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Abstract 
 The problem of an acceptance sampling plans is considered in this paper when the 

lifetime follows a Marshall-Olkin Esscher Transformed Laplace Distribution (MOETL), for 

several values of an acceptance number, confidence levels and in addition to fixed ratio values to 

the particular mean lifetime. In the proposed sampling plan parameters including the minimum 

sample sizes, the operating characteristic function and producer's risk are calculated. A real data 

set is used as an illustrative example. 
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1. Introduction 
 The high quality standard of a given product is the main target of the industry 

now days. Every industry is trying best to improve the quality standards of product. 

Statistical quality control (SQC) techniques have been widely used in quality 

management decision. The control charts have been widely used to monitor the 

manufacturing process while inspection of finished product is done through acceptance 

sampling plan. The acceptance sampling plans have been used for the inspection of raw 

material to finished product. Inspection through a well designed acceptance sampling 

plan minimizes two types of risk; the producer ‘s risk and consumer’s risk in addition to 

find the minimum  sample size and minimize cost of inspection at the same time.  

 

 Due to high reliability product, it may impossible to wait for specified number 

of failures. Therefore, for the inspection of this type of product, time truncated life tests 

are performed. In this type of experiment, number of failure and time of experiment is 

fixed in advance. A random sample of items are selected and tested. Then the decision 
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on a given lot of products is accepted if the number of failures is less than a pre-

specified number within specified time. The life test is truncated as the number of 

failures is greater than the pre-specified number of failures or the time of experiment is 

terminated, whichever earlier first.  

 

 Since the failure of different products follow different statistical distribution. 

Therefore, several authors in the literature used various distributions to develop a new 

life time truncated tests. The problem of acceptance sampling based on truncated life 

tests was considered by many authors, Al-Omari (2014) considered acceptance 

sampling plans for three parameters Kappa distribution. Al-Nasser and Al-Omari 

(2013) investigated the problem when the product quality following the exponentiated 

Fréchet distribution. Al-Omari et al, (2016), discussed the same problem when the 

truncated distribution is Half Normal. Baklizi et al, (2005) developed new plans in case 

of Raleigh Model. Kantam et al. (2001) considered the log-logistic distribution for 

truncated life tests. Ramaswamy and Jayasri (2014) considered time truncated 

acceptance sampling plans for inverse Rayleigh distribution, Rosaiah and Kantam 

(2005) for the inverse Raleigh distribution. Aslam and Shabaz (2007) proposed an 

reliability test plans. More details about acceptance sampling can be found in Al-Nasser 

and Gogah (2017), Al-Omari et al (2017), Aslam and Jun (2013) and Al-Omari (2015).  

 

 The rest of the paper is organized as follows. The Marshall-Olkin Esscher 

transformed Laplace distribution with its properties are given in Section 2. In Section 3, 

the proposed sampling plan is given. The results are explained and discussed by some 

illustrative examples in Section 4. Conclusions are summarized in Section 5. 

 

2. Marshall-Olkin Esscher Transformed Laplace Distribution  
 The Esscher transformed Laplace (ETL) probability density function (pdf) is 

given by 
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and the corresponding cumulative distribution function (cdf) is 
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 George and George (2013) used the method suggested by Marshall and Olkin 

(1997) to introduce a method of obtaining a new family of survival functions ( )F x  by 

adding a new parameter to the base distribution as 
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where ( ) ( )x F xΨ =  if 0β = . George and George (2013) suggested the Marshall-Olkin 

Esscher Transformed Laplace distribution (MOETLD) with probability density function 

defined as 
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where ( )21λ β θ= −  and 
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, 0β > . The cumulative 

distribution function of the MOETL distribution is given by 
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where 0k >  and 0λ >  are the parameters of the distribution. The rth  raw moment of 

the MOETL distribution denoted by r
α  is given by 
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Therefore, the mean and variance of the MOETLD are 
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The coefficient of skewness and kurtosis of the MOETLD, respectively, are given by 
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The MLEs of the MOETLD parameters are 
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3. The suggested acceptance sampling plans 
 In this section, we develop a new acceptance sampling plans when lifetime 

distribution is MOETL distribution that defined by (1) and (2).  

 

 A sampling plan consists of the following quantities: (1) the number of units n, 

on test; (2) an acceptance number c, where if c or less failures obtained during the test 
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time, the lot is accepted; (3) the maximum test duration time, t; (4) a ratio 0
/t µ , where 

0
µ  is the specified average life. 

