 1} W_{h 1}+\frac{c_{h 2} W_{h 2}}{f_{h}}\right) n_{h}-C^{\prime}\right] \tag{42}
\end{equation*}
$$

where δ is the Langrange's multiplier
Now differentiate Φ with respect to n_{h} and f_{h}, and equating to zero, we may get

$$
\begin{equation*}
n_{h_{o p t}}=\sqrt{\frac{V_{0}+f_{h} V_{1}}{\delta\left(c_{h o}+c_{h 1} W_{h 1}+\frac{c_{h 2} W_{h 2}}{k_{h}}\right)}} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{h_{o p t}}=\sqrt{\frac{V_{0} c_{h 2} W_{h 2}}{\left(c_{h 0}+c_{h 1} W_{h 1}\right) V_{1}}} \tag{44}
\end{equation*}
$$

Substituting the values of $n_{\text {hopt }}$ and $f_{\text {hoptin }}$ (42), we have

$$
\begin{equation*}
\sqrt{\delta}=\frac{1}{C} \sum_{h=1}^{L} \sum_{\|}\left[\left(c_{h o}+c_{h l} W_{h 1}+\frac{c_{h 2} W_{h 2}}{f_{h_{0 x}}}\right)\left(V_{0}+V_{1} f_{h_{0 \times}}\right)\right] \tag{45}
\end{equation*}
$$

Thus the minimum value of $\operatorname{Var}(t)$ is given as
$\operatorname{Var}(t)_{\min }=\frac{1}{C} \sum_{h=1}^{L}\left[\sqrt{\left(c_{h o}+c_{h 1} W_{h 1}+\frac{c_{h 2} W_{h 2}}{f_{h_{\text {opt }}}}\right)\left(V_{0}+V_{1} f_{h_{\text {opt }}}\right)}\right]^{2}+\left(\right.$ terms independent of n_{h} and $\left.f_{h}\right)$

By ignoring the terms independent of n_{h} and f_{h}, we have,
$\operatorname{Var}(t)_{\min }=\frac{1}{C} \sum_{h=1}^{L}\left[\left(c_{n o}+c_{h 1} W_{h 1}+\frac{c_{h 2} W_{h 2}}{f_{b_{\text {bot }}}}\right)\left(V_{0}+V_{1} f_{\text {bopt }}\right)\right]$
Sample size given in (43) will minimize the survey cost and further the estimates can be made with minimum variance expressed in (47).

7. Empirical Study

For empirical study, we have considered two different populations. The description of the population is given below:

Population-I: (Source: Koyuncu and Kadilar (2009))
We consider No. of teachers as study variable (Y), No. of students as auxiliary variable (X), and No. of classes in primary and secondary schools as another auxiliary variable (Z) for 923 districts at six 6 regions (1: Marmara, 2: Agean, 3: Mediterranean, 4: Central Anatolia, 5: Black Sea, and 6: East and Southeast Anatolia) in Turkey in 2007.

Population-II: (Source: detailed livelihood assessment of flood affected districts of Pakistan September 2011, Food Security Cluster, Pakistan)

We consider food expenditure as study variable (Y), household earn as auxiliary variable (X), and total expenditure in May (2011) as another auxiliary variable (Z) for (6940) male and (1678) female households in flood affected districts of Pakistan. Further descriptive statistics for the two populations are given in Table 3.

We have used Neyman allocation to allocate the samples to different strata. The Table 4-5 shows the PRE of stratified ratio and product estimators, k_{a}, k_{p} and their class of estimator. The summary statistics of data are presented in Table 3.

