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Abstract

In this article, we consider the problem of estimating an unknown population variance
using two auxiliary variables. A generalized exponential estimator along with a class of
estimators has been proposed for estimating population variance. The bias and the mean square
error of the proposed estimator are obtained to the first order of approximations. It is shown that
the proposed generalized estimator is more efficient than the existing literature estimators. An
empirical and a simulated study have also been carried out to demonstrate the efficiency of
proposed estimator with the literature.
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1. Introduction

It is well known that the auxiliary information is used for improving the
efficiency of the estimator of population parameter of interest. Estimating the finite
population variance has great significance in various fields such as Industry,
Agriculture, Medical and Biological sciences, etc.

Let us consider a finite population Q= {Q1,Q2,....AN}with N population units.
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means. Let 77,,,= lLl42-00 be the population coefficient of kurtosis of y and
200
__ tho . 2 ¥ _ M
Moo == covariance between S yand X, ,where 77, _W >
HagoHoso Hago Hozo Hooa

1& . o = 7\
ﬂqu:NZ(Yi_Y)p(Xil_Xl)q(XiZ_XZ) )

For ease of mathematical computations, we ignore finite population correction
(fpc). We use the following relative error terms to compute the bias and mean square
error,

s; =S (1+&,),5, =X (1+¢),%, =X,(1+¢,) .E(g9)=E (¢ ) = E(e3) =0

! G C: e
E(e))=— (1100 1) . E(€))=—"  E(€})=—2 , E(5,¢,) =——"and
n n n n
M0C,, p..C.C. . 1
Eee)= 20;1 B ez):T'n 400 :(77400 _I)J/:;

An unbiased estimator of population variance is given by
ly=5,, 1)

Var(t,) =S, [77*400] : 2)

A modified form of Isaki (1983) using two auxiliary variables for estimating
population variance in single phase sampling may be given as,

2 2
=2 G)
s, S

)

Up to the first order-approximation the bias and Mean Square Error (MSE) is
given as,

Bias(t,)~ 7Sy2 [77040 o0 — 20 ~ o2 + 1022 — 1] ) “)
and
MSE(t))= ]/S;1 [77400 + Moso + Tooa = 21020 = 2100 + 21035 — 1] ®)

A modified form of Upadhyaya& Singh (2001) using two auxiliary variables
for estimating population variance in single phase sampling may be given as,
X, X
ty, =5, ===, (6)
XX

The bias and Mean square error is,
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Bias(t,)~ 7Sy2 [le + Cjz - 77210Cx1 - 7720ch2 + prl sz ] ’ (7
and
MSE(tU)zj/S;‘ |:77*400 + szl + Cjz - 277210Cx, - 277201CX2 + 2pcx, sz ] ®)

Many more authors including Upadhyaya and Singh (1999), Singh et al.
(2011), Subramani and Kumarapandiyan (2012), Yadav and Kadilar (2013), Singh and
Solanki (2013), Asghar et al. (2014) and Adichwal et al. (2015) among others have
proposed estimators for the estimation of population variance in single-phase sampling
design. Subramani and Kumarapandiyan (2013) used quartiles and median of auxiliary
information for estimating population variance. Subramani and Kumarapandiyan
(2015) proposed the variance estimation by using mean of auxiliary variable.
Subramani (2015) also proposed the generalized modified ratio type estimator for
variance estimator and showed the efficiency of proposed estimators numerically and
graphically. Ahmed et al. (2016) used the multi-auxiliary variables for estimating the
population variance using successive sampling.

In the next section we have proposed a generalized exponential type estimator
for estimating the population variance. In section 3 of this paper theoretical comparison
has been made where as in sections 4 and 5, numerical and simulation studies have
conducted respectively.

2. Proposed Generalized Exponential-Type Estimator

Following Upadhyaya and Singh (2001) and Sanaullah et al. (2016) the ratio-
type and product-type exponential estimators for population variance using two
auxiliary variables are,

t. =s’ex X, -% X, -%
=8, Xp|l =—— |&Xp| =—— |» 9
X, +X X, +X,
and
X -x X, -X
t o =s’exp|—| =—L||exp| -| =2—21], 10
=8 P (Xl+)_clj P (X2+)72j (10)

This leads to the generalized form as,

ax, bx.
t = zeX a 1—_—1 X 1—_—2 11
m = R ( Xﬁ(a—l)fl] pﬁ( Xz+(b—1)fzj o

When Oland [ takes positive values we may have exponential ratio-cum-

ratio estimator, and when Otand [3 takes negative values we may have exponential
product-cum-product estimators.
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Putting different values of aand b , we may get different exponential ratio-
cum-ratio and product-cum-product family of estimator.

