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Abstract  
 This paper focuses on the application of transitional model using Bayesian approach for 

analyzing longitudinal binary data. Multivariate and uniform priors have been used in Bayesian 

analysis to estimate the parameters of Markov model. Multivariate prior is found to give better 

results than uniform prior. 

 

Key Words: Bayesian Approach for Multivariate Prior (BM), Bayesian Approach for 

Uniform Prior (BU), Bayesian Approach under Squared Error Loss (BSE). 

 

1. Introduction 
 Cause and effect relationship is the relationship in which one event (the cause) 

makes another event happen (the effect). A central goal of most of the researches is the 

identification of causal relationships that set of independent variables (the cause) has an 

effect on dependent variable of interest (the effect). If the outcomes of the response 

variable of the study are binary, then logistic regression is applied. Now-a-days, 

repeated measures data are widely used in many research areas. For repeated measures 

data, Markov based logistic regression is applied because Markov property deals with 

the cases where present condition depends on immediate past condition. These repeated 

observations of the outcome and the associated risk factors characterize the longitudinal 

data for the subjects of a certain population. Markov chain is a suitable probability 

model for longitudinal data in which at a given time, the outcome is a categorical 

variable. The choice of Markov chains arises because they are often a good 

approximation to the structure of serially dependent data. The dependence relationship 

is commonly assumed to be of first order. Korn and Whittemore (1979) proposed a 

model to incorporate role of previous state as a covariate to analyze the probability of 

occupying the current state. Regier (1968) introduced a two state transition matrix for 

estimating odds ratio. Azzalini (1994) examined the influence of time dependent 

covariate on the marginal distribution of the binary outcome variables in serially 

correlated data. Muenz-Rubinstein (1985) employed a logistic regression model to 

analyze the transitional probabilities from one state to another. Among the recent works 

on Muenz-Rubinstein model, Islam and Chowdhury (2004, 2006), Islam et al. (2008, 

2012) and Chowdhury et al. (2005) are noteworthy. All of them have applied the 

method of maximum likelihood approach for decision-making.  
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 In some cases, parameter behaves as a random variable. In that situation 

classical approaches cannot be applied.  Bayesian approach helps us to deal such a 

situation. Bayesian estimation is extending rapidly in many areas. Noorian and Ganjali 

(2012) applied Bayesian analysis of transitional model for longitudinal ordinal data, but 

in their study, they applied Markov chain Monte Carlo (MCMC) method. Acquah 

(2013) has also used MCMC applied Bayesian logistic regression for economic data. 

Mahanta and Biswas (2016) have employed Bayesian approach in Azzalini model. 

Although MCMC method is well known and popular but this method is to be solved by 

programming. There is no theoretical idea about the procedure of estimating parameter. 

To get proper idea of the estimating procedure, in this paper, Muenz-Rubinstein model 

has been estimated theoretically and the numerical findings are obtained using R 

programming. Mahanta et al. (2015) have applied both Bayesian approach using 

uniform prior and method of maximum likelihood approach for estimating Muenz-

Rubinstein model. In Bayesian approach, prior distribution is the most important 

ingredients, using proper prior that means the known distribution of the parameter, 

Bayesian approach may give more accurate results. That’s why multivariate normal 

prior has been used in this paper. 

 

2. Model 
 The transition matrix of a two states discrete time binary sequence Markov 

chain  is as 
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where, P is the transition probability matrix, 00p  denotes the transition probability 

from state 0 to 0 and 10p  is the transition probability from state 1 to 0. At each time 

point, a vector of length two contains the probability of outcome of interest and its 

complement. 

 

Muenz and Rubinstein used the model where the transition probabilities 00p  and 10p  

are replaced by by logistic regressions i.e. 
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The vector X contains covariates and for the thq person in the study is ( )qpqq XXX ,...,1 1= . 

There are two logistic regressions, one having parameter vector ( )′= pβββ ,...,0  and the 

other having parameter vector ( )pααα ,...,0= . Large positive (negative) values of Xβ ′  

and Xα ′  yield large (small) transition probabilities. The above transition probabilities 

follow multinomial distribution, for 0 to 0 transitions the joint distribution of the above 

Markov model is 
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where, in00  and in01  are the number of transitions. 
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3. Prior and Posterior distribution 
Selection of a prior distribution is an important part in Bayesian approach. When 

proper information is available and parametric value lies between to−∞ +∞ then 

informative prior distribution is multivariate normal. The p.d.f of Multivariate (Acquah, 

2013) normal distribution is  
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where, µ is the mean vector and ∑ is the variance-covariance matrix. 

