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Abstract  
 In this paper, we have discussed the estimation for parameters of Weibull model under 

right censored samples. We have assumed two priors and two loss functions for the posterior 

estimation. As the Bayes estimators from the concerned posterior distributions do not exist in the 

explicit form, we have considered Quadrature method (QM), Gibbs sampler (GS), importance 

sampling (IS), Lindley’s approximation (LA) and Tierney and Kadane's approximation (TKA) to 

obtain the numerical solutions for the Bayes estimators. The performance of the different 

estimators has been compared using simulated results along with real example. The findings of 

the study suggest that estimators based on IS and TKA are superior in performance with certain 

conditions. 

 

Key Words: Quadrature Method, Gibbs Sampler, Importance Sampling (IS), Lindley’s 

Approximation, Tierney and Kadane's Approximation (TKA), Posterior Distributions, Loss 

Functions. 
 

1. Introduction 
 The Weibull model has many advantages over the other competitive failure-

time models due to its flexibility, various shapes of its hazard rate and closed form 

distribution function. Few valuable contributions based on Weibull distributions have 

been reported as follows. Choudhury (2005) derived the moments for the 

exponentiated-Weibull distribution in a simple and convenient way. Nadarajah and 

Gupta (2005) discussed the estimation of the moments for the exponentiated-Weibull 

model. Bebbington et al. (2007) proposed an extension for the Weibull model which is 

more flexible than the standard Weibull distribution. Lee et al. (2007) discussed the 

applications of the proposed beta Weibull model to the censored data. Cordeiro, et al. 

(2010) discussed various properties of the Kumaraswamy-Weibull model which 

contains special sub-models. Some real life applications of the model to investigate 

failure time data have also been discussed. Cordeiro and de Castro (2011) introduced a 

family of generalized models including generalizations for the Weibull model. Almalki 
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and Yuan (2013) developed a modification of the Weibull model and confirmed the 

applications of the said distribution to model failure time data. Cordeiro et al. (2013) 

derived the general results for the beta-Weibull model. Hanook et al. (2013) discussed 

the properties and estimation of beta inverse Weibull distribution. Mahmoudi and 

Sepahdar (2013) proposed an exponentiated Weibull-Poisson distribution and 

illustrated its applications. Alizadeh et al. (2015) proposed the estimation for different 

statistical properties of the exponentiated-Weibull model. Castellares and Lemonte 

(2015) proposed a simple representation for the gamma-G family of models and called 

it gamma-exponentiated-Weibull model and studied its details. El-Gohary et al. (2015) 

developed an inverse Weibull extension distribution and discussed its estimation. 

Ortega et al. (2015) predicted breast carcinoma by introducing a power series beta 

Weibull regression model. Bagheri et al. (2016) proposed a better estimation for the 

properties of Weibull extension model. Kopal et al. (2016) discussed the applications of 

the Weibull distribution for modeling data regarding temperature dependence of 

polyurethane storage modulus. Liu et al. (2017) proposed an accrual failure detector 

using Weibull distribution and named it Weibull distribution failure detector. The 

results show that Weibull model has superior performance especially in cloud 

computing. 

 

 According to Kundu and Joarder (2006), if some prior information is 

available, then the Bayesian estimation out performs the MLE in terms of efficiency. 

As the informative priors have been considered under the study, so the proposed results 

will be better than MLE, therefore the comparison of MLE and Bayesian estimation has 

not been presented here. 

 

 The paper estimates the weibull distribution using Bayesian inference under 

right censoring. The choice of Weibull distribution made due to its superiority over the 

standard lifetime distributions. However, the expressions for the Bayes estimators do 

not exist in the closed form; therefore the five different approximation techniques have 

been proposed to obtain the approximate solution for the posterior estimates. We have 

considered these five approximate methods to develop a comprehensive comparison 

among these methods to estimate the right censored Weibull model. 

 

 The remaining part of the contribution is arranged as follows. The section-2 

includes the derivation of likelihood function for the proposed model. The construction 

of the posterior distribution has been presented in the section-3. The section-4 defines 

the proposed loss functions. The Bayesian estimation using QM, GS, IS, LA and TKA 

has been presented in the section-5. The simulated results have been reported in the 

section-6. The real application has been reported in the section-7. The conclusion of the 

study has been given in the section-8. 

 

2. The Model and Likelihood Function 
 The probability density function (pdf) of the weibull distribution is 

( ) 1 xf x x e
αα βαβ − −=  0x > , , 0α β >                  (1) 

where α and β are the parameters of the model.
 

The cumulative distribution function (CDF) of the distribution is 
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( ) 1 xF x e
αβ−= −  0x > , , 0α β >              (2) 

 Let us consider a random sample of size ‘n’ from a Weibull distribution, and 

let     x1,..., xr be the ordered observations remaining when the ‘n – r’ largest 

observations have been censored.  The likelihood function for the Type II right 

censored sample x = (x1,..., xr), is 

( ) ( ) ( )
1

x , 1 , ,
rn r

r i

i

L F x f xα β α β α β
−

=

 ∝ −  ∏    (3) 

Putting results in (3), we have 

( ) 1

1

x , ir

rn r
xx

i

i

L e x e
αα ββ αα β αβ

−
−− −

=

 ∝   ∏
 

After simplifications it becomes

 

( )
( ) ( )

11

1 log

x ,

rr

i ri

ii

x n r xx
r rL e e

α αβα

α β α β ==

 
− + − −  

 
∑∑

∝     (4) 

 

3. Prior and Posterior Distribution 
 Here, the non-informative and informative priors have been assumed for the 

parametersα and β  to obtain the combined posterior distribution for the said 

parameters. Suppose the non-informative prior for the parameters α  is 

( )1 1, 0π α α∝ > and that for the β
 

is ( )2 1, 0π β β∝ > . Therefore, the 

combined prior distribution for the model parameters is 

( )1 , 1π α β ∝  , , 0α β >       (5) 

Considering (4) and (5) the combined  posterior distribution for the model parameters is 

( ) ( ) ( )

( ) ( )

1

1

1

0 0

x , ,
, x

x , ,

L
g

L d d

α β π α β
α β

α β π α β α β
∞ ∞=

∫ ∫
             (6) 

Further, suppose the informative priors for the model parameters are 

( ) 1

3 , 0a be απ α α α− −∝ >  

and ( ) 1

4 , 0c de βπ β β β− −∝ > respectively. Therefore, the combined informative 

prior for the said parameters is 

( ) 1 1 1

2 , , , 0a c a de βπ α β α β α α β− − − −∝ >      (7) 

Considering (4) and (7) the combined posterior distribution of the model parameters is 

( ) ( ) ( )

( ) ( )

2

2

2

0 0

x , ,
, x

x , ,

L
g

L d d

α β π α β
α β

α β π α β α β
∞ ∞=

∫ ∫

             (8) 
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4. Loss Functions  
 In this section, two loss functions have been proposed for the Bayesian 

estimation of the parameters of the model given in (1). The introduction of these loss 

functions are as follows. 

