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Abstract 
 Nowadays products become more reliable so these highly reliable products could take 

long time to fail under normal condition.  To overcome this problem, accelerated life testing has 

been used to estimate the reliability of these products.  In this paper, we propose Frechet step 

stress accelerated life test plan under cumulative exposure model assuming a log-linear 

relationship between Frechet scale parameter and stresses. The simulation study is used for 

estimation.  Further, optimal plan is designed using real data set by minimizing the asymptotic 

variance of the maximum likelihood estimators at 100pthpercentile of the design stress. Finally, 

sensitivity analysis is designed. 

 

Key Words: Accelerated Life Testing, Frechet Distribution, Asymptotic Variance, 

Cumulative Exposure Model, Log-Linear Relationship, Simple Step Stress. 

 

1. Introduction 
 Accelerated life test (ALT) is a stress testing approach used to capture lifetime 

characteristics of objects under some extreme conditions and then to predict the 

reliability under some other operating conditions.  ALT is used for estimation of highly 

reliable product's lifetime within an acceptable testing time.  It has been widely used to 

estimate the lifetime of products in the industry when the lifetime of products at used 

condition is much longer than maximum acceptable test time.  There are different types 

of ALT, commonly used are constant stress accelerated life test, step stress accelerated 

life test (SSALT) and progressive stress accelerated life test.  When the stress applied to 

a sample of units does not vary with time, then it is called a constant stress. Whereas in 

SSALT the stress applied to a sample of units varies with time and in progressive stress 

accelerated life test stress levels increase continuously.  

 

 The cumulative exposure model (CEM) is one of most useful models in 

analysis of step stress experiments. The life distribution of a unit at one stress level is 

related using CEM by Nelson (1980) and Nelson (1990) to the life distribution of that 

unit at the next stress level, assuming that the residual life of the unit depends only on 

the CEM that unit had experienced with no memory of how this exposure was 

accumulated. In case of simple step stress model the CEM is: 

 

 ���� = � �����,																															0 ≤ � < 
,���� − 
� + 
���,												
 ≤ � < ∞.� �1.1� 
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where τ is the time to change stress and 
� is the solution of F1�
�) = F2 (�
�). 
Several distributions have been used to describe the life pattern of different items. In 

the present study Frechet distribution is used as the lifetime distribution. French 

mathematician Maurice Frechet (1878-1973) introduced the Frechet distribution in 

1927. It has over fifty applications ranging from ALT through to floods, horse racing, 

rainfall, earthquakes, wind speeds, sea currents, and track race records. The cumulative 

distribution function (CDF) of Frechet distribution is: 

 ����� = 	��� �− � ����
�� , �	, � > 0,																																																																						�1.2� 

where the parameter α > 0 determines the shape of the distribution and θi> 0 is the 

scale parameter. Moreover, the scale parameter θi of Frechet distribution is assumed to 

be the function of log-linear relationship of stresses. The log-linear model can be 

expressed as: 

#$%	�&= β0 + β1Si, 

 

where Si denotes the stress level. Extensive work on parameter estimation of Frechet 

distribution has been found; see for example Singh (1987), Singh et al. (1990) and 

Abbas and Tang (2013). Some of previous works related to SSALT and optimum 

design of ALT plans with respect to stress loading profiles have been studied by many 

authors. The optimum accelerated life test plans for Lognormal distribution has been 

designed by Kelpinski and Nelson (1975) when the data were analyzed before all test 

units fail. In Nelson and Kielpinski (1976) optimum plan has been presented for 

estimating the medians of the Lognormal and Normal distributions. Nelson and Meeker 

(1978) emphasized that more test units should be allocated at the lower stress level than 

at the higher stress level. The simple SSALT plan has been studied for exponentially 

distributed lifetimes by Millerand Nelson (1983). The optimum 3-SSALT plans are 

obtained assuming quadratic lifestress relationship see Khamisand Higgins (1996). The 

optimal design of SSALT to estimate a specified quantile at design stress is presented 

by Chung and Bai (1998) in which CEM was assumed for effect of changing stress. 