 

The producer's risk can be defined in probability terms as the probability of 

rejecting the lot when 0
µ µ≥  (is fixed not to exceed *1 P− ), in which the true mean 

life is less the specified life mean 0
µ .  

 

3.1 Minimum sample size 
 In order to use the Binomial theory, we consider that the lot size is sufficiently 

large to obtain the probability of accepting a lot. Here, the problem is to find the 

minimum sample size n that satisfies a binomial inequality which can be written in the 

following form:  
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up to c for given values of *P  ( )*0 1P< < , where 0
( ; )p F t µ=  is the probability of a 

failure observed during the time t which depends only on the ratio /
o

t µ .  

 

 If the number of observed failures during time t is at most c, then from (8) we 

can confirm with probability that ( ) ( )
0

; ;F t F tµ µ≤ ,  which implies that 0
µ µ≤ . 

 

 Table 1 contained the smallest sample sizes that satisfying Inequality (8) with 

/ 0.628,
o

t µ =  0.942, 1.257, 1.571, 2.356, 3.141, 3.927, 4.712 and *P = 0.75, 0.9, 0.95, 

0.99. These values of /
o

t µ  are consistent with the values of Gogah and Al-Nasser 

(2018),  Kantam and Rosaiah (2001) and Baklizi et al. (2005). 

 

3.2 Operating characteristic of the sampling plan ( )0, , /m c t µ  

 The operating characteristic (OC) function of the sampling plan ( )0, , /m c t µ  

provides the probability of acceptance the lot and it is defined as 

0
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 For a given value of the producer's risk, say ℜ , based on the new sampling 

plan, one may be interested in determining what smallest value of 0
/µ µ  that will assert 

the producer's risk is at most ℜ . The value of 0
/µ µ  is the minimum positive number 

for which 0

0

t
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Acceptance sampling plans from truncated life tests 

For a given acceptance sampling plan (
smallest value of 0

/µ µ  satisfying Inequality (11) are presented in Table 3.

 

4. Description of the tables and examples
 Assume that an researcher wants to establish the true average life to be at least 

1000 hours with confidence level of P

at 628t =  hours with acceptance number 

Table (1) is 10n = . This plan is implemented as: put 10 items on test for 628 hours, 

reject the lot if more than 2 failures are noted before specified time, otherwise accept 

the lot of the product. From Table (2), as an example for 

OC value is 0.466687 for 
0

/ 2µ µ = . From Table 2 the operating characteristic values 

for the sampling plan ( )0
, , /m c t µ = (10, 2, 0.628

 

0
/µ µ  2 4 

OC 0.466687 0.830618 0.929636

 

This means that the producer's risk is 0.533313 when 

0.169382 for 
0

3µ µ= . However, the producer's risk close to zero for 

 For various values of c and /t

of 0
/µ µ . For example, for 2c = , / 0.628t µ

the product must have a mean life of 6.940 times of the specified 

to accept the lot with probability 0.95.

sample sizes as well as the OC function for several values of the acceptance number 

and probability. 

 

Fig. 1: Minimum Sample size Vs. 

number 

Acceptance sampling plans from truncated life tests ...                                                              107

 

( )0
, , /m c t µ  at a given confidence level 

* ,P  the 

satisfying Inequality (11) are presented in Table 3. 

4. Description of the tables and examples 
Assume that an researcher wants to establish the true average life to be at least 

*
0.90P =  and it is desired to stop the experiment 

hours with acceptance number 2c = . Then the minimum sample size from 

This plan is implemented as: put 10 items on test for 628 hours, 

reject the lot if more than 2 failures are noted before specified time, otherwise accept 

From Table (2), as an example for *
0.90P = , 

0
/ 0.628t µ = , the 

/ 2 . From Table 2 the operating characteristic values 

= )10, 2, 0.628  are as follows: 

6 8 10 12 

0.929636 0.96457 0.979737 0.987334 

This means that the producer's risk is 0.533313 when 
0

2µ µ= , and it reduces to 

. However, the producer's risk close to zero for 0
/ 6µ µ ≥ . 