For, =B =1 in (11) we may obtain the exponential ratio-cum ratio
estimator as,

2 ax, bx,
t.=s exp|l-=—————|exp| | -—=—""——|, (12)
g X, +(a-Dx, X, +(b-1x,

Some examples of exponential ratio-cum-ratio estimator #, may be given as
follows:
Fora=2&b=2,t, in(12)is given as,

2 )_(1 —X )?2 )
X, +X X, +X,
For, a=1&b =1, {, in(12) is given as,
X| -5 X, -%
tyy = sJZ, exp L exp 22 , (14)
X X3
For, oo = =—1 in (11) we may obtain the exponential product-cum product

estimator as,

t =s’exp|— l—a—f1 exp| — I—L (15)
p =5 X, +@-Dx )| T X, + (-1, )|

Some examples of exponential Product-cum-product estimators may be given
as follows:

For,a=2&b= Z,fp in (15) is given as,

X — X, X, —X
tplz )z,exp x_1 _1 exp x_2 _2 R (16)
X1+)C1 X2+)C2

For,a=1&b=1, tp in (15) is reduced to,

2 M- X X~ X,
t 2 =S CXp|:?j| eXp|:_—:|, (17)
p Yy Xl X2
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The expression in (12) may be expressed in the form of e’s as,

1
ae a-1
Ly, :Sj (1+80)6Xp —a—]{(l-i- P € )}

3 (18)
exp —ﬁbez {(1+Eez)}

b

We expand the exponentials and neglect the terms in€,, €, and € of power

higher than two as,

_ 1)
Ly :Sy2 (1+&;)exp _aael {l_aa lel +(aa2) 612____}
(19)
Be | b-1  (b-1)
exp| — b2 1- - e, + = & ———
or
l4e & el+a(a—l)e12 azelz_ﬂ e,
) ° a a’ 21a* b
ty ~S; ., (20)
+ﬂ(b—l)e2 L Pe _aeqe Pee,  afee,
b’ 21b° a b ab

Subtracting S y2 from both sides to obtain the expression for bias, we may get as,

@ ¢ +a(a_1)612+a2e12 P e

f g A 0 a a’ 24° b o
T ’ ﬂ(b —1)622 ﬂzezz aee Pee, afee,
+ T - +
b 2b a b ab

Now taking expectation on both sides of (21) and we get bias as,
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2
Bias(t,,) ~S? (a “

a a & \C (B p p\C.
—_— + —_— —_—
b b2

g n R n . (22)

@ B af
__UZIOCVI - _77201sz + _pxlxz Cvl Cvz
na nb nab
Squaring of (21), neglecting the terms of power more than two and taking
expectation, we may get the Mean Square error (MSE) of £, as,

a;(;j] } ﬂchz 26”7210(;1 2ﬁ771)1(;2 ! zlﬂ)xlxquqz}

(23)

B/SE(tH)z%ST: |:774(I) I az b2 a b ab

In order to get the optimum values of @ and b which minimize the MSE(tz),

we differentiate MSE (¢,, ) w.r.t. @and b and equates to zero as,

OMSE(,) _ g OMSE()

=0. 24
oa ob 29

After simplifications we may get the optimum values of @ and b as,

_aC(-pl) o\ BC(-pL)

a,, = ot = . (25)
" (210 — px1x277201) " (201 _px1x277210)
or
The MSE(#,, ) is given by,
. achl Vix Ci 20”7210(’:, 2ﬂ77201qc2 Mﬂ%xzqﬁq@
MSE(t,) ~ 7S, | 1 +—5—+ e ot 3 .
Aoy oot Ao ot AopOopt
(26)
To obtain MSE(#,) we put o.= =1 in (26),

¢ C C 23,C. 2p.CC
I\/SE(l;)z]/S; |:77:00 I X I sz 277210 X 771)1 X I /)xlxz X% } (27)

ajpt,. By, Gy, by, Gy by,

We get the optimal values of @ and b_ . by setting o= =1 in (27).

optr optr >
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2 2
P Gt ) _ G.0-p) 8)
optr optr 5 ‘
(77210 - px,x277201) ( 201 pxlxz 77210)
Or by simplifying, we may get expression for the minimum MSE of
{ . as,