Stratified Mean, S.D.'s and Correlation Coefficients						
h	Population-I					
	1	2	3	4	5	6
N_{h}	127	117	103	170	205	201
n_{h}	31	21	29	38	22	39
n_{h}^{\prime}	70	50	75	95	70	90
$S_{y h}$	883.84	644.92	1033.40	810.58	403.65	711.72
$\mathrm{S}_{\text {xh }}$	30486.7	15180.77	27549.69	18218.93	8497.77	23094.14
$\mathrm{S}_{\text {zh }}$	555.58	365.46	612.95	458.03	260.85	397.05
\bar{Y}_{h}	703.74	413	573.17	424.66	267.03	393.84
\bar{X}_{h}	20804.59	9211.79	14309.30	9478.85	5569.95	12997.59
\bar{Z}_{h}	498.28	318.33	431.36	311.32	227.20	313.71
$\rho_{x y h}$	0.9360	0.9960	0.9940	0.9830	0.9890	0.9650
$\rho_{x z h}$	0.9396	0.9696	0.9770	0.9640	0.9670	0.9960
$\rho_{y z h}$	0.9790	0.9760	0.9840	0.9830	0.9640	0.9830
$\mathbf{W}_{\mathrm{h}}=\mathbf{1 0 \%}$ Non-response						
$\mathrm{S}_{\mathrm{yh} 2}$	510.57	386.77	1872.88	1603.30	264.19	497.84
$\mathrm{S}_{\mathrm{xh} 2}$	9446.93	9198.29	52429.99	34794.9	4972.56	12485.10
$\mathrm{S}_{\text {zh2 }}$	303.92	278.51	960.71	821.29	190.85	287.99
$\rho_{x y 2}$	0.9961	0.9975	0.9998	0.9741	0.9950	0.9284
$\rho_{x z 2}$	0.9901	0.9895	0.9964	0.9609	0.9865	0.9752
$\rho_{y z 2}$	0.9931	0.9871	0.9972	0.9942	0.9850	0.9647
$\mathbf{W}_{\mathrm{h}}=\mathbf{2 0 \%}$ Non-response						
$\mathrm{S}_{\mathrm{yh} 2}$	396.77	406.15	1654.40	1333.35	335.83	903.91
$\mathrm{S}_{\mathrm{xh} 2}$	7439.16	8880.46	45784.78	29219.30	6540.43	28411.44
$\mathrm{S}_{\text {zh2 }}$	244.56	274.42	965.42	680.28	214.49	469.86
$\rho_{x y 2}$	0.9954	0.9931	0.9960	0.9761	0.9966	0.9869
$\rho_{x z 2}$	0.9897	0.9884	0.9789	0.9629	0.9820	0.9825
$\rho_{y z 2}$	0.9898	0.9798	0.9846	0.9940	0.9818	0.9874
$\mathbf{W}_{\mathrm{h}}=\mathbf{3 0 \%}$ Non-response						
$\mathrm{S}_{\mathrm{yh} 2}$	500.26	356.95	1383.70	1193.47	289.41	825.24
$\mathrm{S}_{\mathrm{xh} 2}$	14017.99	7812.00	38379.77	26090.60	5611.32	24571.95
$\mathrm{S}_{\text {zh2 }}$	284.44	247.63	811.21	631.28	188.30	437.90
$\rho_{x y 2}$	0.9639	0.9919	0.9955	0.9801	0.9961	0.9746
$\rho_{x z 2}$	0.9107	0.9848	0.9771	0.9650	0.9794	0.9642
$\rho_{y z 2}$	0.9739	0.9793	0.9839	0.9904	0.9799	0.9829

