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Abstract 
 In this paper, discrete versions of xgamma distribution [c.f. Sen et al., 2016] have been 

studied.  Two discrete versions, namely discrete xgamma-I and discrete xgamma-II and their 

structural and reliability properties have been studied.  Estimation procedures of the parameter of 

these discrete distributions have been mentioned. Compound discrete xgamma distributions in the 

context of collective risk model have been obtained in closed form. The new compound 

distributions have been compared with the classical compound Poisson, compound Negative 

binomial and compound discrete Lindley distributions regarding suitability of modelling extreme 

data with the help of some automobile claim. 

 

Key Words: Discrete Analogue Approach, Discrete Concentration Approach, Collective Risk 

Model, Heavy-Tailed Distribution, Reinsurance Premium. 

1. Introduction 
 There is need for finding out discrete distributions to cater the need of fitting 

real life data as most of the times we come across situations where measurements are 

discrete in nature. Aiming at this a number of approaches has been adopted to find out 

discrete version of some standard continuous probability distributions.  A recent review 

of approaches has been discussed in Chakraborty (2015). Out of these approaches we 

concentrate here on two, viz., discrete concentration approach and discrete analogue 
approach for finding the discrete versions of the xgamma distribution proposed by Sen 

et al. (2016). 

 

a) Discrete Concentration Approach:  A continuous life time variable is used to 

generate a discrete model by introducing a grouping on the time axis.  Let us 

consider the underlying continuous failure time X has the survival function S(x) = 
P[X>x] and times are grouped into unit intervals such that observed discrete 

variable is dX=[X], the largest integer contained in X, the probability mass 

function (pmf) of dX  can be written as,  
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( ) [ ] [ 1] ( ) ( 1); 0,1, 2,3p x P dX x P x dX x S x S x x= = = ≤ < + = − + =                  (1) 

In fact, the probability mass function (pmf) of random variable dX is the discrete 

concentration of the probability density of X.   Exponential distribution, when 

discretized in this approach, takes the form of geometric distribution.  Following 

this approach, Weibull, half-normal, Rayleigh, Burr and Lindley distributions 

have been discretized   by Nakagawa and Osaki (1975), Kemp (2008), Roy 

(2004), Krishna and Pundir(2009), and Gomez-Deniz and Calderin-Ojeda (2011), 

respectively. 

b) Discrete Analogue Approach: In this approach , if the probability density function 
(pdf)  of continuous random variable  X is f(x), then the  pmf   of discrete random 

variable Y  may be  written  as   

( )
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 Following this approach, Good, normal, log-normal, exponential and gamma,  

Laplace(double exponential),  and Skew Laplace distributions have been discretized by 

Good (1953), Kemp (1997),  Bi et al. (2001),  Sato  et al. (1999),  Inusah  and  
Kozubowski (2006),  and Kozubowski  and   Inusah (2006),  respectively. 

The xgamma distribution was introduced by Sen et al. (2016) and is given by the pdf 
2

2( ) (1 ) ; 0, 0.                                                     (3)
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The corresponding cumulative distribution function (cdf) is: 
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It has been shown that (3) is more flexible than Lindley distribution proposed by 

Lindley (1958) and is given by the pdf 
2

( ) (1 ) ; 0, 0.                                                                         (5)
1
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θ

θ
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+
 

The exponential distribution is widely discussed and is given by the pdf 

( ) ; 0, 0                                                                              (6)xf x e xθθ θ−= > >  

and is closed in form to (5). Ghitaney et al. (2008) have shown that from flexibility and 

application point of view, the Lindley distribution is better than the exponential 

distribution based model. 
 

 The present article is organized as follows.  In section 2, the discrete xgamma-

I distribution has been derived using discrete concentration approach and structural and 

reliability properties have been studied. Section 3 is concentrated on deriving the 

discrete xgamma-II distribution using discrete analogue approach and on studying its 

properties. The two discrete distributions have been compared with Poisson, Negative 
binomial and discrete Lindley distributions in connection to the collective risk in 

section 4.  Estimation of model parameter by method of moment and method of 
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maximum likelihood has been mentioned in section 5. Some data sets have been 

analyzed to compare the distributions in term of negative log-likelihood in section 6. 

Section 7 concludes. 
 