(77210 ~Pax,Thot )2 +(77201 P, 77210)2
min. MSHG, ) ~ 7. S; Tho +(1_—pz) 20810 (Thio = P, o) =201 Ty =PTBio) ¢ |,
i

,0x1x2 7 P Thor Nk, ~Pux, Thio)
-4,

(29
Now if we consider
A=(13y, _pxlxﬂzm)a B=(1, _Io)c]x777210) & C=(1_Pz ) then,
min. VSE(, ) ~ 7S {77 {AZ +B ~ 21, A— 2%1B+2prH (30)

Similarly we may get MSE(¢ p) by putting 0.= [ =-1 in optimum values of
a &bin (2.18). We note that the expressions for the minimum mean square error of

te, 1., and {,are obtained same up to the first order of approximation, i.e.

min.MSE(#,) =min.MSE(#, ) =min.MSE(#;,)

7S {77400 +—{A2 +B ~2n,,A-2m, B ZprH 31)

3. Theoretical Comparison

In this section we compare our suggested estimator with unbiased estimator of
sample variance, modified Isaki (1983) and Upadhyaya and Singh (2001) under single
phase sampling as follows:

The proposed exponential ratio-cum-ratio estimator will be more efficient if,

MSE (t,) <Var (1))
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2,2 2 2
a (Cx2_2b le201) 2a(b tn2lOC boptrpxlxzcx1 Cx2)+b0ptrcx1 <0

bl

Now consider,

2 2
M :sz_Zboptr CxanOl & N:boptr Cx1n210 2b, opt, Px,x, G, C

After some simplification, we may get the range of @ as,

2 2
N 12 2 N 12 2
(/\[M) boptr Cxl N 4 (/\[M) boptr Cxl

N_ <a<— : (32)
M M M M

The proposed exponential ratio-cum-ratio estimator will be more efficient if,

MSE (t,) < MSE (1)
a* (€% = 2boy, Cy,Mop1 =By, K)=2a(bL,, Ma10Cy,
~Bopt Pryxy o Ca, )+ bjp t c)fl <0
Now if we consider
k= [77040 + 77004 = 210350 = 21505 + 210055 — 1] )
My =(C3 =2y, C 01 b, B & N=07  C M1 ~bipi, P, Ci Ci

Then after simplification, we may get the range of @ as,

2 2
N 22 N 2 2
(/«,M]j boptrcxl N (/JM]J boptrcxl
— .

<a<
M, M, M,

N (33)
M,

The proposed exponential ratio-cum-ratio estimator will be more efficient if,

MSE (t,) < MSE (1)

2,2 2 2 2
a (Cx2 _bopt, sz +2b0pt, CxanIO —2b0ptr 1’]201Cx2 +2b i, T]ZOIC

2
+2px1x2 Cx1 sz )~ Za(boptr T]210Cx1 - boptr Px x, Cx1 sz )<0

Now if we consider
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My = (cfc2 —bgptr ci —bozptc)f1 + 2b§ptr Cy, 210
- 2b0ptr 1'1201Cx2 + 2b02ptr 1’1201Cx2 + 2b02ptr Px,x, Cx1 sz ) &
N:bozptcxlnﬂo ~bopt, Px,x, Cx1 sz
Then after some simplification, we may get the range of a as,

2 2
N 2 2 N 2
N (/\/MUJ o, N [/\/MU] o,
a<—+

- <
My My My My

(34

The suggested estimator £, would be more efficient than the existing estimators#(, 7,

and gy if the conditions in (32)-(34) are satisfied.

4. Numerical Study and Illustration
To examine the performance of our suggested estimator over the competitors
we consider the three real applications\populations for positively correlated case. See

Appendix for the description of the three populations. The PRE’s for each estimator is
calculated as,

PRE:MXIOO, where i=I, U, rl, 12, r

MSE(t;)

Estimator I II I
t, 100 100 100
t, 98.46386 79.19756 100
t, 111.5988 119.829 104.8395
t, 106.5255 110.3557 102.9487
t, 111.5988 119.829 104.8395
t, 118.6027 133.3718 105.878

Table 1: Percentage Relative efficiency (PRE) of proposed estimators with? , 7,

Table 1 demonstrates the relative efficiency of each estimator. This empirical
study shows some realistic results about the efficiency of the proposed class of ratio-
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cum-ratio estimators. We can observe proposed class #,,,f,,, and f, are more efficient
than some modified versions of Isaki’s and Upadhyaya’s estimators and further we note

that among the proposed class f, is the most efficient estimator.