Then the posterior density of  β  for the given sample is  
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4. Loss function  
Loss function is the important ingredients for Bayesian approach. The squared 

error loss function is defined as  

2

; 
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For squared error loss function, Bayes estimators (Mahanta et al., 2015) are the mean of 

the posterior density 
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The two integrals appear in the ratio cannot be solved to have a closed form. For 

evaluating them, we use the Lindley (1980) approximation. 

Lindley (1980) suggest that, if the form of the integrals is 
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where, ( )XI  represent the form of the integral, 0L is the log likelihood and ( )βp is the 

log of prior. 
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Then according to Lindley (1980), the integral can be approximately be evaluated as 
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where, ( )βu is the functional form  of the parameter β , that is used in expectation of 

posterior density and 
∧
β is the maximum likelihood estimators of β .  

From equation (3), we have 
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Differentiating both sides with respect to β
 

( ) ( ) 1−∑′−−= µβ
βδ
βδ p

 (10) 

Using equation (2) the log likelihood function is 
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Differentiating successively both sides with respect to β , we have 
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 From equation (8), Bayes estimator under squared error loss function using Multivariate 

normal prior is 
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Where, 
∧
β

 

is the maximum likelihood estimate of β  (Mahanta et al., 2015) and BM

∧
β is 

the Bayes estimator under squared error loss function for Multivariate normal prior 

distribution of β .  

 

5. Bayes estimator under squared error loss function using uniform prior 

distribution 
 Mahanta et al. (2015) used uniform prior to estimate the parameter of Muenz-

Rubinstein model which is given below 
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where, BU

∧
β is the Bayes estimator of β for uniform prior. 

 

6. Posterior risk function under squared error loss function 
 Posterior risk function is the expected value of loss function with respect to 

posterior density 
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where, BSE

∧
β is the Bayes estimator under squared error loss function. 

 

7. Results and Discussion 
 In this paper, we have used pregnancy complication data obtained from 

Bangladesh Institute of Research for Promotion of Essential & Reproductive Health 

and Technologies (BIRPERHT) for the period November 1992 to December 1993. The 

data were collected using both cross-sectional and prospective study designs. A total of 

1059 pregnant women were interviewed in the follow-up component of the study. We 

have estimated the parameters of Muenz-Rubinstein model using pregnancy 

complication data. Three covariates have been utilized in this study because of 

complexity to fit the model. Three highly significant covariates viz. any miscarriage, 

socio economic status and age at marriage are used. Bayesian approach has been 

applied for estimating the parameters of the model. 

 

Table 1 reveals that in 0 to 0 transitions, any miscarriage and age at marriage are 

positively and economic status is negatively associated with pregnancy complication. 

Table 2 shows that in 1 to 0 transitions any miscarriage and economic status are 

positively and age at marriage is negatively associated with pregnancy complication for 

all cases. Also, intercept terms have been shown positive and negative index in 0 to 0 

and 1 to 0 transitions respectively. Flat (uniform) prior and multivariate normal prior 

have been used. For multivariate normal prior, different values of mean vector and 

variance-covariance matrix have been taken to get precise results. 
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Covariates Estimate 
Posterior 

Risk 
Prior 

Constant 1.7756 0.0009 

Flat or Uniform 
Any miscarriage 0.1604 0.0002 

Economic Status -0.3065 0.0002 

Age at Marriage 0.0244 0.0002 

Type-1 ( )∑,~ µβ MND  
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Constant 1.7755 0.0007 

Any miscarriage 0.1603 0.0002 

Economic Status -0.3065 0.0002 

Age at Marriage 0.0243 0.0002 

 

Table 1: Estimate the parameters and its posterior risk for different prior 

distributions (0 to 0 Transitions) 
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Covariates Estimate 
Posterior 