 

 The same method to find the optimal stress changing time by minimizing the 

asymptotic variance (AV) of MLE of a quantity of interest see Alhadeed and Yang 

(2002) and Srivastava and Shukla(2008). In Alhadeed and Yang (2005) the Lognormal 

distribution has been used for designing optimum simple step stress model. Optimum 

stress changing times using Log-Logistic CEM was demonstrated by Al-Haj Ebrahem 

and Al-Masri (2007).   A new optimum ramp stress ALT plan by simultaneously 

determining the ramp rate and lower start level of stress based on a CEM have been 

designed see Hong et al. (2010). An optimum SSALT for Rayleigh distribution with 

log-linear life stress relationship has been presented by Saxena et al.  (2012). In 

Hakamipour and Rezae (2015) optimal designing of SSALT for two stress levels using 

Gompertz lifetimes distribution was performed.  They determined the optimal test plan 

by minimizing the AV of the MLE of reliability at time.  Chandra et al. (2016) has 

demonstrated the optimum stress changing times for 3-SSALT under the CEM with 

Type I censoring. They designed optimum test plans to minimize the AV of MLEs of 
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given ��ℎ percentile of the Weibull distribution at a design stress.  Recently, 

Hakamipour et al. (2017) has proposed an optimization for the SSALT for the Frechet 

distribution under Type I censoring. By minimizing the AV of the desired life estimate 

and the reliability estimate, they obtained the optimal simple SSALT. Finally, they 

conducted the simulation study without specifying the true values of (β0,β1) using large 

samples to illustrate the effect of the initial estimates on the optimal values.  

 

 Our development differs from that of Hakamipour et al.  (2017) in two ways. 

First, the model parameters (α, β0,β1) are estimated by the ML method considering 

different stress levels and then optimal plan is developed using moderate and large 

sample sizes also hypothesis testing is conducted. Second, optimum stress changing 

time 
is obtained for many combinations of stress levels. Also, sensitivity analysis is 

used to observe the effect of initial parametric values on the optimal design.  

 

 The rest of the paper is arranged as follows.   Model and assumptions are 

described in Section 2.  MLEs are presented in Section 3. Optimal test plans are 

discussed in Section 4 and simulation study is given in Section 5.  Optimum test design 

for real life data is investigated in Section 6.  The sensitivity analysis of model 

parameters is discussed in section 7.  Finally, conclusions are reported in Section 8. 
 

2. Model and Assumptions 
 Under any constant stress, the life time of a test product follows a Frechet 

distribution with CDF of time to failure of a test unit under simple SSALT is 

 

����� =
)*+
*, 	��� �− � ����

�� ,																																																																				0 ≤ � < 
,
	��� �− � ����

�� ��� �− �� 
���
��� − �� 
���

��� ,												
 ≤ � < ∞.					�2.1�				� 
The shape parameter α is independent of the stresses and scale parameter θi is the log-

linear function of stresses. i.e., log θi = β0 + β1Si, where i = 0,1,2 

 

The following assumptions are made: 

 

1. Testing is done at two stresses S1 and S2, where S1 is lower stress level and S2 is 

the higher stress level where S1< S2. 

2. Under any level of stress the failure time of test product follows a Frechet 

distribution with unknown shape parameter α. 

3. All n identical products are first placed on a lower stress S1 and run until time τ 

and then those are placed at higher stress S2 until all units fail. 

4. The scale parameter θi at stress level i, where i = 1,2 is a log-linear function of 

stresses i.e.,log θi = β0 + β1Si, where β0 and β1< 0 are unknown parameters that 

are estimated. 

5. The lifetimes of test units are independent and identically distributed. 
 

3. Maximum Likelihood Estimation 

 To obtain the MLE of the model parameters, let tij, j = 1,2, ..., ni, i = 1,2 be the 

observed failure test of a unit j under the stress level i, where n1 denotes the number of 
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units failed at stress S1 and n2denotes the number of units failed at stress S2respectively. 

The likelihood function becomes: 

 

-���, ��, .� = / .�� ���0�� ����1�� ��� 2−���0�� ���345

06� /2.�� ���0�� − 
�� 	47

06�
+ 
������1��3/8��� 2−���0�� ����1��3 ��� �−�� 
���

���47

06�
− �� 
���

��� 9 , 																																																																																																				�3.1� 
 

The log likelihood of the likelihood function is given by: 

 #$%;���, ��, .� = <#$%�.� − <� log���� − <� log����
− @���0�� ��� −45

06� @���0�� − 
�� + 
���
�� − �. + 1�47

06�
− 8@#$% ���0�� � −45

06� @#$% ���0�� − 
�� + 
���
47

06� A,																	 

 

 