5. Simulation Study and Discussion

However to assess the performance of our proposed estimators we have also
computed the results by simulation study. Following Ahmed et al. (2016), we have
under taken the simulation study by the following steps.

a. In the simulation study we have two auxiliary variables along with a study
variable.

b. We generate different populations with different sample sizes for five models.
For model-I, the study variable );is generated from the linear model and

auxiliary variables Xj & X are generated from normal distribution with means
(20, 30) and standard deviations (2, 3).

Where model-I, model-II, model —III, model —-IV and model-V are described
as,
Model-I Vi = le- + &, and &~ N(O, 1)
Model-IT Vi = exp(x;)+¢
or

yi =exp(xy) +exp(xy) + &;, & ~ N(0,1)

X;
Model-IIT yi=2 eXp( T j

X +X;
or
X Xy
yl =Xp| =—— +eXp _ +€l-and8i~N(0,l)
Xl +)C1 Xz +X2
Model-1V yl = Hexp(xi)+8i
or
Yi :exp(x1i+ X2i)+€l‘ , &~ N(O,l)
X;
Model-V Vi = HGXP()—(H? JJ“%"
1
or

_ X Xoi
Vi =eXp| = —+ = — +6‘l~and€i NN(O,I)
Xl +xll« X2 +x2i




General class of exponential estimator ...

11

We generated k& = 5000 times, populations of size N=200 for each time a

sample of size n= 30 was selected by SRSWR using R program.

The obtained following each model

k k
MSE(t) :% 3 (t; = T)*, where T :% 3.
i=1

MSE of ¢

is

i=l1

separately as,

This procedure (1 to 5) was used for four different sample sizes,

1.en=30,50,100,150.

The similar procedure (1 to 7) was used for three different population sizes,
i.e. N=200,1000,2000.

Each time we computed the simulated results for # j estimator, where j=0, I,

U, rl, 2, r.

Finally results based on the above said simulation study are presented for
N=200, N=1000 and N=2000 respectively in Table 2-Table 7.

In the above simulation study different relationships between y and X’s are

thought to be studied. Mode-1 is constructed on the basis if the relationship between
the study variable y and auxiliary variables x; and x, is linear, where as for the
construction of further four models, Model-2 to Model-5, it is assumed that the
relationship between the study and auxiliary variables is exponential or exponential-
type. On the basis of simulation study presented in Table 2-Table 7, it can be noted that
from the proposed estimators t,. and t, are found to be more efficient than t,, t;, and ty
under all five models. Furthermore it is noted that efficiency of the exponential
estimators are increased considerably on using model-2 and model-5.

Estima Model-I Model-II Model-IIT
tor n= n= | n=1 n= | n= n= | n= n= | n= n= | n= n=
30 50 00 150 | 30 50 | 100 | 150 | 30 50 100 150
to 100 | 100 100 100 100 | 100 | 100 100 100 | 100 | 100 100
t[ 41 40 61 80 64 49 52 92 80 36 52 65
tU 102 | 102 100 100 108 | 102 | 102 100 100 | 100 | 102 100
¢ . 102 | 101 101 100 102 | 101 | 101 101 101 | 101 101 101
¢ 5 103 | 103 102 101 104 | 102 | 102 102 102 | 102 102 102
t 103 | 104 103 101 110 | 103 | 102 102 103 | 104 | 102 102

Table 2: Percentage relative efficiency (PRE’s) of proposed estimators with ¢ ,¢,
and 7, when & =5000,N =200 & » =30,50,100,150 for Model I-111
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Estimator Model-1V Model-V
n=30 | n=50 | n=100 | n=150 | n=30 | n=50 | n=100 | n=150

t, 100 100 100 100 100 100 100 100
t, 35 74 93 102 97 99 49 66
t, 104 | 101 103 104 105 108 101 105
{, 102 | 102 101 102 103 102 100 102
‘, 104 | 105 102 104 106 104 101 104
¢ 124 | 110 127 131 184 189 110 167

Table 3: Percentage relative efficiency (PRE’s) of proposed estimators with ¢ ,¢,
and 7, when & =5000,N =200 & » =30,50,100,150 for Model IV-V