0
/t µ  at producer's risk 0.05 we can get the values 

0
/ 0.628t µ = , the value of 0

/µ µ  is 6.940, that is, 

the product must have a mean life of 6.940 times of the specified average life in order 

to accept the lot with probability 0.95. Fig. 1 and Fig. 2 illustrate the variation in the 

sample sizes as well as the OC function for several values of the acceptance number 

 
 

Minimum Sample size Vs. 0
/t µ  with probability *P  and acceptance 

number c=2 
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Fig. 2: OC function when *P  = 0.95 Vs. 

 

 

 

   

*P  c 0.628 0.942 1.257 

0.75 0 3 2 2 

 1 5 4 3 

 2 8 6 5 

 3 10 8 6 

 4 13 9 8 

 5 15 11 9 

 6 17 13 11 

 7 20 15 12 

 8 22 17 14 

 9 24 18 15 

 10 27 20 17 

0.90 0 4 3 2 

 1 7 5 4 

 2 10 7 6 

 3 13 9 8 

 4 15 11 9 

 5 18 13 11 

 6 21 15 12 

 7 23 17 14 

 8 26 19 16 

 9 28 21 17 

 10 30 23 19 
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0.95 Vs. 0
/µ µ  and acceptance number c 

0
/t µ      

 1.571 2.356 3.141 3.927 4.712 

1 1 1 1 1 

3 2 2 2 2 

4 4 3 3 3 

6 5 4 4 4 

7 6 5 5 5 

8 7 6 6 6 

10 8 8 7 7 

11 9 9 8 8 

12 10 10 9 9 

14 12 11 10 10 

15 13 12 11 11 

2 1 1 1 1 

4 3 2 2 2 

5 4 4 3 3 

7 5 5 4 4 

8 7 6 5 5 

9 8 7 7 6 

11 9 8 8 7 

12 10 9 9 8 

14 11 10 10 9 

15 12 11 11 10 

16 14 12 12 11 
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0.95 0 5 4 3 2 2 1 1 1 

 1 9 6 5 4 3 3 2 2 

 2 12 8 7 6 4 4 4 3 

 3 14 10 8 7 6 5 5 4 

 4 17 12 10 9 7 6 6 5 

 5 20 14 12 10 8 7 7 7 

 6 23 16 13 12 9 8 8 8 

 7 25 18 15 13 11 10 9 9 

 8 28 20 17 15 12 11 10 10 

 9 30 22 18 16 13 12 11 11 

 10 33 24 20 17 14 13 12 12 

0.99 0 8 5 4 3 2 2 2 1 

 1 12 8 6 5 4 3 3 3 

 2 15 11 8 7 5 5 4 4 

 3 18 13 10 9 7 6 5 5 

 4 21 15 12 10 8 7 6 6 

 5 24 17 14 12 9 8 7 7 

 6 27 19 16 13 11 9 9 8 

 7 30 21 17 15 12 10 10 9 

 8 33 23 19 16 13 12 11 10 

 9 35 25 21 18 14 13 12 11 

 10 38 28 22 19 16 14 13 12 

 
Table 1: Minimum sample sizes necessary to assert the mean life to exceed a given 

value 0
µ , with probability *P  and acceptance number c, under the MOETLD 

with 0.03k =  

 
  

  0
/µ µ  

   
P* n 

0
/t µ   2 4 6 8 10 12 

0.75 8 
0.628 0.628347 0.901487 0.961809 0.981451 0.989623 0.993610 

 6 
0.942 0.594152 0.887971 0.955957 0.978480 0.987929 0.992560 

 5 
1.257 0.562092 0.874144 0.949766 0.975273 0.986075 0.991397 

 4 
1.571 0.618460 0.896011 0.959300 0.980173 0.988908 0.993180 

 4 
2.356 0.362336 0.764731 0.896059 0.946028 0.968604 0.980184 

 3 
3.141 0.503297 0.838938 0.932177 0.965644 0.980316 0.987704 

 3 
3.927 0.365026 0.755448 0.889090 0.941503 0.965628 0.978158 

 3 
4.712 0.258572 0.668545 0.838904 0.911687 0.946824 0.965635 

0.90 10 
0.628 0.466687 0.830618 0.929636 0.96457 0.979737 0.987334 

 7 
0.942 0.473277 0.833681 0.931149 0.965438 0.980291 0.987716 

 6 
1.257 0.407901 0.797513 0.913496 0.955873 0.974598 0.984073 

 5 1.571 0.417563 0.802066 0.915622 0.957015 0.975283 0.984518 
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 4 
2.356 0.362336 0.764731 0.896059 0.946028 0.968604 0.980184 