(3.2) 

where,  n = n1 + n2 

log	���� = BC + B�D�,    i= 0,1,2 

 #$%;���, ��, .� = <#$%�.� − <��BC + B�D�� − <��BC + B�D��
− @��0�����EF1E5G5� −	45

06� @H��0�� − 
��I���EF1E5G7� + 
�����EF1E5G5�
47

06�
− �. + 1�@logH��0���EF1E5G5�I −45

06�  

�. + 1�∑ log KH��0 − 
I���EF1E5G7� + 
���EF1E5G5�L ,4706� (3.3) 

M#$%;M. = <. − @logH��0���EF1E5G5�I +45

06� @��0�����EF1E5G5� logH��0I45

06�
−@��0�����EF1E5G7� logH��0I47

06�
− @log KH��0 − 
I���EF1E5G7� + 
���EF1E5G5�L47

06�
− @��0�����EF1E5G7�

47

06� �BC + B�D�� − @��0�����EF1E5G5�
45

06� �BC + B�D��
+ <�
�����EF1E5G7��BC + B�D�� − <�
�����EF1E5G7� log�τ�− <�
�����EF1E5G5��BC + B�D�� + <�
�����EF1E5G5� log�τ� = 0.											�3.4� 
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M#$%;MBC = <. − @PH��0�� − 
��I.���EF1E5G7� + 
��.���EF1E5G5�Q47

06� − @��0��.���EF1E5G5�
45

06�= 0,																																																																																																																											�3.5� STUVWSE5 = D�<� − D� ∑ ���EF1E5G5�4506� + .<�D� − ∑ .D�H��0�� − 
��I���EF1E5G7�4706� −																	∑ .D�
�����EF1E5G5� = 0,4706� (3.6) 

 

 The above equations cannot be written in closed form so the MLEs can be 

obtained numerically. Here, the optim function in the R software (version:2.9.2) is used 

for maximization of the loglikelihood function to get the MLEs. Then, estimates .X, BCY 

and B�Yare obtained and their confidence intervals (CIs) are constructed. The second and 

mixed partial derivatives of log L are presented in Appendix A. 

 

4. Optimal Test Plan 
 Optimal stress change time can be determined by minimizing the asymptotic 

variance (AV) of ML estimates at 100p
th

 percentile. The 100p
th

 percentile of the Frechet 

lifetime tp(S0) at the design stress S0 is: 

 �Z�DC� = ��EF1E5GF��− log�����5[,                                                                                       
(4.1) 

 

The AV of the percentile estimate at the design stress can be derived as: 

 \]H�Z�̂DC�I = _S`a�GF�bSEFb S`a�GF�bSE5b S`a�GF�bS�Y c Σ _S`a�GF�bSEFb S`a�GF�bSE5b S`a�GF�bS�Y ce .																																			(4.2) 

 

where Σ is the variance-covariance matrix and optimum stress change time τ is obtained 

by minimizing \]H�Z�̂DC�I. 
 

5. Simulation Study 
 A simulation study is conducted to get the point and interval estimates based 

on the asymptotic normality of the MLEs. The simulation study is performed through 

following steps: 

 

1. The values for true parameters and stress combinations are chosen to be α = 

1.5, β0 = 3, β1=−1, τ = 14 and (S1= 0.5, S2= 1.5), (S1= 0.7, S2= 1.5),(S1= 0.5 , 

S2= 1.6) and(S1 = 0.7 , S2 = 1.6). 

 

2. The random samples of size n are generated from Frechet cumulative exposure 

model. 

 

3. The MLEs of model parameters .X, BCY and B�Yare obtained for each sample size 

and all combinations of stress levels. 

4. The performance of the MLEs is evaluated through variance of the estimates 

for all sample size and various combinations of stress levels. 

 

5. The 90% and 95% CIs are obtained for all sample sizes and different stress 

levels. 
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 The results drawn from the above simulation study are presented in Tables 1-4. 

From the results, conclusions are drawn regarding the behaviour of the estimators, 

which are summarized as follows: 

 

• From Tables 1-4, it is observed that as the sample size increases the variance of 

the estimates get smaller. 

 

• When the sample size increases, the interval of the estimates decreases. Further, 

the intervals of the estimates at γ = 90% is smaller than the interval of 

estimates at γ = 95%. It can also be observed that coverage probabilities for 

both γ =95% and γ =90% do not change much across the different sample 

sizes. 

 

• It can also be observed from Table II that the values of estimates are closer to the 

true values for stress combination (S1 = 0.5, S2 = 1.6) as compared to other 

stress combinations. 