Risk 
Prior 

Constant -0.7024 0.0012 

Flat or Uniform 
Any miscarriage 0.2856 0.0010 

Economic Status 0.2356 0.0010 

Age at Marriage -0.1636 0.0009 

Type-1 ( )∑,~ µβ MND  
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Table 2: Estimate the parameters and its posterior risk for different prior 

distributions (1 to 0 Transitions) 

 

 

 

8. Bayesian Credible Interval 

 If ( )X/f β is the posterior distribution given the sample, we may be interested 

in finding an interval such that  
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Mahanta and Biswas (2016) used ( α−1 ) 100% Bayesian credible interval of β . 
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 In Bayesian analysis, credible interval becomes the counterpart of the classical 

confidence interval, also credible interval may be unique for all models. The Bayesian 

credible interval, on the other hand, has a direct probability 

interpretation ( )( ) αβββ −≥∈ 1/, 21 xP  and is completely determined from the current 

observed data x and the prior distribution. 

 

Covariates 

Length of credible interval =Upper Limit-Lower Limit 
Minimu

m Length 
Prior 

Flat Type-1 Type-2 Type-3 Type-4 Type-5 

0 to 0 Transitions  

Constant 0.1180 0.0888 0.0962 0.0895 0.1094 0.1072 Type-1 

Any 

miscarriage 0.0597 0.0583 0.0572 0.0582 0.0598 0.0594 
Type-2 

Economic 

Status 0.0616 0.0558 0.0579 0.0560 0.0607 0.0613 
Type-1 

Age at 

Marriage 0.0590 0.0590 0.0588 0.0590 0.0590 0.0590 
Type-2 

 
1 to 0 Transitions  

Constant 0.1376 0.0684 0.0713 0.0699 0.1309 0.1337 Type-1 

Any 

miscarriage 0.1226 0.1131 0.1124 0.1127 0.1222 0.1210 
Type-2 

Economic 

Status 0.1216 0.1152 0.1146 0.1149 0.1214 0.1204 
Type-2 

Age at 

Marriage 0.1205 0.1171 0.1175 0.1173 0.1198 0.1205 
Type-1 

 

Table 3: Length of Bayesian Credible interval for different prior distributions 

 

 

 

 Lengths of all Bayesian credible intervals are smaller for case of multivariate 

prior than flat prior. For transitions 0 to 0, minimum lengths of credible interval for any 

miscarriage and age at marriage are corresponding to type-2 condition of MND and for 

economic status corresponding to type-1 condition of MND.  On the other hand in 

transitions 1 to 0, minimum length of credible interval for any miscarriage and 

economic status are corresponding to type-2 and for age at marriage corresponding to   

type-1 condition of MND, as revealed from Table 3. Under both the transitions for  

intercept term, minimum length of the credible interval has been observed 

corresponding to type 1 condition of MND. Here, type-1 and type-2 forms of  

multivariate normal distribution (MND) have  mean 

vectors [ ]' 0.01 0.01 0.01 0.01µ = , [ ]' 0.01 0.01 0.01 0.01µ = − − − −  with the 

same variance-covariance matrix 4I=∑  respectively. Type-3, type-4 and type-5 have 

been shown in Table 1. All the calculations were performed by using R-Software 

(Version-2.10.0). 
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9. Conclusions 
 Markov chain models are widely used in medical science, engeenering, social 

research etc. for better prediction.  Bayesian approach is the non-classical approach to 

estimate the parameter of any model or distribution. This method is applied when the 

parameters are random, that is, there is a distribution of the parameter. This paper uses 

Bayesian approach to estimate the parameters of Muenz-Rubinstein (1985) model. 