Stratified Mean, S.D.'s and Correlation Coefficients			
h	Population II		
	1	2	3
N_{h}	21	34	26
n_{h}	06	04	02
n_{h}^{\prime}	15	17	08
$S_{y h}$	12.14	8.34	5.47
S_{xh}	76.71	31.94	49.55
$\mathrm{S}_{\text {zh }}$	19.48	07.10	13.21
\bar{Y}_{h}	37.55	37.25	26.39
\bar{X}_{h}	116.57	093.00	26.39
\bar{Z}_{h}	114.14	106.50	118.9
$\rho_{x y h}$	0.7914	0.8339	0.770
$\rho_{x z h}$	0.9894	0.8820	0.967
$\rho_{y z h}$	0.7781	0.6651	0.594
$\mathrm{W}_{\mathrm{h}}=10 \%$ Non-response			
$\mathrm{S}_{\mathrm{yh} 2}$	08.66	10.05	03.95
$\mathrm{S}_{\mathrm{xh} 2}$	42.14	13.28	74.22
$\mathrm{S}_{\mathrm{zh} 2}$	6.25	5.20	20.53
$\rho_{x y 2}$	0.9997	0.9995	0.984
$\rho_{x z 2}$	0.9707	1.0000	0.999
$\rho_{y z 2}$	0.9649	0.9996	0.982
$\mathbf{W}_{\mathrm{h}}=\mathbf{2 0 \%}$ Non-response			
$\mathrm{S}_{\mathrm{yh} 2}$	7.96	8.47	4.06
$\mathrm{S}_{\mathrm{xh} 2}$	36.50	25.82	59.32
$\mathrm{S}_{\mathrm{zh} 2}$	5.20	8.18	16.54
$\rho_{x y 2}$	0.9905	0.8026	0.860
$\rho_{x z 2}$	0.9623	0.9858	0.996
$\rho_{y z 2}$	0.9297	0.8062	0.811
$\mathrm{W}_{\mathrm{h}}=\mathbf{3 0 \%}$ Non-response			
$\mathrm{S}_{\mathrm{yh} 2}$	12.70	09.86	4.50
$\mathrm{S}_{\mathrm{xh} 2}$	37.69	24.02	52.26
$\mathrm{S}_{\text {7h2 }}$	9.42	6.83	14.54
$\rho_{x y 2}$	0.9288	0.8335	0.828
$\rho_{x z 2}$	0.9062	0.8859	0.991
$\rho_{y z 2}$	0.9696	0.5877	0.754

Table 3: Data Statistics for the two populations

W_{h}	K	$t_{\text {HH }}$	t_{R}	$k_{p}^{\text {min }}$	k_{p}^{1}	k_{p}^{3}	k_{p}^{5}	k_{p}^{7}
10%	2	100	148.0106	2589.6629	148.0106	12.09883	19.0051	5.3156
2.5	100	154.8764	2671.5116	154.8764	12.46886	19.5063	5.4495	
3	100	160.8565	2750.3186	160.8565	12.78217	19.9274	5.5618	
20%	2	100	149.4549	2904.3771	149.4549	12.00532	19.0984	5.2994
	100	155.2229	3095.1074	155.2229	12.26011	19.5129	5.3974	
3	100	159.6785	3260.7570	159.6785	12.45115	19.8241	5.4705	
2	100	150.7534	2825.1928	150.7534	12.15578	19.0983	5.3347	
2.5	100	156.4283	2967.2440	156.4283	12.43145	19.4761	5.4340	
3	100	160.6685	3083.5557	160.6685	13.34521	19.7500	5.5058	

Table 4: PRE Values for Adapted class of Estimators

W_{h}	K	$t_{H H}$	t_{R}	$k_{p}^{\text {min }}$	k_{p}^{1}	k_{p}^{3}	k_{p}^{5}	k_{p}^{7}
10%	2	100	148.0106	2590.0436	148.3917	12.4799	19.3862	5.6968
	2.5	100	154.8764	2671.9289	155.3048	12.8972	19.9346	5.8779
3	100	160.8565	2750.7938	161.3321	13.2577	20.4030	6.0374	
20%	2	100	149.4549	2904.5667	149.9196	12.4699	19.5630	5.7641
2.5	100	155.2229	3095.7143	155.7766	12.8137	20.0666	5.9511	
3	100	159.6785	3261.3999	160.3212	13.0937	20.4667	6.1132	
20%	2	100	150.7534	2825.6926	151.2532	12.6555	19.5980	5.8346
3	100	156.4283	2967.8502	157.0346	13.0378	20.0824	6.0404	

Table 5: PRE Values for the Proposed Estimator

8. Conclusion

In this paper, we have suggested generalized family of estimators for single phase stratified sampling under the situation of incomplete response on all variables. It is clearly noticed from Table 4 and 5 that the proposed family of estimators k_{a} and k_{p} are efficient as compare to mean estimator, stratified ratio estimator. So we may conclude that the suggested generalized family of estimators has shown better performance than the class of estimators and the available estimators.