 
 

n Parameters Estimates Variance 95%CI f95% 90%CI f90% 

25 . 1.8038 1.4208 0.3325, 4.1401 0.80 0.1570, 3.7647 0.88 

 B0 2.5102 0.2063 1.6191, 3.4004 0.78 1.7630, 3.2574 0.71 

 B1 -0.6727 0.0385 -1.0572, -0.2883 0.81 -0.9954, -0.3501 0.73 

50 . 1.6144 0.3284 0.4914, 2.7375 0.81 0.6719, 2.5570 0.90 

 B0 2.6504 0.0420 2.2487, 3.0521 0.79 2.3133, 2.9876 0.71 

 B1 -0.7701 0.0368 -1.1462, -0.3939 0.82 -1.0858, -0.4544 0.75 

75 . 1.5813 0.1317 0.8699, 2.2927 0.81 0.9842, 2.1783 0.91 

 B0 2.6799 0.0140 2.4478, 2.9120 0.80 2.4851, 2.8747 0.72 

 B1 -0.7941 0.0263 -1.1149, -0.4794 0.78 -1.0638, -0.5304 0.74 

100 . 1.5315 0.0669 1.0245, 2.0385 0.81 1.1060, 1.9571 0.92 

 B0 2.7146 0.0032 2.6039, 2.8253 0.80 2.6217, 2.8075 0.72 

 B1 -0.7952 0.0212 -1.0804, -0.5091 0.81 -1.0346, -0.5558 0.74 

150 . 1.5152 0.0347 1.1501, 1.8802 0.81 1.2088, 1.8216 0.93 

 B0 2.7088 0.0057 2.5602, 2.8574 0.80 2.5841, 2.8335 0.72 

 B1 -0.8059 0.0117 -1.0176, -0.5942 0.80 -0.9835, -0.6282 0.76 

200 . 1.5062 0.0085 1.3250, 1.6874 0.82 1.3541, 1.6583 0.93 

 B0 2.7207 0.0014 2.6466, 2.7949 0.80 2.6585, 2.7829 0.74 

 B1 -0.8075 0.0041 -0.9336, -0.6814 0.80 -0.9134, -0.7017 0.75 

 

Table 1:  Average point and interval estimates for α = 1.5, β0 = 3, β1 = −1, τ = 14, 

S1= 0.5 and S2 = 1.5 
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n Parameters Estimates Variance 95%CI f95% 90%CI f90% 

25 α 1.7109 0.4799 0.3531, 3.0687 0.81 0.5713, 2.8504 0.83 

 β0 2.5751 0.1409 1.8394, 3.3109 0.76 1.9576, 3.1926 0.70 

 β1 -0.7649 0.0292 -1.0997, -0.4300 0.80 -1.0459, -0.4838 0.76 

50 α 1.6876 0.1260 0.9920, 2.3832 0.81 1.1038, 2.2714 0.90 

 β0 2.6225 0.0563 2.3600, 2.9450 0.79 2.4070, 2.8980 0.73 

 β1 -0.7734 0.0251 -1.0640, -0.5828 0.81 -1.0254, -0.6215 0.73 

75 α 1.6615 0.1174 0.3029, 2.8954 0.81 0.5112, 2.6871 0.91 

 β0 2.6255 0.0529 2.1748, 3.0763 0.79 2.2472, 3.0039 0.74 

 β1 -0.7913 0.0139 -1.0975, -0.3651 0.83 -1.0387, -0.4240 0.75 

100 α 1.6014 0.2037 0.7167, 2.4861 0.85 0.8588, 2.3439 0.92 

 β0 2.6272 0.0330 2.2710, 2.9834 0.79 2.3282, 2.9261 0.73 

 β1 -0.8241 0.0150 -1.1823, -0.3059 0.83 -1.1119, -0.3763 0.79 

150 α 1.5624 0.0723 1.0352, 2.0896 0.82 1.1199, 2.0049 0.93 

 β0 2.7096 0.0011 2.6448, 2.7745 0.80 2.6552, 2.7641 0.73 

 β1 -0.8568 0.0106 -1.1678, -0.4659 0.82 -1.1114, -0.5223 0.74 

200 α 1.5015 0.0294 1.1626, 1.8345 0.82 1.2166, 1.7805 0.94 

 β0 2.7290 0.0022 2.6374, 2.8207 0.81 2.6521, 2.8059 0.73 

 β1 -0.9004 0.0038 -0.9719, -0.6850 0.82 -0.9488, -0.7080 0.73 

 