2. Discrete xgamma-I Distribution (dxgamma-I) 
Using discrete concentration approach discussed in (a) of section 1, we have the pmf as 

2 2
21
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This pmf can be re-written with the linear combination of negative binomial 
distributions as 
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Here G(x;1-p), NB(x;2,1-p)  and NB(x;3,1-p) are the pmfs of geometric, negative 

binomial with success 2 and that with success 3 having success probability 1-p. 

Constants a1, b1 and  c1 are such that   a1+b1+c1=1,  but are not necessarily proportions.  
We call this distribution as the Discrete xgamma-I Distribution (xgamma-I).  

The cdf of this distribution is given by 
2
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Probability Generating function (pgf), 
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Here, survival function,
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Hazard function,
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In risk management theory, the risk measures, for example, the Value-at-risk (VaR), the 

Tail-at-risk (TVaR), play important roles. The VaR at  u , 0<u<1  is defined as 

xu=VaR[X;u]=inf{x €R:F(x)≥u}  which is the uth quantile of the random variable X 

and the TVaR is defined as 
u
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3. Discrete xgamma-II Distribution (dxgamma-II) 
 Using discrete analogue approach in (b) of section 1, we have pmf as  
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This pmf can also be re-written as a linear function of negative binomial distributions as  

2 2 2( ;1 ) ( ;2,1 ) ( ;3,1 );0 1, 0,1,2,...II

x
p a G x p b NB x p c NB x p p x= − + − + − < < =

 

with

2

2 22 2

ln
2(1 ) (1 )

3(1 ) ln2 ,   
2(1 ) (1 ) ln 2(1 ) (1 ) ln

p
p

p p
a b

p p p p p p p p

− − −
= =

− − + − − +
 

and 2 2

2ln

2(1 ) (1 ) ln

p
c

p p p p
= −

− − +
 

 

Here the constants are a2, b2and c2 with a2+b2+c2=1 and we call this distribution as 

Discrete xgamma-II (dxgamma-II) Distribution.  The cdf of this distribution is given by 
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Survival function,    
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Hazard function,   .
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Mean remaining life,  
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The pmf and cdf of dxgamma-I and dxgamma-II distributions for different values of p 

have been shown in figure1. 

 

 

(a) pmf and cdf for p=0.4

  (b) pmf and pdf for p=0.6 

Fig.1. Probability mass function (pmf) and Cumulative density function (cdf) 

of dxgamma-I and dxgamma-II. 



124                                          Journal of Reliability and Statistical Studies, June 2018, Vol. 11(1) 

4. Comparing with the Poisson, Negative binomial  and  Discrete Lindley  

distributions in the collective risk model 

 The collective risk theory mainly deals with the aggregate claim ∑
=

=
N
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iXS
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where N denotes the claim numbers and Xi, ( i=1,2,…..) denotes the ith claim amount or 
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 In the context of reinsurance, large claim amounts play an important role.  In 

case of reinsurance premiums, insurer is always interested to use a long and heavy-

tailed distribution. From this consideration, in reinsurance premium calculation the 

pareto and log normal distributions are generally used. 

 The compound   Poisson (sometimes negative binomial) model is generally 

used when a single claim size is assumed to follow an exponential distribution.  

Gomez-Deniz and Calderin -Ojeda (2011) developed models by considering the 

discrete Lindley distributions. Some new models have been derived using   the   

discrete xgamma distributions discussed in sections 2 and 3. 

 The next results   show that one can have a closed form expression for 

aggregate claim assuming a discrete xgamma as primary and exponential as secondary 

distribution. 
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parameter 0 < p < 1 and the secondary distribution is an exponential distribution with 

parameter γ > 0 as secondary distribution, then the pdf of S	 = 	∑ X�
�
��	  is given by

    

2

2
2 (1 )

2

1 4
( ) [1 (2 3 ) ln (ln )

1 ln 2

3 5 (ln )
ln ( 1 ln ) (1 ) ( ) ] 0

2 2

1 (ln )
[1 ln {1 2ln }] 0 (7)

1 ln 2

s

p x

p p
f x p p p

p

p p
p p p px p px e for x

p
p p p for x

p

γ

γ

γ γ − −

−
= − − +

−

−
+ − + + − >

= − − − + =
−

 

 



Discrete xgamma distributions: properties, estimation and an application ...                             125 