 

Squared Error Loss Function (SELF): Legendre (1805) and Gauss (1810) proposed 

the SELF that can be defined as ( ) ( )2
, S SL θ θ θ θ= − , where θ is a parameter. Based 

on SELF, the Bayes estimator for the parameter θ  is ( )Sθ θ= Ε . 

Precautionary Loss Function (PLF): The PLF has been introduced by Norstrom 

(1996), which can be formulated as ( ) ( )21,
PP PL θ θ θ θ θ−= − . Using PLF the Bayes 

estimator is ( )
1

2 2
Pθ θ = Ε 

. 

 

5. Bayesian Estimation 
 This section reports the Bayesian inference of the Weibull model under right 

censored samples. From (6) and (8) it can be seen that the Bayes estimators under the 

proposed loss functions do not provide explicit expressions, therefore we have 

considered Quadrature method, Gibbs sampler, importance sampling, Tierney and 

Kadane's approximation and Lindley’s approximation for the numerical estimation. 

 

5.1 Quadrature Method 
 The posterior estimators for the model parameters under SELF from the 

posterior distribution using non-informative prior distribution are  

( )1

0 0

, xNS g d dα α α β α β
∞ ∞

= ∫ ∫        (9)

 

( )1

0 0

, xNS g d dβ β α β α β
∞ ∞

= ∫ ∫       (10) 

The posterior estimators for the model parameters under SELF from the posterior 

distribution using informative prior distribution are  

( )2

0 0

, xIS g d dα α α β α β
∞ ∞

= ∫ ∫
      (11) 

( )2

0 0

, xIS g d dβ β α β α β
∞ ∞

= ∫ ∫
      (12) 

 

 Note that from (09)-(12), the explicit expressions for the Bayes estimators are 

impossible, therefore we have used the Quadrature method for the numerical solution of 

the estimates. Consider the posterior density ( ),g α β , whereα and β are the 

parameters. The Quadrature method gives following solution to the equations (09)-(12). 
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( ) ( )
0 00 0

, ,
r r

i i i

i i

g d d w gα β α β α β
∞ ∞

= =

=∑∑∫∫
    (13) 

where wi, wj, ..., wk are the increments and iα and iβ are the quadrature points. We 

have developed a program in the software mathematica to obtain Bayes estimates for 

the model parameters using proposed loss functions considering informative and non-

informative priors. 

 

5.2 Gibbs Sampler 

 Consider a posterior distribution with two parameters α and β , where ‘x’ 

denote the data. Further suppose that the full conditional densities ( ), xg α β  and
 

( ), xg β α  are tractable, and we aim to obtain ( )xg α and ( )xg β . In Gibbs 

sampler, first we choose some initial values for the parameters α and β  and denote 

them by 0 0,α β . These can be any reasonable values of ,α β  and then we take draws 

from the two conditional distributions in the following sequence 

 

( )
( )

1 0

1 1

~ , x

~ , x

g

g

α α β

β β α
, 

( )
( )

2 1

2 2

~ , x

~ , x

g

g

α α β

β β α
, … , 

( )
( )

1~ , x

~ , x

m m

m m

g

g

α α β

β β α
−

 

 

As values at the step (m) depend on the step (m-1), therefore this sequence will 

construct a Markov chain. For implementation of Gibbs sampler for the posterior 

distributions (6) and (8), we need to extract the conditional distributions from these 

posterior distributions for each unknown parameter. 
 

The conditional distribution of the parameter β given α under non-informative prior is 

( )
( )

1

1 , x

r

i r

i

x n r x
mg e

α αβ

β α β =

 
− + −  

 
∑

∝  

The density becomes ( )
1

~ 1,
r

i r

i

Gamma m x n r xα αβ
=

 
+ + − 

 
∑   (14) 

The conditional distribution of the parameter α given β  under non-informative prior is 

( )
( ) ( )

1 1

1 log

1 , x

r r

i i r

i i

x x n r x
mg e

α αα β

α β α = =

 
− − + −  

 
∑ ∑

∝     (15) 

 which is a log-concave as:  

( )
( ) ( ) ( )

2
2 2

2 2
1

ln , x
log log 0r

r

r i i

i

g m
n r x x x xα α

α β
β

α α =

∂  
= − − − + < 

∂  
∑

  

         

(16)
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Algorithm 

Step 1: Generate α  from the log-concave density function (12) using the method 

proposed by Devroye (1984). 

Step 2: Generate β from ( )
1

~ 1,
r

i r

i

Gamma m x n r xα αβ
=

 
+ + − 

 
∑  

Step 3: Obtain the posterior samples ( ) ( )1 1, ,..., ,m mα β α β by repeating the Steps 1 

and 2, m times.  

Now, the Bayes estimate and posterior risks under SELF can be obtained by using the 

formulae 
1

r

i

i
S

r

θ
θ ==

∑
 and ( ) ( )2

1

r

S i S

i

ρ θ θ θ
=

= −∑ . Similarly the Bayes estimate and 

posterior risk under PLF can be calculated by using the formulae

2

1

r

i

i
P

r

θ
θ ==

∑
 and 

( )
2

1 12

r r

i i

i i
P

r r

θ θ
ρ θ = =

 
 
 

= − 
 
  

∑ ∑
. Similar process can be followed to implement 

Gibbs sampler for the posterior distribution under informative prior. 

 

 The graphs regarding the history for generation of Gibbs samples, marginal 

densities and percentile points for the parameters α = 0.5 and β = 0.5 for n = 30 have 

been presented in the figures 1-6 in the followings. 
 

 
Figure 01: The graph showing the history for generation of Gibbs samples for the 

parameter α  

 



On Bayesian analysis of right censored Weibull distribution using ...                                        199 

 
Figure 02: The graph showing the history for generation of Gibbs samples for the 

parameter β
 

 

 

 
Figure 03: The marginal density for the 

parameter α  

 

 

 
Figure 04: The marginal density for the 

parameter β  

 

 

 
Figure 05: Percentile points graph for 

the parameterα  

 

 

 
Figure 06: Percentile points graph for 

the parameter β  

 

5.3 Importance Sampling 
 Here, the importance sampling has been used to derive the approximate 

Bayesian estimators of the model parameters under the proposed loss functions. Using 

importance sampling, the Bayes estimator for the parameter θ under SELF is presented 

as 
( )
( )S

h

h

θ θ
θ

θ

′Ε   =
′Ε   

and
( ){ }
( ){ }

2

P

h

h

θ θ
θ

θ

′Ε
=

′Ε
, 

where ( )h θ is any function of the parameter θ  and ′Ε is the expectation with respect 

to distribution of the parameter θ . 