 4 
3.141 0.193283 0.618644 0.811686 0.896083 0.937208 0.959331 

 3 
3.927 0.365026 0.755448 0.88909 0.941503 0.965628 0.978158 

 3 
4.712 0.258572 0.668545 0.838904 0.911687 0.946824 0.965635 

0.95 12 
0.628 0.331519 0.749688 0.888873 0.942042 0.966125 0.978513 

 8 
0.942 0.367666 0.773663 0.901487 0.949221 0.970566 0.981451 

 7 
1.257 0.284576 0.713615 0.869406 0.931022 0.959429 0.974188 

 6 
1.571 0.264947 0.696404 0.859632 0.925322 0.95589 0.971861 

 4 
2.356 0.362336 0.764731 0.896059 0.946028 0.968604 0.980184 

 4 
3.141 0.193283 0.618644 0.811686 0.896083 0.937208 0.959331 

 4 
3.927 0.097408 0.480584 0.716224 0.834137 0.89604 0.930948 

 3 
4.712 0.258572 0.668545 0.838904 0.911687 0.946824 0.965635 

0.99 15 
0.628 0.186465 0.621968 0.815552 0.898762 0.938918 0.960406 

 11 
0.942 0.154266 0.583000 0.791021 0.883731 0.929320 0.953989 

 8 
1.257 0.192514 0.627884 0.819382 0.901313 0.940715 0.961734 

 7 
1.571 0.160602 0.589449 0.795038 0.886287 0.931048 0.955220 

 5 
2.356 0.173747 0.601705 0.802147 0.890524 0.933743 0.957037 

 5 3.141 0.064288 0.417773 0.668978 0.802188 0.874272 0.915683 

 4 3.927 0.097408 0.480584 0.716224 0.834137 0.896040 0.930948 

 4 4.712 0.047456 0.362336 0.618583 0.764731 0.847285 0.896059 

 

Table 2: Operating characteristic values for the sampling plan ( )0
, , /n c t µ  for a 

given probability 
*,P  with acceptance number c = 2 under the MOETLD with 

0.03k =  

 
       0

/t µ           
P*  c 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712 

0.75 0 38.735 38.031 50.749 31.147 46.71 62.274 77.857 93.42 

 1 7.981 9.245 8.69 10.86 9.334 12.444 15.558 18.668 

 2 5.368 5.693 6.012 5.509 8.262 6.843 8.556 10.266 

 3 3.882 4.411 3.979 4.973 5.624 4.908 6.137 7.363 

 4 3.482 3.262 3.689 3.769 4.354 3.943 4.929 5.915 

 5 2.976 2.983 2.976 3.075 3.613 3.364 4.206 5.047 

 6 2.645 2.790 2.924 3.146 3.128 4.170 3.722 4.466 

 7 2.574 2.646 2.539 2.749 2.786 3.714 3.375 4.049 

 8 2.377 2.535 2.542 2.457 2.531 3.375 3.112 3.734 

 9 2.226 2.265 2.291 2.552 2.856 3.112 2.906 3.486 

 10 2.210 2.214 2.312 2.340 2.644 2.901 2.739 3.286 

0.90 0 52.621 58.103 50.749 63.426 46.71 62.274 77.857 93.42 

 1 11.63 11.971 12.336 15.417 16.287 12.444 15.558 18.668 

 2 6.940 6.874 7.596 7.514 8.262 11.015 8.556 10.266 
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 3 5.289 5.118 5.885 6.170 5.624 7.498 6.137 7.363 