Proof: If the distribution of claim amount is exponential with parameter γ > 0, then nth 

fold convolution of exponential distribution is a gamma distribution and is given by 
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Theorem 4.2: If the primary distribution is a discrete xgamma-II distribution with 

parameter 0 < p < 1 and the secondary distribution is an exponential distribution with 

parameter γ> 0, then the pdf of 
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Proof: It is to be done by the same way as in case of Theorem 4.1. 
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Theorem 4.3: [Gὀmez-D´eniz and Calderin-Ojeda (2011)] If the primary distribution is 

a discrete Lindley distribution with parameter 0 < λ< 1 and the secondary distribution is 

an exponential distribution with parameter  γ > 0, then the pdf of 
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t

s

e
M t t

t t
p

λ λ λ λ λ λ
γ λ

λ λ
γ γ

− −

− + −
= − < −

− − − − −
 

Hence, Mean
2

{1 ( 2) ln }
( )

(1 ) (1 ln )
E S

λ λ λ λ
γ λ λ
− + −

=
− −

and Variance, 

2

2 4 2

2 2 2

( ) [(1 )(1 ln {1 ( 2)}
(1 ) (1 ln )

(1 ) (3 4 ) ln (2 3 )(ln ) ].

Var S
λ

λ λ λ λ
γ λ λ

λ λ λ λ λ λ

= − − − + − +
− −

− − − + + −
 

 

Aggregate claim model has been obtained using the Poisson as primary and exponential 

as secondary distribution [see, Rolski et al. (1999)]. Hence, the aggregate claim size 

distribution is  

   

( )

1( ) (2 ) 0

0

x

sf x I x e for x
x

e for x

α γ

α

γα
γα − +

−

= >

= =
                                           

(10) 

Here, α> 0 and γ> 0 are the parameters of the Poisson and exponential distributions, 

respectively, and 

2

0

( )
2( ) , ,

( 1) ( 1)

k v

v

k

z

I z z v
k v k

+
∞

=

= ∈ ∈
Γ + Γ + +∑ ℝ ℝ  

represents the modified Bessel function of the first kind. 

The mfg of S is,  

1{1 (1 ) }

( ) , (1 ).

t

sM t e t
α

γ γ α
−− − −

= < − . 

Hence Mean,
2

2
( ) and Variance, ( ) .E s Var s

α α
γ γ

= =  

Another aggregate claim model is obtained when the negative binomial with parameters 

r and 0 < 1−p < 1 is the primary distribution, and the exponential distribution is the 

secondary distribution. Hence, the aggregate claim size distribution is  

1 1( ) (1 ) (1 ;2; ), 0

(1 ) , 0

r x

s

r

f x r p pe F r px for x

p for x

γγ γ−= − + >

= − =
 

Here,1F1(.;.;.) is the confluent hypergeometric function. 

The mfg of S is, 
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1( ) (1 ) {1 (1 ) } , (1 )r r

s

t
M t p p t pγ

γ
− −= − − − < −  

Hence, Mean ( )
(1 )

rp
E s

pγ
=

−
  and Variance

2 2

(2 )
( ) .

(1 )

rp p
Var s

pγ
−

=
−

 
 

5. Estimation of Parameter 
 If X1, X2, ……….., Xn,  be a random sample from the discrete  xgamma-I  

distribution ,  the method of moments  (MoM)  and the maximum  likelihood (ML)  

estimators   of the  parameter  p are to be  obtained  by solving  numerically 

1 1 1( 2 3 )
1

p
a b c X

p
+ + =

−
 

and 

2

2 2
1

2 2

2 2

(1 ln )

1 1 1
2(1 ln ) ln (2 ln ) { 1 ln (ln ) }

2

(ln ) (ln )
1 ln (1 2 ln ) ln (1 (1 ln )) (1 )

2 2

1 2(1 ) ln
{ (ln ) }

2

(ln ) (ln )
1 ln (1 2 ln ) ln (1 (1 ln )) (1

2 2

i

in

i

i

i

i

Xn

p p p

p
p p p p p X

p p

p p
p p p p p p X p

p p
p X

p

p p
p p p p p p X p

=

+ +
−

+
− + + − + + − + − −

+
− − − + − − − + −

−
−

− − − + − − − + −

∑

∑

2

0

) iX

=

 

respectively. If the sample is from the discrete xgamma-II distribution, the method of 

moments (MoM) and the maximum likelihood (ML) estimators of the parameter p are 

to be obtained by solving numerically 

2 2 2( 2 3 )
1

p
a b c X

p
+ + =

−
 

and 
2

2 2
1

3 4(1 ) {(1 )(1 ln ) ln }
. 0,

1 2(1 ) (1 ) ln (2 ln )

n
i i

i i

X Xn p p p p p
n

p pp p p p p X p=

− + + + +
− + + − =

− − − + −
∑ ∑  

 

respectively. 