Table 2: Average point and interval estimates for α = 1.5, β0 = 3, β1 = −1, τ = 14, 

S1= 0.5 and S2= 1.6 
 

 
 
 

n Parameters Estimates  Variance       95%CI f95%      90%CI f90% 

25 α 1.7318 0.3226  0.6185, 2.8451 0.83 0.7974, 2.6662 0.80 

 β0 2.5925 0.0387  2.2071, 2.9780 0.82 2.2690, 2.9161 0.76 

 β1 -0.7872 0.0378  -1.1680, -0.4064 0.78 -1.1068, -0.4676 0.72 

50 α 1.6961 0.0839 1.1283, 2.2640 0.83 1.2195, 2.1728 0.83 

 β0 2.6531 0.0052 2.5127, 2.7953 0.79 2.5354, 2.7726 0.71 

 β1 -0.8378 0.0211 -1.1226, -0.5529 0.79 -1.0768, -0.5987 0.72 

75 α 1.6594 0.0814 1.10034, 2.2184 0.84 1.1902, 2.1286 0.81 

 β0 2.6660 0.0128 2.4439, 2.8882 0.80 2.4796, 2.8525 0.74 

 β1 -0.8541 0.0107 -1.0567, -0.6515 0.87 -1.0242, -0.6841 0.74 

100 α 1.6013 0.0661 1.0941, 2.1084 0.80 1.1756, 2.0269 0.89 

 β0 2.7112 0.0039 2.5895, 2.8329 0.78 2.6090, 2.8134 0.70 

 β1 -0.8598 0.0105 -1.0439, -0.6357 0.81 -1.0111, -0.6685 0.77 

150 α 1.6077 0.0354 1.3057, 1.9896 0.82 1.3607, 1.9346 0.88 

 β0 2.7207 0.0027 2.5865, 2.7909 0.79 2.6030, 2.7744 0.73 

 β1 -0.8647 0.0089 -1.0298, -0.6596 0.81 -1.0000, -0.6893 0.72 

200 α 1.5793 0.0349 1.2133, 1.9452 0.83 1.2721, 1.8864 0.89 

 β0 2.7209 0.0029 2.5941, 2.8041 0.80 2.6109, 2.7872 0.73 

 β1 -0.8695 0.0012 -1.0371, -0.6219 0.83 -1.004, -0.6553 0.77 

 

Table 3:  Average point and interval estimates for α = 1.5, β0 = 3, β1 = −1, τ = 14, 

S1= 0.7 and S2= 1.5 
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n Parameters Estimates Variance 95%CI f95% 90%CI f95% 

25 α 1.8384 0.6070 0.3113, 3.3655 0.82 0.5567, 3.1200 0.85 

 β0 2.5308 0.1617 1.7426, 3.3190 0.79 1.8693, 3.1924 0.71 

 β1 -0.8220 0.0352 -1.1895, -0.4546 0.82 -1.1304, -0.5136 0.72 

50 α 1.8161 0.1650 1.02013, 2.6122 0.82 1.14806, 2.4843 0.87 

 β0 2.5892 0.0289 2.2558, 2.9226 0.79 2.3093, 2.8690 0.74 

 β1 -0.8752 0.0079 -1.0495, -0.7008 0.80 -1.0215, -0.7288 0.72 

75 α 1.8090 0.5249 1.3599, 2.2580 0.82 1.4321, 2.1858 0.88 

 β0 2.6672 0.0047 2.5329, 2.8015 0.79 2.5545, 2.7799 0.74 

 β1 -0.8826 0.0071 -1.0914, -0.7606 0.79 -1.0648, -0.7872 0.74 

100 α 1.7141 0.2561 0.7222, 2.7060 0.82 0.8816, 2.5466 0.88 

 β0 2.6746 0.0036 2.2080, 3.0813 0.79 2.2782, 3.0111 0.74 

 β1 -0.8850 0.0070 -1.0153, -0.6848 0.80 -0.9887, -0.7114 0.74 

150 α 1.6723 0.0311 1.3268, 2.0177 0.84 1.3823, 1.9622 0.88 

 β0 2.6853 0.0027 2.5841, 2.7864 0.79 2.6004, 2.7701 0.73 

 β1 -0.8855 0.0043 -1.0147, -0.7564 0.82 -0.9939, -0.7771 0.75 

200 α 1.5415 0.0172 1.2843, 1.7988 0.84 1.3256, 1.7574 0.90 

 β0 2.7204 0.0024 2.6057, 2.8350 0.79 2.6242, 2.8166 0.73 

 β1 -0.8973 0.0041 -0.9425, -0.6920 0.83 -0.9224, -0.7121 0.75 

 