 

For simplicity, the likelihood function in (6) can be written as 
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( )
( )

1 1

log

, x

r r

i i r

i i

x x n r x
r rL e e

α αα β

α β α β = =

   
− − − + −      

   
∑ ∑

∝      (17) 

Now the posterior distribution under non-informative prior can be written as 

( ) ( ){ } ( ) ( )
1 , x

r x xr rg x e e
αξ βψα β α β ψ

− − −∝     (18) 

where ( )
1

log
r

i

i

x xξ
=

= −∑ and ( ) ( )
1

r

i r

i

x x n r xα αψ
=

= + −∑ . Now α follows gamma 

distribution with parameters r  and ( )xξ  and the conditional distribution of β given 

α  is ( ) ( ){ } ( )
1 , x

r xrh x e
βψβ α ψ β

− −∝ . Hence (18) can be decomposed to have 

following form 

( ) ( ) ( ) ( )1 11 12 13
, x x , x , xg h h hα β α β α α β∝    (19) 

where, ( ) ( )
11

x ~
xrh e

αξα α −
, ( ) ( )

12
, x ~

xrh e
βψβ α β −

 and 

( ) ( ){ }13
, x ~

r

h xα β ψ
−

 

Hence, under importance sampling the Bayes estimators for the parameter α under 

non-informative prior using SELF and PLF are respectively 

( )
( )

13

13

, x

, x
NS

h

h

α α β
α

α β

 ′Ε  =
 ′Ε  

 and
( )

( )

2

13

13

, x

, x
NP

h

h

α α β
α

α β

 ′Ε  =
 ′Ε  

, 

where ′Ε is the expectation with respect to ( )( )1,gamma r xξ+ . 

Therefore, using importance sampling the Bayes estimators for the parameter β under 

non-informative prior using SELF and PLF are respectively 

( )
( )

13

13

, x

, x
NS

h

h

β α β
β

α β

 ′Ε  =
 ′Ε  

 and
( )

( )

2

13

13

, x

, x
NP

h

h

β α β
β

α β

 ′Ε  =
 ′Ε  

,  

where ′Ε is the expectation with respect to ( )( )1,gamma r xψ+ . 

Now the posterior distribution under informative prior can be written as 

( ) ( ){ } ( ) ( )11 1

2
, x

x x
g x e e

τ αη βµν τα β α β µ
− + − −− −∝    (20) 

where r aν = + , r cτ = + , ( ) ( )x x bη ξ= + and ( ) ( )x x dµ ψ= + . Now α

follows gamma distribution with parameters ν  and ( )xη  and the conditional 

distribution of β given α  is ( ) ( ){ } ( )1 1

2
, x

x
h x e

τ βµτβ α µ β
− + −−∝ . Therefore the 

posterior distribution can be decomposed to have following form 

( ) ( ) ( ) ( )2 21 22 23
, x x , x , xg h h hα β α β α α β∝    (21) 
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where, ( ) ( )1

21
x ~

x
h e

αηνα α −−
 , ( ) ( )1

22
, x ~

x
h e

βµτβ α β −−
 and 

( ) ( ){ } 1

23
, x ~h x

τ
α β µ

− +
 

Again, using importance sampling the Bayes estimators for the parameter α under 

informative prior using SELF and PLF are respectively 

( )
( )

23

23

, x

, x
IS

h

h

α α β
α

α β

 ′Ε  =
 ′Ε  

 and
( )

( )

2

23

23

, x

, x
IP

h

h

α α β
α

α β

 ′Ε  =
 ′Ε  

, 

where ′Ε is the expectation with respect to ( )( ),gamma xν η . 

Similarly, using importance sampling the Bayes estimators for the parameter β under 

informative prior using SELF and PLF are respectively 

( )
( )

23

23

, x

, x
IS

h

h

β α β
β

α β

 ′Ε  =
 ′Ε  

 and
( )

( )

2

23

23

, x

, x
IP

h

h

β α β
β

α β

 ′Ε  =
 ′Ε  

,  

where ′Ε is the expectation with respect to ( )( ),gamma xτ µ . 

 

5.4 Lindley’s Approximation 
 In this section, the Lindley’s approximation has been proposed to have the 

approximate Bayes estimators for the parameters of the said model. Based on the 

Lindley’s approximation, due to Lindley (1980), the expression of the form 

 

( ) ( )
( )

( )

( ) ( ) ( )

( ) ( ) ( )
( )

, x ,

,

, x ,

,

, ,

,
,

l G

l G

g e d

I g
e d

α β α β

α β

α β α β

α β

α β α β

θ α β
α β

+

+
= Ε =  

∫

∫
   (22)  

where ( ),g α β is any function of α or β , ( ), xl α β is the log-likelihood function 

and ( ),G α β is the logarithmic of joint prior for the parameters α and β , can be 

evaluated as 

( ) ( ) ( ) ( )1 1 2 2 3 4 1 1 2 2

1ˆˆ,
2

I g g d g d d d AB A Bθ α β= + + + + + +   (23) 

where α̂ and β̂ are MLEs of the parameters α and β respectively, 

1 1 2 2i i iB g S g S= + , 11 11 22 22 12 122 ,i i i iA S L S L S L= + + 1 1 2 2i i id PS P S= + , 1,2i = , 

3 12 12d g S= , ( )4 11 11 22 22

1

2
d g S g S= + ,

( )
i

i

G
P

θ
θ

∂
=

∂
, 1,2i = , ( ),θ α β= , 

( )2

ij

i j

g
g

θ
θ θ

∂
=
∂ ∂

,
( )2

ij

i j

L
L

θ
θ θ

∂
=
∂ ∂

, , 1,2i j = ,
( )3

ijk

i j k

L
L

θ
θ θ θ
∂

=
∂ ∂ ∂

, , , 1,2i j k =  
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and ij
S is the ( ),

th
i j element of the inverse of the matrix { }ijL , all evaluated at the 

MLEs of the parameters. 

 

Now, the log-likelihood function from (4) can be obtained as 

( ) ( )
1 1

, x log log log
r r

i i r

i i

L r r x x n r xα αα β α β α β
= =

 
∝ + + − + − 

 
∑ ∑      (24) 

 The maximum likelihood estimates (MLEs) of the parameters α and β  can be 

obtained by differentiating (24) with respect to α and β  and equating to zero 

respectively as 

( )
1

log log log 0r

r r

i r i i

i i

r
x n r x x x xα αβ

α = =

 
+ − − + = 

 
∑ ∑   (25) 

( )
1

0r

r

i

i

r
n r x xα α

β =

− − − =∑       (26) 

 As the explicit expressions for the parameters using the equations (25)-(26) is 

not possible, the iterative procedures have been used to obtain the MLEs for the model 

parameters. 

 

 The second and third order derivatives of the log-likelihood function are 

presented in the followings 

( ) ( ) ( )2 2ˆ ˆ

11 2
1

ˆ log log
ˆ

r

r

r i i

i

r
L n r x x x xα αβ

α =

 
= − − − + 

 
∑   (27) 

( ) ˆ ˆ

12

1

log logr

r

r i i

i

L n r x x x xα α

=

= − − −∑      (28) 

22 2ˆ

r
L

β
= −         (29) 

( ) ( ) ( )3 3ˆ ˆ

111 3
1

2 ˆ log log
ˆ

r

r

r i i

i

r
L n r x x x xα αβ

α =

 
= + − + 

 
∑    (30) 

212 221 122 0L L L= = =        (31) 

( ) ( ) ( )2 2ˆ ˆ

121 112 211

1

log logr

r

r i i

i

L L L n r x x x xα α

=

= = = − − −∑   (32) 

222 3

2

ˆ

r
L

β
=         (33) 

where α̂  and β̂ are the MLEs of the parameters α and β respectively. 