 4 4.132 4.245 4.352 4.610 5.652 5.804 4.929 5.915 

 5 3.711 3.726 3.981 3.719 4.612 4.816 6.021 5.047 

 6 3.425 3.380 3.325 3.654 3.939 4.170 5.213 4.466 

 7 3.056 3.134 3.203 3.173 3.470 3.714 4.643 4.049 

 8 2.923 2.949 3.104 3.177 3.123 3.375 4.219 3.734 

 9 2.698 2.804 2.781 2.863 2.856 3.112 3.890 3.486 

 10 2.521 2.688 2.742 2.617 3.084 2.901 3.627 3.286 

0.95 0 67.041 78.932 77.532 63.426 95.118 62.274 77.857 93.42 

 1 15.308 14.703 15.974 15.417 16.287 21.713 15.558 18.668 

 2 8.516 8.052 9.172 9.493 8.262 11.015 13.771 10.266 

 3 5.758 5.823 5.885 6.170 7.458 7.498 9.374 7.363 

 4 4.782 4.735 5.010 5.439 5.652 5.804 7.256 5.915 

 5 4.200 4.095 4.477 4.350 4.612 4.816 6.021 7.225 

 6 3.814 3.674 3.722 4.155 3.939 4.170 5.213 6.255 

 7 3.378 3.377 3.531 3.590 4.122 4.625 4.643 5.571 

 8 3.195 3.155 3.382 3.530 3.684 4.163 4.219 5.062 

 9 2.934 2.982 3.023 3.171 3.349 3.807 3.89 4.668 

 10 2.832 2.845 2.954 2.889 3.084 3.525 3.627 4.352 

0.99 0 113.83 100.561 105.326 96.899 95.118 126.81 158.543 93.42 

 1 20.891 20.197 19.620 19.965 23.121 21.713 27.147 32.573 

 2 10.888 11.591 10.745 11.463 11.268 15.023 13.771 16.523 

 3 7.638 7.934 7.769 8.534 9.253 9.943 9.374 11.248 

 4 6.082 6.198 6.318 6.261 6.913 7.535 7.256 8.707 

 5 5.179 5.199 5.464 5.595 5.577 6.148 6.021 7.225 

 6 4.592 4.553 4.903 4.652 5.480 5.252 6.566 6.255 

 7 4.180 4.102 4.182 4.412 4.758 4.625 5.783 5.571 

 8 3.875 3.770 3.935 3.880 4.229 4.911 5.204 5.062 

 9 3.522 3.516 3.742 3.778 3.826 4.464 4.760 4.668 

 10 3.349 3.470 3.377 3.426 3.924 4.111 4.407 4.352 

 

Table 3: Minimum ratio of true mean life to specified life for the acceptability of a 

lot with producer’s risk of 0.05 and under MOETLD with 0.03k =  

 In Table (4), we summarized the minimum sample sizes obtained by other 

researchers for different distributions. However, for fixed probability and an acceptance 

number, we noted that the minimum sample sizes based on the suggested sampling 

plans are less than their counterparts obtained by Baklizi and El Masri (2004) for the 

Birnbaum Saunders distribution, Kantam et al. (2001) for the log-logistic model, and 

Balakrishnan et al. (2007) for the Generalized Birnbaum–Saunders Distribution.        

                                                                                                                                                                      

   

0
/t µ
     

c 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712 

Baklizi and El 

Masri (2004) 0 12 8 6 5 3 3 2 2 

 1 18 11 8 7 5 4 4 3 

 2 23 15 11 9 7 6 5 5 

 3 28 18 13 11 8 7 6 6 

 4 33 21 16 13 10 8 7 7 
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 5 37 23 18 15 11 10 9 8 

 6 42 26 20 17 13 11 10 9 

 7 46 29 22 19 14 12 11 10 

 8 50 32 24 21 16 14 12 12 

 9 54 34 27 22 17 15 14 13 

 10 58 37 29 24 19 16 15 14 

Kantam et al. 

(2001) 0 14 8 5 4 3 2 2 2 

 1 21 11 8 6 5 4 4 3 

 2 27 15 10 8 6 5 5 5 

 3 32 18 13 10 8 7 6 6 

 4 37 21 15 12 9 8 7 7 

 5 43 24 17 14 11 9 9 8 

 6 47 27 19 16 12 10 10 9 

 7 52 29 21 17 13 12 11 10 

 8 57 32 23 19 15 13 12 12 

 9 62 35 25 21 16 14 13 13 

 10 66 38 27 23 17 15 14 14 

Balakrishnan 

et al. (2007) 0 12 8 6 5 3 3 2 2 

 1 18 11 9 7 5 4 4 4 

 2 23 15 11 9 7 6 5 5 

 3 27 18 14 11 9 7 7 6 

 4 32 21 16 13 10 9 8 8 

 5 36 23 18 15 12 10 9 9 

 6 40 26 20 17 13 12 11 10 

 7 44 29 23 19 15 13 12 11 

 8 48 32 25 21 16 14 13 12 

 9 52 34 27 23 18 16 14 14 

 10 56 37 29 25 19 17 16 15 

 