Estima Model-I Model-IT Model-ITI

tor n= n=|n=1| n= |[n= |n=|n=| n= |n= | n=| n= | n=

30 50 00 150 | 30 50 | 100 | 150 | 30 50 | 100 | 150

f, 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

t, 78 95 | 102 87 49 | 25 | &5 98 100 | 58 90 98
t, 102 | 106 | 102 | 101 | 100 | 103 | 102 | 103 | 100 | 103 | 101 | 102
t, 101 | 102 | 102 | 101 | 102 | 102 | 102 | 102 | 101 | 102 | 101 | 101
‘, 102 | 103 | 103 102 | 105 | 103 | 104 | 103 | 103 | 103 | 101 | 102
¢ 109 | 107 | 106 | 104 | 115 | 112 | 115 | 109 | 101 | 108 | 102 | 104

Table 4: Percentage relative efficiency (PRE’s) of proposed estimators with ¢ ,¢,
and 7, when & =50000, N =1000 & n =30,50,100,150 for Model I-III

Estimator Model-1V Model-V
n=30 | n=50 | n=100 | n=150 | n=30 | n=50 | n=100 | n=150

£, 100 100 100 100 100 100 100 100

t, 33 28 77 80 25 23 42 88

102 101 104 103 101 101 102 101
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{, 101 101 102 101 102 102 100 100
, 102 102 103 101 104 104 101 101
¢ 130 142 186 150 140 165 112 129

Table 5: Percentage relative efficiency (PRE’s) of proposed estimators with 7,7,
and 7, when & = 50000, N =1000 & » =30,50,100,150 for Model IV-V

Esti- Model-I Model-II Model-III
mator | ,— n= | n=1| n= |p= | n=| n= | n= |n= n= | n= | n=
30 50 00 150 | 30 50 | 100 | 150 | 30 50 | 100 | 150
f, 100 | 100 | 100 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
t, 28 67 92 99 55 85 66 76 58 44 58 95
t, 98 96 101 100 | 106 | 107 | 102 | 102 | 103 | 100 | 104 | 100
{, 101 100 | 101 101 103 | 104 | 102 | 102 | 102 | 101 | 100 | 100
{, 102 101 102 101 106 | 108 | 103 | 104 | 103 | 102 | 101 101
t 110 | 105 | 103 106 | 115 | 110 | 114 | 113 109 | 110 | 104 | 106

Table 6: Percentage relative efficiency (PRE’s) of proposed estimators with 7,7,
and ¢, when & =5000, N =2000 & »n=30,50,100,150 for Model I-I1I

Estimator Model-1V Model-V

n=30 | n=50 | n=100 | n=150 | n=30 | n=50 | n=100 | n=150

1, 100 100 100 100 100 100 100 100
t, 77 53 37 100 46 103 82 80
t, 102 106 100 104 104 100 103 102
i 101 101 100 102 101 101 101 101
{, 102 102 101 104 103 102 101 102
¢ 132 145 131 194 144 141 140 148

Table 7: Percentage relative efficiency (PRE’s) of proposed estimators with ¢ ,¢,
and 7, when & =5000,N =2000 & » =30,50,100,150 for Model IV-V
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6. Conclusion

From empirical and simulation study it is shown that our proposed exponential

estimators perform more efficiently than the existing estimators. From simulation study
it is also further concluded that the proposed exponential estimators perform better than
existing estimators if relationship between the study variable and auxiliary variables is
exponential. This study removes some existing gape on the issue regarding the usage of
the exponential estimators.
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Appendix

S# Source of Population

1 Cochran (1977),pg. 34

2 Gujarati (2004), pg.386

3 Douglas C. Montgomery (2012), pg.

559
Table A: Source of Population
Population Y X1 Xy

1 Food Cost Family Size Weekly Income
5 Average Top seed, Engine

miles per Gallon miles per hour horsepower
3 Concentration Space time Molar density

Table B: Variables used for Population 1-3
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Parameters | I 11T
N 33 47 28
n 17 23 12
0.3458955
C. 0.40250 0.5924725
1
0.0712406
C, 0.143577 0.0680259
2
Py, 042378 06876045 0.2739857
Py, 0.252166 0.1888663 0.2267193
P, -0.065989 0.1214932 0.9234176
Moo 5.72 3.943658 20.33332
M1o 0.6305 0.8221768 1.016998
7. 0.5506 0.3441902 0.8632808
Moo 2.380 3.301295 1.871055
Moos 2.142944 2.20406 1.228679
7. 1.491798 2487812 1.119856
. 1.432347 1.095846 1.350588
Nons 2.287957 1.217578 0.9852038

Table C: Parameters of populations