Based on the second order derivates, the matrix { }ijL is 
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{ } 11 21

12 22

ij

L L
L

L L

 
= −  

 
and its inverse is{ } 1 11 21

12 22

ij

S S
L

S S

−  
=  
 

         (34) 

Therefore, the Bayes estimators considering the Lindley’s approximation for the model 

parameters assuming non-informative prior using SELF are respectively presented as 

( )11 1 21 2

1
ˆ

2
NS S A S Aα α= + +              (35) 

( )12 1 22 2

1ˆ
2

NS S A S Aβ β= + +              (36) 

Further, the Bayes estimators considering the Lindley’s approximation for the model 

parameters under non-informative prior using PLF are respectively presented as 

( )2

11 11 1 21 2

1
ˆ ˆ2

2
NP

S S A S Aα α α= + + +     (37) 

( )2

22 12 1 22 2

1ˆ ˆ2
2

NP
S S A S Aβ β β= + + +      (38) 

Now, using Lindley’s approximation the Bayes estimators for the parameters α and β  

under informative prior using SELF are respectively presented as 

( )11 1 21 2 11 12

1 1 1
ˆ

ˆˆ2
IS

a c
S A S A b S d Sα α

α β

 − − = + + + − + −  
   

  (39) 

( )12 1 22 2 21 22

1 1 1ˆ
ˆˆ2

IS

a c
S A S A b S d Sβ β

α β

 − − = + + + − + −  
   

  (40) 

Again, the Bayes estimators considering the Lindley’s approximation for the model 

parameters under informative prior using PLF are respectively presented as 

( )2

11 11 1 21 2 11 12

1 1 1
ˆ ˆ2

ˆˆ2
IP

a c
S S A S A b S d Sα α α

α β

 − − = + + + + − + −  
       

(41) 

( )2

22 12 1 22 2 21 22

1 1 1ˆ ˆ2
ˆˆ2

IP

a c
S S A S A b S d Sβ β β

α β

 − − = + + + + − + −  
   

     (42) 

 

5.5 Tierney and Kadane’s Approximation 
 This section considers the Tierney and Kadane’s approximation for the 

approximate Bayesian analysis of the model parameters of the right censored Weibull 

distribution. In case of non-informative prior, consider 

( ) ( ) ( )1
, log , log x ,Q Lα β π α β α β= + where ( )1log ,π α β is the logarithmic 

of the joint non-informative prior for the parameters ( ),α β and ( )log x ,L α β is 

the logarithmic of likelihood function given in (4). Further consider 
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( ) ( ), , /H Q nα β α β= and ( ) ( ) ( )* , log , , /H h Q nα β α β α β= +   , where 

( )log ,h α β  is the logarithmic of the function of the parameter(s) α or β . Then 

according to Tierney and Kadane (1986) the expression ( ){ }, xh α βΕ using (6) can 

be re-expressed as 

( ){ }
( )

( )

*
,

0 0

,

0 0

, x

nH

nH

e d d

h

e d d

α β

α β

α β
α β

α β

∞ ∞

∞ ∞Ε =
∫ ∫

∫ ∫
     (43) 

Now using the Laplace’s method, the approximation for ( ){ }, xh α βΕ can be given 

as 

( ) ( ) ( ){ }
1/2

*
* * *detˆ ˆ ˆˆ ˆ, exp , ,

det
h n H Hα β α β α β

 ∑  = −    ∑ 
  (44) 

where ( )* *ˆˆ ,α β and ( )ˆˆ ,α β  maximize ( )* ,H α β and ( ),H α β respectively, and 

*∑ and ∑ are the negatives of the inverse Hessians of ( )* ,H α β and ( ),H α β

evaluated at ( )* *ˆˆ ,α β and ( )ˆˆ ,α β respectively.  

Here we have 

( ) ( )
1 1

1
, log log log

r r

i i r

i i

H k r r x x n r x
n

α αα β α β α β
= =

  
= + + + − + −  

  
∑ ∑ (45) 

( ) ( ) ( )*

1 1

1
, log , log log log

r r

i i r

i i

H k h r r x x n r x
n

α αα β α β α β α β
= =

  
= + + + + − + −  

  
∑ ∑ (46) 

where k is any constant independent of the parameters α and β . 

( ) ( )
1 1

, 1
log log log 0

r r

i i i r r

i i

H r
x x x n r x x

n

α αα β
β

α α = =

∂   
= + − + − =  ∂   

∑ ∑ (47) 

( ) ( )
1

, 1
0

r

i r

i

H r
x n r x

n

α αα β
β β =

∂   
= − + − =  ∂   

∑    (48) 

Now, ( )ˆˆ ,α β can be obtained by solving (45) and (46). The second order derivatives 

from ( ),H α β have been presented in (49)-(51). 

 

( ) ( ) ( ) ( )
2

2 2

2 2
1

, 1
log log

r

i i r r

i

H r
x x n r x x

n

α αα β
β

α α =

∂   
= − + + −  ∂   

∑  (49) 
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( )2

2 2

, 1H r

n

α β
β β

∂  
= −  ∂  

      (50) 

( ) ( )
2

1

, 1
log log

r

i i r r

i

H
x x n r x x

n

α αα β
α β =

∂  
= − + − 

∂ ∂  
∑    (51) 

The determinant for the negative of the inverse Hessian of ( ),H α β evaluated at 

( )ˆˆ ,α β is   ( ) 1
2

11 22 12det H H H
−

∑ = −  

where 

( ) ( ) ( ) ( )
2

2 2ˆ ˆ

11 2 2
1ˆˆ ,

, 1 ˆ log log
ˆ

r

i i r r

i

H r
H x x n r x x

n

α α

α β

α β
β

α α =

∂   
= = + + −  ∂   

∑ (52) 

( )2

22 2 2
ˆˆ ,

, 1

ˆ

H r
H

n
α β

α β
β β

 ∂
= =  

∂  
     (53) 

( ) ( )
2

ˆ ˆ

12

1ˆˆ ,

, 1
log log

r

i i r r

i

H
H x x n r x x

n

α α

α β

α β
α β =

∂  
= = + − 

∂ ∂  
∑   (54) 

Similarly MLEs and the second order derivatives for the ( )* ,H α β can be obtained. 

Further the Bayes estimators and the posterior risks under informative prior can be 

obtained in a similar manner. 