 

6. Data Analysis 
 In this section, we will fit six data sets [four from Wilmot (1987), one from 

Bermu’dez (2009), remaining from Boucher et al. (2007)] and compared these with 

Poisson, Negative binomial, discrete Lindley, dxgamma-I and dxgamma-II 

distributions. We have shown the fitted probabilities for each data set and comparisons 

have been made in term of negative log-likelihood. Summarized results have been 

shown in Tables 1-6. In all the data sets; it is noticed that there is large proportion of 

zero values. We have estimated the parameter of each model by the method of 



128                                          Journal of Reliability and Statistical Studies, June 2018, Vol. 11(1) 

maximum likelihood. From the Tables1-6, it is found that the discrete xgamma-II 

distribution performs better than the other distributions in negative log-likelihood sense. 

Following is the approximate ordering: 

 

Worst: Poisson → Negative binomial →Discrete xgamma-I → Discrete Lindley 

→Discrete xgamma-II: Best. 

 

So, the model described in Theorem 4.2 seems to be appropriate for collective risk 

modelling in the actuarial literature than the others discussed in section 4. 

 

7. Conclusion 
 Two discrete versions of the xgamma distribution, viz., discrete xgamma-I and 

discrete xgamma-II using discrete concentration and discrete analogue approaches have 

beenderived. The structural and reliability properties of these distributions have been 

studied. Estimation procedures of the parameter have been mentioned. Compound 

discrete xgamma distributions in connection to collective risk model have been 

obtained. The new compound discrete xgamma-I and xgamma-II distributions have 

been compared with the classical compound Poisson, compound Negative binomial and 

compound discrete Lindley distributions with the help of some automobile claim data. 

It has been observed that the discrete xgamma-II distribution is comparatively more 

appropriate for study of collective risk data empirically. 

 
 

 

Number 

of 

Claims 

Observe

d 

Fitted 

Poisson 

Fitted 

Negative 

Binomial 

Fitted 

dLindley 

Fitted 

dxgamma-

I 

Fitted 

dxgamma

-II 

0 103704 102627.9 103217.2 103350.1 103321.3 103840.8 

1 14075 15923.36 14861.67 14626.28 14607.95 13715.99 

2 1766 1235.304 1604.886 1681.739 1748.554 2046.422 

3 255 63.8884 154.0523 175.7091 161.5036 226.9247 

4 45 2.478171 13.86321 17.36953 12.75092 20.96838 

5 6 0.07690007

4 

1.197651 1.656130 0.9115403 1.731256 

6 2 0.00198860

5 

0.100591

8 

0.153939

8 

0.0609103

9 

0.132619

8 

Negative 

log-

likelihoo

d 

- 55108.46 54697.39 54659.61 54678.22 54652.51 

 
Table1: Data Set-I 
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Number 

of 

Claims 

Observ

ed 

Fitted 

Poisson 

Fitted 

Negative 

Binomial 

Fitted 

dLindley 

Fitted 

dxgamma

-I 

Fitted 

dxgamma-

II 

0 7840 7635.46 7718.056 7735.846 7730.347 7797.46 

1 1317 1636.852 1494.167 1463.028 1455.685 1343.856 

2 239 175.4500 216.9461 225.6468 240.053 271.7930 

3 42 12.53737 27.99961 31.65992 31.0723 41.80549 

4 14 0.6719245 3.387843 4.205013 3.457364 5.389682 

5 4 0.0288087

6 

0.3935191 0.5388292 0.349140

4 

0.6221004 

6 4 0.0010293

13 

0.0444399

9 

0.0673212

5 

0.032993

64 

0.0666754

5 

7 1 3.152271e

-05 

0.0049161

74 

0.0082544

85 

0.002971

82 

0.0067790

88 

Negativ

e log-

likeliho

od 

- 5490.781 5388.843 5377.51 5384.057 5367.253 

 