Multivariate prior and uniform (flat) priors are employed for Bayesian estimation. Form 

the above analysis, it has been observed that Bayesian approach for multivariate prior is 

better than flat prior.  Thus Bayesian approach for multivariate prior can be suggested 

for the estimation of the parameters of Muenz-Rubinstein model.   
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APPENDIX 

 

library(foreign,MASS) 
data<-
as.matrix(read.table("D:/three.txt")) 
initial<-c(.1,.1,.1,.1) 
a=0.1 
b=-0.002 
c=-0.2 
M<- matrix(c(c,c,c,c),nrow=4) 
S= 
matrix(c(a,b,b,b,b,a,b,b,b,b,a,b,b,b,b,a
),ncol=4,byrow=T) 
Rub1<-function(data,initial) 
{ 
  

id<-data[,1] 
fup<-data[,2] 
A<-data[,3] 
B<-data[,4] 
C<-data[,5] 

count<-0 
k<-0 

repeat { 
  
b0<-initial[1] 
b1<-initial[2] 
b2<-initial[3] 
b3<-initial[4] 
 
b<-as.vector(c(b0,b1,b2,b3)) 
 
infb=matrix(c(0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0),ncol=4,byrow=T) 
k<-k+1 
 

x=cbind(1,A,B,C) 
g00=exp(x%*%b)/(1+exp(x%*%b)) 
g01=1/(1+exp(x%*%b)) 
 
sb=colSums(x*as.vector(data[,6]-
(data[,6]+data[,7])*g00)) 
 
for(i in 1:ncol(x)){ 
for(j in 1:ncol(x)){ 
for(l in 1:ncol(x)){ 
infb[i,j]=(sum(x[,i]*x[,j]*(as.matrix(data[
,6]+data[,7]*(g01)*(g01))))) 

} 
} 
} 
Fisinvb=solve(infb) 
count<-count+1 

se<-matrix(cbind(sqrt(c(Fisinvb [1,1], 
Fisinvb [2,2], Fisinvb [3,3], Fisinvb 
[4,4]))),nrow=4) 
h00=( exp(x%*%(lik 
)))/(1+exp(x%*%(lik))) 
h01=1/(1+exp(x%*%(lik))) 
denb<-
(sum(x[,i]*x[,j]*(as.matrix(data[,6]+data
[,7]*(h00)*(h01))))) 
neob<-
(sum(x[,i]*x[,j]*x[,l]*(as.matrix(data[,6]+
data[,7]*(h00)*(h01)*(h00-h01))))) 
bse<-lik+lik*(neob/(2*(denb)^2)) 
cat("The Bayes estimate for squared  
error is\n") 
print(bse) 
#calculation of posterior risk 
bse2<-
bse*bse+bse*bse*(neob/(2*(denb)^2))+(

1/denb) 
rbse<-(-bse*bse)+bse2 
cat("The posterior risk of BSE is\n") 
print(rbse) 
#calculation of Bayesian estimate for 
Mutivariate prior 
bse1<-bse-(S%*%(lik-M))/denb 
cat("The Bayes estimate for squared  
error for Multivariate prior is\n") 
print(bse1) 
#Calculation its posterior risk 
bse21<-
bse1*bse1+bse1*bse1*(neob/(2*(denb)
^2))+(1/denb)-2*bse1*(S%*%(bse1-
M))/denb 
rbse1<-(-bse1*bse1)+bse21 
cat("The posterior risk of BSE  for 
Multivariate prior is\n") 
print(rbse1) 
#Calculation of Bayes factor 
bb00=( exp(x%*%( 
bse1)))/(1+exp(x%*%( bse1))) 
bb01=1/(1+exp(x%*%( bse1))) 
sbc=colSums(x*as.vector(data[,6]))%*% 
bse1 
sbd=colSums(as.vector(data[,6]+data[,
7])*log(1/bb01)) 

#Likelihood of multivariate prior 
sbf=sbc-sbd 
bm00=( 
exp(x%*%(bse)))/(1+exp(x%*%(bse))) 
bm01=1/(1+exp(x%*%(bse))) 
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lik<-b+Fisinvb%*%sb 
conv<-abs(initial-lik) 
if(conv[1]<=0.001 &&  conv[2]<=0.001 
&&  conv[3]<=0.001 &&  
conv[4]<=0.001) 
        break 
initial<-lik 
} 
 

sbmc=colSums(x*as.vector(data[,6]))%*
%bse 
sbmd=colSums(as.vector(data[,6]+data
[,7])*log(1/bm01)) 
#Likelihood of uniform prior 
sbmf=sbmc-sbmd 
bfactor=sbf/sbmf 
cat("Bayes factor of Multivariate prior  
with respect to uniform prior\n") 
 
print(bfactor) 
 
} 
Rub1(data, initial) 

 
 
 
 

 