 

6. Simulation Study 
 In this section, the simulation study has been performed to assess the features 

of various posterior estimators. The performance of loss functions, prior distribution 

and approximation methods have been compared under different parametric values and 

the sample sizes based on the magnitudes of the posterior risks. The parametric space 

used is (α , β) = {(0.5, 0.5), (1, 1), (1.5, 1.5), (2, 2)}. Different sample sizes have been 

considered. The inverse transformation technique has been used to generate the samples 

from the Weibull model. The hyper-parameters, in the prior distributions, have been 

assumed to be so that the prior mean is equal to the true parametric values. For 

example, for α = β = 0.50, we have assumed a = 0.50, b = 1.00, c = 0.50 and d = 1.00 

since E(α ) = a/b  = 0.50 and E(β) = c/d = 0.50. The test termination point is considered 

to be so that the various percentages (5%, 10% and 205) of the observations in the 

respective samples have been censored. Following abbreviations have been used in the 

tables below: AM = Approximation Methods, LF = Loss Functions, QM = Quadrature 

Method, GS = Gibbs Sampler, IM = Importance Sampling, LA = Lindley’s 

Approximation, TKA = Tierney and Kadane's Approximation, IP = Informative prior.  

 

 The numerical results for the simulation study have been reported in the tables 

1-6 presented in the appendix-A and in the figures 7-8. From the tables 1-7 and figures 

7-8, the findings of the simulation study can be summarized in the following comments 
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1. The posterior estimates (B.Es) tend to come

and the corresponding magnitudes

smaller for increased the sample size

However the bigger choice of the original

on the convergence of the estimates and

risks. 

2. Based on the amounts of the posterior risks the performance of the SELF is 

superior to PLF whenever the true parametric values are less than one and vice 

versa. This property is true for the estimation under bot

approximation methods. 

3. The performance of the informative prior is 

throughout. 

4. Whenever the true parametric values are less than on

importance sampling seems better tha

true parametric values are greater than 

TKA is found superior among all approximation methods. The other approximation 

techniques have mixed behavior in terms of performance. 

5. In conclusion, when the true parametric value is less than one, the estimation under 

the combination of SELF, informative prior and importance sampling is superior to 

its counterparts. In case when true parametric values are greater than or equals to 

one, then estimation under the combination of PLF, informative prior and 

superior to other competitors.  

 

Figure 07: Bayes estimates for the parameters under different priors and loss 

functions using n = 30
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tend to come closer and closer to the true figures 

magnitudes of posterior risks (P.Rs) becomes smaller and 

the sample sizes. Hence the said estimates are consistent. 

original parametric values has a negative impact 

the estimates and results in greater amounts of the posterior 

posterior risks the performance of the SELF is 

PLF whenever the true parametric values are less than one and vice 

This property is true for the estimation under both priors and for all 

The performance of the informative prior is better than non-informative prior 

Whenever the true parametric values are less than one, the performance of the 

rtance sampling seems better than all its counter parts. However, when the 

true parametric values are greater than or equals to one then the estimation under 

all approximation methods. The other approximation 

techniques have mixed behavior in terms of performance.  

conclusion, when the true parametric value is less than one, the estimation under 

the combination of SELF, informative prior and importance sampling is superior to 

its counterparts. In case when true parametric values are greater than or equals to 

en estimation under the combination of PLF, informative prior and TKA is 
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Figure 08: Posterior risks for the parametric estimates under different

and loss functions using n = 30

 

 

 

7. Real Life Example 
 In this section we have analyzed the real 

Harrington (1991). This dataset is regarding 

(PBC) liver study group conducted by Mayo Clinic

considered as time to expiry of the PBC patients. The survival 

36 patients having highest grad of bilirubinare: 

549, 51, 1413, 1170, 41, 890, 853, 1882+, 

264, 930, 797, 1329+, 1350, 264, 1191, 943,

 

 The ‘+’ with the observations indicates the censored observations. The Chi

square and the Kolomogorov–Smirnov 

come from the Weibull model. The resultant Bayesian 

the table-8 below. For simplicity, in case of the informative prior

hyper-parameters have been assumed to be 
 

AM SELF 

α 

QM 
0.95796 

(0.18479) (0.00330)

GS 
0.93930 

(0.05147) (0.00098)

IS 0.97478 
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Posterior risks for the parametric estimates under different priors 

and loss functions using n = 30 

ave analyzed the real dataset reported by Fleming and 

set is regarding Group IV of the primary biliary cirrhosis 

BC) liver study group conducted by Mayo Clinic. The failure time has been 

of the PBC patients. The survival periods (in days) for the 

of bilirubinare: 77, 400, 71, 859, 334, 1037, 1427, 733, 

890, 853, 1882+,  216, 1067+, 223, 131, 1827, 1297,  2540, 

264, 1191, 943, 130, 974, 1765+, 790, 1320+. 

The ‘+’ with the observations indicates the censored observations. The Chi-

Smirnov tests have been used to verify that the dataset 

resultant Bayesian estimates have been reported in 

below. For simplicity, in case of the informative prior, the values of the 

ssumed to be 1a b c d= = = = for the estimation.  

Non-informative Prior 

PLF 

β α β 

0.00229 0.97803 0.00236 

(0.00330) (0.25776) (0.00499) 

0.00210 0.94594 0.00212 

(0.00098) (0.08895) (0.00197) 

0.00232 0.98598 0.00232 

P
LF
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(0.01307) (0.00013) (0.02099) (0.00023) 

LA 
0.91142 0.00206 0.93039 0.00211 

(0.17642) (0.00228) (0.29256) (0.00433) 

TKA 
0.95847 0.00214 0.96043 0.00214 

(0.01810) (0.00027) (0.03016) (0.00044) 

  Informative Prior 

QM 
0.94838 0.00227 0.96825 0.00234 

(0.17925) (0.00320) (0.25003) (0.00484) 

GS 
0.92991 0.00207 0.93648 0.00210 

(0.04993) (0.00095) (0.08628) (0.00191) 

IS 
0.96463 0.00230 0.96582 0.00230 

(0.01268) (0.00012) (0.02036) (0.00023) 

LA 
0.90230 0.00204 0.92109 0.00209 

(0.17113) (0.00222) (0.28378) (0.00420) 

TKA 
0.94888 0.00212 0.95082 0.00212 

(0.01755) (0.00026) (0.02926) (0.00043) 

 

Table 8: B. E.s and P.R.s (in parenthesis) under non-informative and informative 

priors using real data set 

 

 From the Table-8, it can be seen that estimation under the combination of 

SELF, informative prior and importance sampling is better than its counterparts. This in 

accordance with the results derived from the simulations. Hence, the results from the 

analysis of the real dataset further strengthened the findings of the simulation study. 