Table 4: Minimum sample sizes obtained by other researchers with probability 
*

0.99P =  

 

4. An Application 
 In this section, we consider an example with real data set to illustrate the 

proposed acceptance sampling plan. This data set represents the thirty ( 30n = ) 

successive values of March precipitation (in inches) given by Hinkley (1977) where the 

data are 0.32, 0.47, 0.52, 0.59, 0.77, 0.81, 0.81, 0.9, 0.96, 1.18, 1.2, 1.2, 1.31, 1.35, 

1.43, 1.51, 1.62, 1.74, 1.87, 1.89, 1.95, 2.05, 2.1, 2.2, 2.48, 2.81, 3, 3.09, 3.37, 4.75. 

The descriptive statistics for the data are 1.675µ = , 
2

1.00123σ = , 
1

0.9,Q =  

2
1.47,Q =

3
2.1Q = . 
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 We first verify whether the Marshall-Olkin Esscher transformed Laplace 

distribution fits the given data set. The values of the criterion, Cramér–von Mises 

criterion (C-M), Anderson-Darling criterion (A-D), Bayesian Information criterion 

(BIC), Consistent Akaike Information criterion (CAIC), Akaike Information criterion 

(AIC), the maximized log-likelihood (MLL), and Hannan-Quinn Information criterion 

(HQIC) are obtained and summarized in Table (5) where  

AIC 2 2MLL q= − + , 
2

CAIC 2
1

q n
MLL

n q
=− +

− −
, BIC 2 ( )MLL qLog n= − + , 

[ ]HQIC 2 ( )( 2 )Log Log n q MLL= − , 

where q is the number of parameters and n is the sample size.  

 

AIC CAIC BIC HQIC W 

94.99685 95.44129 97.79924 95.89336 0.01356112 

 

A-D K-S -2MLL 

0.1027043 0.2358657 45.49842 

 

Table 5: The AIC, CAIC, BIC, HQIC, W, A-D, K-S, and -2MLL for the successive 

values of March precipitation data 

 

 The Kolmogorov-Smirnov test is fitted by these eleven observations as the K-

S is 0.2358657 with p-value is 0.07101557, where this p-value indicated that the 

Marshall-Olkin Esscher transformed Laplace distribution as a reasonable goodness-of-

fit for these thirty observations.  

 

 We used the method of maximum likelihood estimation (MLE) for estimating 

the unknown parameters of the distribution, and the respective standard deviations (S-

D) and confidence intervals (CI) are obtained based on the successive values of March 

precipitation data, and the results are given in Table (6 ).  

 

 

Parameter MLE S-D Inf. 95% CI Sup. 95% CI 

k̂  0.028304 0.094981 -0.157851 0.214458 

λ̂  21.105267 70.967954 -117.989366 160.199900 

 

Table 6: The MLEs of the parameters, standard deviation and CI for the 

successive values of March precipitation data 

  

 The MLE of the unknown parameters of the MOETL distribution for these 

observations is ˆ 0.028304k =  and ˆ 21.105267λ = . Therefore,  
2

0

1 (0.028304)
ˆ 1.67268

(0.028304)(21.105267)
µ

−
= = . 



114                                          Journal of Reliability and Statistical Studies, June 2018, Vol. 11(1) 

 

 

 

 Assume that the experimenter hope to stop the experiment at 1050 hours with 

confidence 
*

0.99P = . Since 0
ˆ 1.67268µ = , therefore from Table (1), the 0

/t µ  is 

0.628 and the correspondence acceptance sampling number is 7c = , and because the 

number of successive values of March precipitation data are will more than 7, the 

researcher reject the lot.  

5. Conclusions 
 In this paper, the Marshall-Olkin Esscher Transformed Laplace Distribution is 

introduced in the area of acceptance sampling plan. The tables are preselected obtained 

through the non-linear optimization solution for practical use in the industry. The 

efficiency of the proposed sampling plan is compared with the new sampling plans in 

terms of sample size. The proposed plan provides the smaller sample size as compared 

to existing sampling plans. The inspection of items using the proposed sampling plan 

will be more economic than the existing sampling plans. The proposed plan can be used 

in any electronic industry for the testing of lots. Also, the proposed plan using the cost 

model as well as analysis of failure time of the same distribution can be considered as 

future research.     
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