Table 4:  Average point and interval estimates for α = 1.5, β0 = 3, β1 = −1, τ = 14, 

s1= 0.7 and s2= 1.6 

 

6. Optimum Test Design for Real Data 
 For optimization, we considered the real-life data set for failure times in hours 

for the model 7835 power amplifier vacuum tube used in the Linac accelerated at Fermi 

National Accelerated Laboratory, used by McCrory (2006) are presented in Table 5. To 

determine the optimal stress changing point of the 100p
th
 percentile at design stress 

level S0, we use the experimental data (see Table 5) with n=125, α=0.66, β0=10, β1= -2, DC = 0.3,	S1=1 and S2=1.5. Moreover, the plot of \]H�Z�̂DC�I versus the stress 

changing point τ is presented in Figure. 1 and optimal stress changing point is τ∗ = 

16000. 

 
 

Figure 1:  hiHjk�̂lm�Ivs. Times 
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Stress levels Failure Data 

 

 

 

S1=1 

 

 

 

 

 

 

 

S2=1.5 

25  2664  5469  5929  6845  7190  7828  7845  7867  8050  8063  8404  

8568  8589  8729  8912  8947  9022  9319  9515  9773  9896 10039 

10051 10064 10216 10265 10322 10322 10378 10388 10452 10567 

10615 10634 10661 10687 10830 10880 10880 10914 11184 11305 

11448 11466 11674 11687 11795 11869 11914 12027 12258 12350 

12484 12651 12824 12920 13084 13264 13282 13414 13444 13513 

13540 13594 13736 13779 13852 13853 14004 14145 14174 14190 

14438 14492 14741 14741 14791 14868 15002 15018 15299 15346 

15363 15599 15812 15843 15870 15943 15981 15996 

 

16214 16284 16547 16640 16752 16766 16852 16942 16987 17163 

17833 17948 17973 18102 18632 19117 19203 19433 19598 20054 

20340 20939 21094 21587 21983 22269 22699 22874 22910 25773 

26466 31882 40859 48449 

 

Table 5: Failure times (in hours) for power amplifier vacuum tube, model 7835 
 

1) The MLEs are.X = 0.6580439   , BCY=9.4899959 and B�Y= -1.0809954 

2) The inverse of the estimated fisher information matrix is: 

 

��� = n 1.471328e − 17 −2.691183e − 17 −7.011267e − 22−2.691183e − 17 3.190937e − 02 −7.608399e − 13−7.011267e − 22 −7.608399e − 13		 5.052425e − 13 9 
 
3) The 90% and 95% CIs for the model parameters are provided in Table 6: 

 

 

Parameters 90% C.I 95% C.I 

α 

β0 

β1 

0.6548,0.6613 

8.6510,10.3290 

-2.5928,0.4308 

0.6542, 0.6619 

8.4904,10.4896 

-2.8822, 0.7202 

 

Table 6: Confidence intervals of the parameters 

 

 As shown from (Table 6) the interval of the estimates at γ = 90% is shorter in 

length than the interval of the estimates at γ = 95%. The width of CIs are too narrow 

which indicates that point estimates are stable and Frechet CEM is more suitable for 

this data set. 

 

4. Hypotheses testing about model parameters are performed using likelihood ratio 

method. 

 

An important inference problem concerning the regression coefficients is to test of 

hypothesis H0: β1= 0 against H1: β1≠0. To test H0against H1, the likelihood ratio test 

statistic is: 
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−2#$%Λ = −2log � WHEF̂,CIWHEFY,E5YI ,                                                                                     (6.1) 

 
where , BCY and , B�Y  are unrestricted MLEs of parameters β0 and β1 which are obtained 

by solving the system of nonlinear equations. While BĈ is the restricted MLE of the 

parameter β0under H0. The test with approximate size γ is to reject H0if and only if, Λ> 

χ
2

1−γ,1where χ
2

1−γ,1 is the (1 −γ) quantile of the Chi-square distribution with one degrees 

of freedom. Similarly, we can test the hypothesis for H0
ʹ
:β0 = 0 against H1

ʹ
:β0≠ 0. The 

results for hypotheses testing are provided in Table 7. 