 

8. Conclusion 
 In this paper, the posterior inference of the right-censored samples from the 

Weibull model has been reported. Unfortunately, the Bayes estimators for the 

parameters of the Weibull model are not possible in the closed form. Therefore, we 

have considered five approximation methods to calculate the numerical estimates of the 

model parameters. The findings from the analysis of the simulated and real dataset 

suggest that (i) when the true parametric value is less than one, the estimation under the 

combination of SELF, informative prior and importance sampling is superior to its 

counterparts, (ii) and in case when true parametric values are greater than or equals to 

one, then estimation under the combination of PLF, informative prior and TKA is 

superior to its competitors.  
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Appendix-A 
 

AM LF α = 0.50 β = 0.50 α = 1.00 β = 1.00 

QM 

SELF 
0.59359 0.62376 1.19305 1.15497 

(0.01841) (0.03006) (0.04101) (0.06885) 

PLF 
0.60631 0.64341 1.21356 1.18095 

(0.02544) (0.03929) (0.03588) (0.05196) 

GS 

SELF 
0.58203 0.57013 1.15211 1.09342 

(0.00513) (0.00892) (0.02781) (0.05091) 

PLF 
0.58642 0.57790 1.16411 1.11646 

(0.00878) (0.01555) (0.02401) (0.04608) 

IS 

SELF 
0.62880 0.63162 1.17399 1.14726 

(0.00130) (0.00116) (0.02873) (0.03224) 

PLF 
0.62983 0.63172 1.19957 1.15198 

(0.00207) (0.00183) (0.02117) (0.02645) 

LA 

SELF 
0.59253 0.55976 1.13589 1.07694 

(0.02385) (0.02198) (0.05518) (0.05973) 

PLF 
0.61080 0.57855 1.15790 1.10339 

(0.03654) (0.03759) (0.04401) (0.05290) 

TKA 

SELF 
0.59391 0.58177 1.17562 1.11573 

(0.00180) (0.00245) (0.01267) (0.01367) 

PLF 
0.59540 0.58352 1.18081 1.12110 

(0.00298) (0.00350) (0.01037) (0.01075) 

 

Table 1(a): B. Es and P.Rs (in parenthesis) under non-informative prior for n = 30 
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AM LF α = 1.50 β = 1.50 α = 2.00 β = 2.00 

QM 

SELF 
1.69644 1.65015 2.36370 2.28493 

(0.05780) (0.07969) (0.06140) (0.08436) 

PLF 
1.71985 1.66894 2.38599 2.29588 

(0.04682) (0.06758) (0.04457) (0.06909) 

GS 

SELF 
1.68014 1.59996 2.16867 2.15438 

(0.06729) (0.12331) (0.12408) (0.23319) 

PLF 
1.70005 1.63804 2.19709 2.20784 

(0.03981) (0.07616) (0.05684) (0.10691) 

IS 

SELF 
1.64335 1.62425 2.25629 2.30234 

(0.04317) (0.04998) (0.07792) (0.09107) 

PLF 
1.64848 1.66093 2.26804 2.32668 

(0.02996) (0.03698) (0.05351) (0.07869) 

LA 

SELF 
1.68509 1.57162 2.19487 2.18342 

(0.09201) (0.11335) (0.11956) (0.23694) 

PLF 
1.71064 1.59618 2.22146 2.23324 

(0.05110) (0.06911) (0.05319) (0.09964) 

TKA 

SELF 
1.71443 1.63261 2.21293 2.19835 

(0.03198) (0.03864) (0.05658) (0.07834) 

PLF 
1.72362 1.64230 2.22562 2.21269 

(0.01837) (0.01939) (0.02538) (0.02868) 

Table 1(b): B. Es and P.Rs (in parenthesis) under non-informative prior for n = 30 

 

AM LF α = 0.50 β = 0.50 α = 1.00 β = 1.00 

QM 

SELF 
0.57955 0.59327 1.11631 1.12849 

(0.01450) (0.01792) (0.02493) (0.04189) 

PLF 
0.59169 0.61145 1.13400 1.15206 

(0.02023) (0.02706) (0.02356) (0.03397) 

GS 

SELF 
0.56826 0.54226 1.07800 1.06835 

(0.00404) (0.00532) (0.01691) (0.03098) 

PLF 
0.57228 0.54920 1.08780 1.08914 

(0.00698) (0.01071) (0.01577) (0.03013) 

IS 

SELF 
0.61392 0.60075 1.09847 1.12096 

(0.00103) (0.00069) (0.01747) (0.01961) 

PLF 
0.61465 0.60034 1.12093 1.12379 

(0.00165) (0.00126) (0.01390) (0.01729) 

LA 

SELF 
0.55139 0.53429 1.05123 1.03369 

(0.01384) (0.01239) (0.02833) (0.03410) 

PLF 
0.56287 0.54603 1.06404 1.04977 

(0.02296) (0.02347) (0.02563) (0.03216) 

TKA 

SELF 
0.57986 0.55333 1.10000 1.09015 

(0.00142) (0.00146) (0.00770) (0.00832) 

PLF 
0.58104 0.55453 1.10340 1.09367 

(0.00237) (0.00241) (0.00681) (0.00703) 

Table 2(a): B. Es and P.Rs (in parenthesis) under non-informative prior for n = 50 
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AM LF α = 1.50 β = 1.50 α = 2.00 β = 2.00 

QM 

SELF 
1.60629 1.61344 2.24508 2.15130 

(0.03367) (0.04154) (0.03729) (0.04102) 

PLF 
1.62543 1.62811 2.26202 2.15632 

(0.02891) (0.04068) (0.02846) (0.04044) 

GS 

SELF 
1.59085 1.56436 2.05984 2.04839 

(0.03920) (0.06428) (0.07536) (0.11339) 

PLF 
1.60671 1.59796 2.08294 2.08364 

(0.02458) (0.04585) (0.03630) (0.06257) 

IS 

SELF 
1.55602 1.58811 2.14306 2.16770 

(0.02515) (0.02605) (0.04732) (0.04429) 

PLF 
1.36896 1.32763 2.15020 2.18525 

(0.01850) (0.02226) (0.03417) (0.04606) 

LA 

SELF 
1.56730 1.55162 2.11614 2.06888 

(0.04646) (0.06945) (0.07286) (0.11816) 

PLF 
1.58162 1.57314 2.13272 2.09652 

(0.02865) (0.04305) (0.03315) (0.05527) 

TKA 

SELF 
1.62332 1.59629 2.10188 2.06979 

(0.01863) (0.02014) (0.03436) (0.03809) 

PLF 
1.62899 1.60212 2.10998 2.07819 

(0.01134) (0.01167) (0.01620) (0.01679) 

Table 2(b): B. Es and P.Rs (in parenthesis) under non-informative prior for n = 50 

 

AM LF α = 0.50 β = 0.50 α = 1.00 β = 1.00 

QM 

SELF 
0.54067 0.55289 1.06593 1.07083 

(0.00798) (0.00906) (0.01170) (0.01828) 

PLF 
0.55159 0.56934 1.08124 1.09147 

(0.01201) (0.01521) (0.01078) (0.01645) 

GS 

SELF 
0.53014 0.50535 1.02934 1.01376 

(0.00222) (0.00269) (0.00793) (0.01352) 

PLF 
0.53349 0.51138 1.03718 1.03186 

(0.00414) (0.00602) (0.00789) (0.01259) 

IS 

SELF 
0.57274 0.55986 1.04889 1.06368 

(0.00056) (0.00035) (0.00820) (0.00856) 

PLF 
0.57299 0.55899 1.06878 1.06469 

(0.00098) (0.00071) (0.00695) (0.00837) 

LA 

SELF 
0.53993 0.52875 1.04945 1.02224 

(0.00645) (0.00665) (0.01432) (0.01692) 

PLF 
0.54565 0.53494 1.05604 1.03041 

(0.01144) (0.01238) (0.01319) (0.01634) 