Table 2: Data Set-II 

 

 

 

 
Number 

of 

Claims 

Observ

ed 

Fitted 

Poisson 

Fitted 

Negative 

Binomial 

Fitted 

dLindley 

Fitted 

dxgamma-

I 

Fitted 

dxgamma-

II 

0 3719 3668.600 3675.159 3676.208 3671.561 3676.639 

1 232 317.2765 304.7798 302.4305 306.8567 296.5420 

2 38 13.71973 18.95647 20.08010 20.50728 25.19934 

3 7 0.395514

1 

1.048036 1.201059 1.029558 1.538505 

4 3 0.008551

44 

0.0543208 0.0688194 0.0438056 0.0776410 

5 1 0.000147

91 

0.0027028

85 

0.0037765

02 

0.0016817

79 

0.0034917

11 

Negativ

e log-

likeliho

od 

- 1246.077 1221.197 1217.698 1221.520 1211.224 

 

Table 3: Data Set-III 
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Number 

of 

Claims 

Observe

d 

Fitted 

Poisson 

Fitted 

Negative 

Binomial 

Fitted 

dLindley 

Fitted 

dxgamma-

I 

Fitted 

dxgamma

-II 

0 20592 20417.77 20522.27 20544.93 20540.09 20632.49 

1 2651 2947.815 2760.887 2720.243 2718.655 2560.743 

2 297 212.7954 278.5692 292.3791 302.3779 355.8121 

3 41 10.24078 24.98418 28.54859 25.85673 36.56728 

4 7 0.3696281 2.100720 2.637138 1.887721 3.127832 

5 0 0.01067301 0.169567

5 

0.234946

1 

0.1247285 0.238965

4 

6 1 0.00025681

94 

0.013307

08 

0.020405

11 

0.0077014

31 

0.016935

77 

Negativ

e log-

likeliho

od 

- 10297.85 10233.72 10228.45 10232.25 10221.59 

 

Table 4: Data Set-IV 

 

Numbe

r of 

Claims 

Observ

ed 

Fitted 

Poisson 

Fitted 

Negative 

Binomial 

Fitted 

dLindley 

Fitted 

dxgamma-

I 

Fitted 

dxgamma-

II 

0 71087 67424.99 67960.82 68052.5 67775.91 68179.48 

1 6744 12363.00 11415.29 11225.99 11366.38 10612.39 

2 2067 1133.436 1438.059 1507.513 1646.199 1910.340 

3 690 69.27539 161.0327 184.0637 185.8067 259.1091 

4 248 3.175573 16.90529 21.26899 17.98504 29.38657 

5 95 0.116454

2 

1.703736 2.370814 1.578403 2.981471 

6 34 0.003558

829 

0.1669351 0.2576519 0.1295657 0.2807841 

7 17 9.322066

e-05 

0.0160227

9 

0.0274780

2 

0.0101346

6 

0.0250808

4 

8 4 2.136610

e-06 

0.0015138

72 

0.0028881

27 

0.0007644

298 

0.0021538

1 

9 3 4.352973

e-08 

0.0001412

684 

0.0003000

664 

5.604773e-

05 

0.0001794

176 

10 3 7.981583

e-10 

1.305077e-

05 

3.088308e-

05 

4.017203e-

06 

1.458903e-

05 

11 2 1.330453

e-11 

1.195703e-

06 

3.15703e-

06 

2.826347e-

07 

1.163190e-

06 

Negativ

e log-

likeliho

od 

- 44481.26 42392.02 42097.6 42256.75 41522.34 

Table 5: Data Set-V 
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Number of 

Claims 

Observed Fitted 

Poisson 

Fitted 

Negative 

Binomial 

Fitted 

dLindley 

Fitted 

dxgamma-

I 

Fitted 

dxgamma-

II 

0 530642 528917.3 529526.7 529646.2 529458.2 530005.8 

1 33495 36734.96 35556.89 35318.90 35557.22 34536.13 

2 2585 1275.679 1790.692 1896.219 1867.180 2302.655 

3 211 29.53329 80.16146 92.25659 72.9354 108.9847 

4 25 0.512749 3.364198 4.241825 2.40716 4.252032 

Negative 

log-

likelihood 

- 146704.8 146051.2 145973.0 146039.8 145826.3 

 

Table 6: Data Set-VI 
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