 

 

Model Λ d.f χ
2

0.05 

Full model (w0, w1) 

- - - 

w0 = 0 1393.06 1 3.841 w1 = 0 1151.324 1 3.841 

 

Table 7:  Test for parameters in the model log θi = β0 + β1si 

 

 Table 7 shows the likelihood ratio statistic for tests of various sub models 

against the full model. The tests H0
ʹ
:β0 = 0 and H0:β1 = 0 are rejected. As the hypotheses 

are rejected so we can say that there is a log-linear relationship between stresses Si and 

scale parameter θi and conclude that parameter β0 has an important role in model. 

 

6.1 Optimal Times with Variation in Stress Levels 
 We obtained the optimum stress changing time τ for many combinations of 

stress levels. The results are determined from Fig. 2 and presented in Table 8. The 

initial values of Frechet step stress model parameters and different sets of stress levels 

are α = 0.66, β0 = 10, β1 = −2, S1= 0.75, 0.77 and S2= 0.85, 0.87. 
 

 

Figure 2: hiHjk�̂lm�I	xy	z 
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S1 S2 z∗ AV tˆp(S0) 

0.75 0.85 15700 4.11E+08 

 0.87 15650 4.10E+08 

0.77 0.85 15550 2.99E+08 

 0.87 15500 2.96E+08 

 

Table 8: Optimum times of changing stress 

 

 As shown in Table 8 for fixed values of S1 the optimum times τ∗ decreases as 

the values of S2 increases. The AV also decreases for fixed values of S1as the value of 

S2increases. Conversely, for same values of S2 the optimum times τ∗ decreases as the 

values of S1 increases. The AV also decreases for fixed values of S2 as the value of S1 

increases. 
 

7. Sensitivity analysis 
 Suppose that there are uncertainties in estimating the initial values for the 

model parameters (α, β0, β1).  We are interested in the sensitivity of the optimal stress 

change time (
∗) to the changes in the initial values for the model parameters (α, β0, β1).  

Figures 3 shows the relationship of the resultant optimal value 
∗with different initial 

values for the model parameters (α, β0, β1). 

 

 
Figure 3:  Optimal times 



∗∗∗∗ vs. α, β0 and β1 
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As shown in Figures 3 a small change in the initial value α, β0 and β1 will result in a 

large change in the optimal times 



∗∗∗∗.  

 

8. Conclusion 

 The Frechet distribution has widespread applications in the field of reliability.  

It handles complex circuits very easily and is also used for Opto-electronic device such 

as solar cell, photo diodes, photo transistor, light emitting devices, etc.  In this paper, 

we propose the Frechet step stress model with two stress levels.  All test units are 

initially put on the lower stress level and run until time τ. Then the stress is changed to 

high level and the test continues until all units fail. 

 

 Simulation study is used to get the point and interval estimates of model 

parameters.  Based on the simulation results the following conclusions are drawn.  For 

the parameters α, β0 and β1 the MLEs .X, BCY and B�Y has small values of variance also as 

the sample size increases the value of variance decreases.   It is also noted that the CIs 

for .X, BCY and B�Y has a small interval of the estimates for bothγ = 90% and γ = 95%. The 

interval of the estimates decreases as the sample size increases and intervals of the 

estimates at γ = 95% is wider than the interval of estimates at γ = 90%.  Also, their 

respective coverage probabilities do not change much with the different sample sizes.   

So, it can be concluded that the present step stress ALT plan works well and has a good 

choice to be considered in the field of ALT.  Also, the results indicate that for given 

true parameter values and stress levels this combination (S1 = 0.5, S2 = 1.6) of stress 

level parameter values are closer to their true parameter values than the other sets of 

stress levels.  From the results, it appears that for small value of S1 and large value of S2 

parameter estimates are better than all other stress combinations.  Thus, it is 

recommended to use a small value of S1 and a large value of S2. 

 

 The optimum plan is subject to practical constraints such as the minimum 

number of failures at the low stress level.  This optimization approach is demonstrated 

by a real-life data set.  For some selected values of the parameters and stress levels we 

have designed the plot between	\]H�Z�̂DC�Iversus Times. Thus, optimum stress change 

time is obtained graphically. Then we investigated point estimates and approximate 

interval estimates.  The hypotheses testing of model parameters are designed and it is 

found that there is a log-linear relationship between stress levels and scale parameter of 

the Frechet step stress model.  Researchers, also focus to obtain the optimum stress 

changing time τfor many combinations of stress levels.  Variation of optimal time is 

assessed and found that by increasing stress level S2 and for fixed values of S1 optimum 

stress changing times are decreasing.  Conversely, optimal time decreases on increasing 

stress level S1 and for the same values of S2 while parameters are fixed.  Though, 

stresses lie between 0.75< S1<0.77 and 0.85< S2<0.87, from the results, we found that 

stress levels have an effect on optimal stress change time which recommends that the 

model is suitable in the field of highly reliable products such as insulation of cables, 

transformers, capacitors, etc. to obtain the early failure of such products than that of the 

normal operating conditions. Further, sensitivity analysis shows that the initial values of 