TKA 

SELF 
0.54096 0.51567 1.05035 1.03445 

(0.00078) (0.00074) (0.00361) (0.00363) 

PLF 
0.54166 0.51634 1.05206 1.03615 

(0.00141) (0.00135) (0.00341) (0.00340) 

Table 3(a): B. Es and P.Rs (in parenthesis) under non-informative prior for n = 

100 
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AM LF α = 1.50 β = 1.50 α = 2.00 β = 2.00 

QM 

SELF 
1.53597 1.56124 2.21056 2.11466 

(0.01634) (0.01987) (0.01853) (0.02298) 

PLF 
1.55175 1.57269 2.22310 2.11533 

(0.01472) (0.01758) (0.01446) (0.02003) 

GS 

SELF 
1.52121 1.51375 2.02817 2.02384 

(0.01902) (0.03075) (0.03745) (0.05247) 

PLF 
1.53388 1.54358 2.04710 2.03421 

(0.01252) (0.02319) (0.01844) (0.03099) 

IS 

SELF 
1.48790 1.53673 2.11011 2.13077 

(0.01220) (0.01247) (0.02352) (0.02349) 

PLF 
1.30690 1.28245 2.11320 2.14371 

(0.00942) (0.01126) (0.01736) (0.02281) 

LA 

SELF 
1.52232 1.51670 2.09146 2.00138 

(0.02270) (0.03283) (0.03589) (0.05497) 

PLF 
1.52959 1.52737 2.09986 2.01493 

(0.01453) (0.02134) (0.01681) (0.02710) 

TKA 

SELF 
1.55226 1.54464 2.06956 2.03453 

(0.00904) (0.00964) (0.01708) (0.01763) 

PLF 
1.55515 1.54759 2.07368 2.03868 

(0.00578) (0.00590) (0.00823) (0.00831) 

Table 3(b): B. Es and P.Rs (in parenthesis) under non-informative prior for n = 

100 

 

AM LF α = 0.50 β = 0.50 α = 1.00 β = 1.00 

QM 

SELF 
0.58765 0.61752 1.18112 1.14342 

(0.01786) (0.02916) (0.03978) (0.06679) 

PLF 
0.60024 0.63697 1.20143 1.16914 

(0.02468) (0.03811) (0.03480) (0.05040) 

GS 

SELF 
0.57621 0.56443 1.14059 1.08248 

(0.00497) (0.00866) (0.02697) (0.04939) 

PLF 
0.58055 0.57212 1.15247 1.10529 

(0.00851) (0.01508) (0.02329) (0.04470) 

IS 

SELF 
0.62251 0.62531 1.16225 1.13579 

(0.00126) (0.00113) (0.02787) (0.03127) 

PLF 
0.62353 0.62540 1.18758 1.14046 

(0.00201) (0.00178) (0.02053) (0.02566) 

LA 

SELF 
0.58660 0.55416 1.12453 1.06617 

(0.02314) (0.02132) (0.05352) (0.05794) 

PLF 
0.60469 0.57276 1.14632 1.09236 

(0.03544) (0.03646) (0.04269) (0.05132) 

TKA 

SELF 
0.58797 0.57595 1.16386 1.10457 

(0.00175) (0.00237) (0.01229) (0.01326) 

PLF 
0.58944 0.57768 1.16900 1.10989 

(0.00289) (0.00339) (0.01006) (0.01043) 

Table 4(a): B. Es and P.Rs (in parenthesis) under informative prior for n = 30 
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AM LF α = 1.50 β = 1.50 α = 2.00 β = 2.00 

QM 

SELF 
1.67948 1.63365 2.34006 2.26208 

(0.05606) (0.07730) (0.05955) (0.08183) 

PLF 
1.70265 1.65225 2.36213 2.27292 

(0.04542) (0.06555) (0.04323) (0.06702) 

GS 

SELF 
1.66334 1.58396 2.14698 2.13284 

(0.06527) (0.11961) (0.12036) (0.22619) 

PLF 
1.68305 1.62166 2.17512 2.18576 

(0.03862) (0.07388) (0.05514) (0.10371) 

IS 

SELF 
1.62692 1.60800 2.23373 2.27932 

(0.04187) (0.04848) (0.07558) (0.08834) 

PLF 
1.43400 1.34732 2.24536 2.30341 

(0.02906) (0.03587) (0.05190) (0.07633) 

LA 

SELF 
1.66824 1.55590 2.17292 2.16159 

(0.08925) (0.10995) (0.11597) (0.22983) 

PLF 
1.69353 1.58022 2.19925 2.21091 

(0.04957) (0.06704) (0.05160) (0.09665) 

TKA 

SELF 
1.69729 1.61628 2.19080 2.17637 

(0.03102) (0.03748) (0.05488) (0.07599) 

PLF 
1.70638 1.62588 2.20336 2.19056 

(0.01782) (0.01880) (0.02462) (0.02782) 

Table 4(b): B. Es and P.Rs (in parenthesis) under informative prior for n = 30 

 

AM LF α = 0.50 β = 0.50 α = 1.00 β = 1.00 

QM 

SELF 
0.57375 0.58734 1.10515 1.11721 

(0.01407) (0.01738) (0.02419) (0.04063) 

PLF 
0.58577 0.60533 1.12266 1.14054 

(0.01962) (0.02625) (0.02286) (0.03295) 

GS 

SELF 
0.56258 0.53684 1.06722 1.05766 

(0.00392) (0.00516) (0.01640) (0.03005) 

PLF 
0.56655 0.54371 1.07692 1.07825 

(0.00677) (0.01038) (0.01530) (0.02922) 

IS 

SELF 
0.60778 0.59474 1.08749 1.10975 

(0.00100) (0.00067) (0.01694) (0.01902) 

PLF 
0.60850 0.59433 1.10972 1.11256 

(0.00160) (0.00122) (0.01349) (0.01678) 

LA 

SELF 
0.54588 0.52895 1.04072 1.02335 

(0.01343) (0.01202) (0.02748) (0.03307) 

PLF 
0.55724 0.54057 1.05340 1.03927 

(0.02227) (0.02277) (0.02486) (0.03120) 

TKA 

SELF 
0.57406 0.54779 1.08900 1.07925 

(0.00138) (0.00141) (0.00747) (0.00807) 

PLF 
0.57523 0.54898 1.09237 1.08273 

(0.00230) (0.00234) (0.00661) (0.00682) 

Table 5(a): B. Es and P.Rs (in parenthesis) under informative prior for n = 50 
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AM LF α = 1.50 β = 1.50 α = 2.00 β = 2.00 

QM 

SELF 
1.59022 1.59731 2.22263 2.12979 

(0.03266) (0.04029) (0.03617) (0.03979) 

PLF 
1.60917 1.61183 2.23940 2.13476 

(0.02804) (0.03946) (0.02760) (0.03922) 

GS 

SELF 
1.57494 1.54872 2.03924 2.02791 

(0.03803) (0.06235) (0.07310) (0.10999) 

PLF 
1.59064 1.58198 2.06211 2.06280 

(0.02384) (0.04447) (0.03521) (0.06069) 