References

1. Chaudhary, M. K., Singh, R., Shukla, R. K., Kumar, M. and Smarandache, F. (2009). A Family of Estimators for Estimating Population Mean in Stratified Sampling under Non-response, Pakistan Journal of Statistics and Operation Research, 5(1), p. 47-54.
2. Chauhdary, M. K., Singh, V. K. and Shukla, R.K. (2012). Combined-type family of estimators of population mean in stratified random sampling under non-response, Journal of Reliability and Statistical Studies, 5(2), p.133-142.
3. Cochran, W.G. (1977). Sampling Techniques. $3^{\text {rd }}$ Edition, New York, John Wiley
4. Hansen, M. H. and Hurwitz, W.N. (1946). The problem of non-response in sample surveys, Journal of American Statistical Association, 41(236), p. 517529.
5. Ismail, M., Shahbaz, M.Q. and Hanif, M. (2011). A general class of estimator of population mean in presence of non-response, Pakistan Journal of Statistics, 27(4), p. 467-476.
6. Kadilar, C. andCingi, H. (2003). Ratio estimators in stratified random sampling, Biometrical Journal: Journal of Mathematical Methods in Biosciences, 45(2), p.218-225.
7. Kadilar, C. and Cingi, H. (2005). A new ratio estimator in stratified random sampling, Communications in Statistics-Theory and Methods, 34(3), p. 597602.
8. Khan, M.G.M., Khan, E. A. and Ahsan, M. J. (2008). optimum allocation in multivariate stratified sampling in presence of non-response, Journal of Indian Society of Agricultural Statistics, 62(1), p. 42-48.
9. Koyuncu, N. and Kadilar, C. (2009). Ratio and product estimators in stratified random sampling, Journal of Statistical Planning and Inference, 139(8), p. 2552-2558.
10. Madow, W. G., Olkin, I. and Rubin, D. B. (1983). Incomplete Data in Sample Surveys. $2^{\text {nd }}$ edition, New York, Academic Press.
11. Okafor, F.C. and Lee, H. (2000). Double sampling for ratio and regression estimation with sub sampling the non-respondent, Survey Methodology, 26(2), p. 183-188.
12. Olufadi, Y. (2013). Dual to ratio cum-product estimator in simple and stratified sampling. Pakistan Journal of Statistics and Operation Research, 9(3), p. 305-319.
13. Pal, S. K., and Singh, H. P. (2016). finite population mean estimation through a two-parameter ratio estimator using auxiliary information in presence of non-response, Journal of Applied Mathematics, Statistics and Informatics, 12(2), p. 5-39.
14. Pal, S. K., and Singh, H. P. (2018). Estimation of finite population mean using auxiliary information in presence of non-response, Communications in Statistics-Simulation and Computation, 47(1), p. 143-165.
15. Rao, P.S.R.S. (1986). Ratio estimation with sub-sampling then nonrespondents, Survey Methodology, 12, p. 217-230.
16. Sanaullah, A., Khan, H., Ali H. A. and Singh, R. (2012). improved exponential ratio-type estimators in survey sampling, Journal of Reliability and Statistical Studies, 5(2), p.119-132.
17. Sanaullah, A., Noor-ul-Amin, M. and Hanif, M. (2015). generalized exponential-type ratio-cum-ratio and product-cum-product estimators for population mean in the presence of non-response under stratified two-phase random sampling, Pakistan Journal of Statistics, 31(1), p. 71-94.
18. Singh, R. S., and Sharma, P. (2015). method of estimation in the presence of non-response and measurement errors simultaneously, Journal of Modern Applied Statistical Methods, 14(1), p. 107-121.
19. Singh, H. P. and Pal, S. K. (2015). A new chain ratio-ratio-type exponential estimator using auxiliary information in sample surveys, , International Journal of Mathematics and Its Applications, Vol. 3, Issue 4(B), p. 37-46.