α, β0 and β1significantly affect the resultant optimal plans. Therefore, we need to be 

very careful when estimating the values of parameters. 
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Appendix A 
  

 Elements of FIM are as follows: 
 M�log	 ;MBC� = <�
��.����EF1E5G7� − @��0��.����EF1E5G7� −47

06� <�
��.����EF1E5G5�

− @��0��.����EF1E5G5�45
06� = 0, 

M�log	 ;MB�� = <�
��D��.����EF1E5G7�

− @��0��.�D�����EF1E5G7� −47
06� <�
��.�D�����EF1E5G5�

− @��0��.�D�����EF1E5G5�45
06� = 0, 

M�log	 ;MB�BC = M�log	 ;MBCB�= <�
��D�.����EF1E5G7�
− @��0��.�D����EF1E5G7� −47

06� <�
��.�D����EF1E5G5�

− @��0��.��D���EF1E5G5� = 0,45
06�  
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M�log	 ;M.� = − <.� − @��0�����EF1E5G5�H#$%��0I�45
06�

− @��0�����EF1E5G5�H#$%��0I�45
06� �BC + B�D���

− @��0�����EF1E5G7��BC + B�D���47
06�

+@��0�����EF1E5G7��BC + B�D�� logH��0I47
06�− <�
�����EF1E5G5� log�
� �BC + B�D��+ <�
�����EF1E5G7� log�
� �BC + B�D��

− @��0��HlogH��0II����EF1E5G7�47
06�

+@��0�����EF1E5G7� logH��0I �BC + B�D��47
06�− <�
�����EF1E5G7� log�
� �BC + B�D��− <�
�����EF1E5G7� log�
� �BC + B�D���

+ @��0�����EF1E5G5�#$%��0
45
06� �BC + B�D��

+ <�
�����EF1E5G5��log�
���
+ @��0�����EF1E5G5�#$%��0�BC + B�D��45

06�+ <�
�����EF1E5G7��log�
��� − <�
�����EF1E5G5��BC + B�D��− <�
�����EF1E5G5�log	�
� = 0, 
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M�log	 ;MBCM. = M�log	 ;M.MBC
= < + @��0�����EF1E5G5�.45

06� #$%��0 − @��0�����EF1E5G5�45
06�

− @��0�����EF1E5G7� +47
06� @��0�����EF1E5G7�α logH��0I47

06�
− @��0�����EF1E5G5�.45

06� �BC + B�D�� − <�
�����EF1E5G7�
+ <�
�����EF1E5G7�α�BC + B�D�� + <�
�����EF1E5G5�+ <�
�����EF1E5G5�α�BC + B�D�� − <�
�����EF1E5G7�α log�
�
− @��0�����EF1E5G7�.�BC + B�D�� +47

06� <�
�����EF1E5G5�.log	�
�
= 0, M� log ;MB�M. = M� log ;M.MB�
= <�D� + <��D� + D�� + @��0�����EF1E5G5�.45

06� #$%��0
− <�
�����EF1E5G7�D� + <�
�����EF1E5G7�α log�
�− <�
�����EF1E5G5�α�BC + B�D�� + <�
�����EF1E5G5�α log�
�
+ @��0�����EF1E5G7�α logH��0I +47

06� <�
�����EF1E5G7�α�BC + B�D��
− @��0�����EF1E5G5�45

06� α�BC + B�D�� − @��0�����EF1E5G5�D�
45
06�

− @��0�����EF1E5G7�α�BC + B�D�� −47
06� @��0�����EF1E5G7�D�

47
06�− <�
�����EF1E5G5� D� = 0. 

 

The FIM is: 

 

��,EF,E5 =
|}
}}
}}
~ − M�;M.� − M�;M.MBC − M�;M.MB�− M�;MBCM. − M�;MBC� − M�;MBCMB�
− M�;MB�M. − M�;MB�MBC − M�;MB�� ��

��
��
�
. 

 

 

 