IS 

SELF 
1.54046 1.57223 2.12163 2.14602 

(0.02439) (0.02527) (0.04590) (0.04296) 

PLF 
1.35527 1.31436 2.12869 2.16340 

(0.01794) (0.02159) (0.03314) (0.04467) 

LA 

SELF 
1.55163 1.53610 2.09498 2.04819 

(0.04507) (0.06736) (0.07068) (0.11462) 

PLF 
1.56580 1.55741 2.11139 2.07555 

(0.02779) (0.04176) (0.03216) (0.05361) 

TKA 

SELF 
1.60709 1.58033 2.08086 2.04909 

(0.01807) (0.01954) (0.03333) (0.03695) 

PLF 
1.61270 1.58610 2.08888 2.05741 

(0.01100) (0.01132) (0.01572) (0.01628) 

Table 5(b): B. Es and P.Rs (in parenthesis) under informative prior for n = 50 

 

AM LF α = 0.50 β = 0.50 α = 1.00 β = 1.00 

QM 

SELF 
0.53526 0.54736 1.05527 1.06012 

(0.00774) (0.00879) (0.01135) (0.01773) 

PLF 
0.54607 0.56365 1.07043 1.08055 

(0.01165) (0.01475) (0.01043) (0.01595) 

GS 

SELF 
0.52484 0.50030 1.01905 1.00362 

(0.00216) (0.00261) (0.00769) (0.01312) 

PLF 
0.52816 0.50626 1.02681 1.02154 

(0.00402) (0.00584) (0.00765) (0.01115) 

IS 

SELF 
0.56701 0.55426 1.03840 1.05305 

(0.00055) (0.00034) (0.00795) (0.00830) 

PLF 
0.56726 0.55340 1.05809 1.05404 

(0.00095) (0.00069) (0.00674) (0.00812) 

LA 

SELF 
0.53453 0.52346 1.03896 1.01202 

(0.00626) (0.00645) (0.01389) (0.01642) 

PLF 
0.54019 0.52959 1.04548 1.02011 

(0.01110) (0.01201) (0.01279) (0.01585) 

TKA 

SELF 
0.53555 0.51051 1.03985 1.02411 

(0.00076) (0.00071) (0.00350) (0.00352) 

PLF 
0.53624 0.51118 1.04154 1.02579 

(0.00136) (0.00131) (0.00330) (0.00330) 

Table 6(a): B. Es and P.Rs (in parenthesis) under informative prior for n = 100 
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AM LF α = 1.50 β = 1.50 α = 2.00 β = 2.00 

QM 

SELF 
1.52061 1.54562 2.18846 2.09351 

(0.01585) (0.01928) (0.01798) (0.02141) 

PLF 
1.53623 1.55697 2.20087 2.09418 

(0.01428) (0.01996) (0.01403) (0.01942) 

GS 

SELF 
1.50600 1.49861 2.00789 2.00360 

(0.01845) (0.02983) (0.03633) (0.05089) 

PLF 
1.51854 1.52814 2.02663 2.01387 

(0.01214) (0.02250) (0.01789) (0.03006) 

IS 

SELF 
1.47302 1.52136 2.08901 2.10946 

(0.01184) (0.01209) (0.02281) (0.02288) 

PLF 
1.29383 1.26962 2.09207 2.12227 

(0.00914) (0.01092) (0.01684) (0.02212) 

LA 

SELF 
1.50710 1.50153 2.07055 2.028137 

(0.02202) (0.03184) (0.03481) (0.05332) 

PLF 
1.51429 1.51210 2.07886 2.039478 

(0.01410) (0.02070) (0.01630) (0.02628) 

TKA 

SELF 
1.53674 1.52919 2.04886 2.01418 

(0.00877) (0.00935) (0.01656) (0.01710) 

PLF 
1.53960 1.53211 2.05294 2.01829 

(0.00560) (0.00573) (0.00799) (0.00806) 

Table 6(b): B. Es and P.Rs (in parenthesis) under informative prior for n = 100 

 

AM LF Complete Samples 5% Censored Samples 

QM 

SELF 
0.54884 0.56140 0.54884 0.56140 

(0.01263) (0.01558) (0.01263) (0.01558) 

PLF 
0.56063 0.57934 0.56063 0.57934 

(0.01762) (0.02357) (0.01762) (0.02357) 

GS 

SELF 
0.53880 0.51394 0.53880 0.51394 

(0.00352) (0.00463) (0.00352) (0.00463) 

PLF 
0.54455 0.52163 0.54455 0.52163 

(0.00610) (0.00934) (0.00610) (0.00934) 

IS 

SELF 
0.58521 0.57456 0.58521 0.57456 

(0.00090) (0.00061) (0.00090) (0.00061) 

PLF 
0.58606 0.57475 0.58606 0.57475 

(0.00145) (0.00111) (0.00145) (0.00111) 

LA 

SELF 
0.52639 0.51220 0.52639 0.51220 

(0.01215) (0.01092) (0.01215) (0.01092) 

PLF 
0.53812 0.52356 0.53812 0.52356 

(0.02018) (0.02069) (0.02018) (0.02069) 

TKA 

SELF 
0.54943 0.52427 0.54943 0.52427 

(0.00124) (0.00127) (0.00124) (0.00127) 

PLF 
0.55092 0.52556 0.55092 0.52556 

(0.00207) (0.00210) (0.00207) (0.00210) 
 

Table 7(a): B. Es and P.Rs (in parenthesis) under informative prior for α = 0.50, β 

= 0.50 and n = 50 using different censoring schemes. 
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M LF 10% Censored Samples 20% Censored Samples 

QM 

SELF 
0.56016 0.57297 0.57375 0.58734 

(0.01337) (0.01647) (0.01407) (0.01738) 

PLF 
0.57219 0.59129 0.58577 0.60533 

(0.01863) (0.02487) (0.01962) (0.02625) 

GS 

SELF 
0.54991 0.52453 0.56258 0.53684 

(0.00371) (0.00488) (0.00392) (0.00516) 

PLF 
0.55578 0.53239 0.56655 0.54371 

(0.00640) (0.00982) (0.00677) (0.01038) 

IS 

SELF 
0.59728 0.58641 0.60778 0.59474 

(0.00094) (0.00063) (0.00100) (0.00067) 

PLF 
0.59815 0.58661 0.60850 0.59433 

(0.00151) (0.00115) (0.00160) (0.00122) 

LA 

SELF 
0.53725 0.52276 0.54588 0.52895 

(0.01264) (0.01135) (0.01343) (0.01202) 

PLF 
0.54922 0.53435 0.55724 0.54057 

(0.02096) (0.02146) (0.02227) (0.02277) 

TKA 

SELF 
0.56076 0.53508 0.57406 0.54779 

(0.00131) (0.00134) (0.00138) (0.00141) 

PLF 
0.56228 0.53639 0.57523 0.54898 

(0.00218) (0.00221) (0.00230) (0.00234) 

Table 7(b): B. Es and P.Rs (in parenthesis) under informative prior for α = 0.50, β 

= 0.50 and n = 50 using different censoring schemes. 

 


