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Abstract 
Reliability and maintenance engineering is a powerful tool which enables the industries 

to find ways of costs savings and operational improvement opportunities. In this paper, the rubber 

tube extraction system is considered to evaluate the availability of the system under different 

maintenance conditions. The methodology employed for analysis purpose is based upon Markov 

Modeling in which failure and repair rates of the units comprising the system are taken as 

constant. Differential equations are derived and solved by Laplace transform to attain state 

probabilities. Solving reliability problems using meta-heuristic algorithms have attracted 

increasing thought in recent years. Various recent nature based algorithms are considered to solve 

availability optimization problem. The computational results were carried out on different 

algorithms and their experimental results are exhibited and compared with best obtained 

solutions. The analysis enables to find the local maxima of the objective function, which will help 

plant personnel to increase the daily production with optimum parameters. 

Key Words: Markov Modelling, Availability, Genetic Algorithm, Whale Optimization 

Algorithm, Particle Swarm Optimization 

1. Introduction 
The present competitive scenario for the industry increased the necessity to 

design and develop highly reliable systems. The increasing competition for industries 

make their profits slimmer day by day. The concept of reliability engineering has 

gained the attention of industry leaders in the current business scenario. Reliability 

engineering is a powerful engineering tool which enables industries to find ways of cost 

savings and other operational improvement opportunities (Barlow & Wu, 1978).The 

basic objective of the reliability engineering is to explore methods and statistical tools 

to evaluate and exhibit reliability, maintainability and availability (RAM) of the system 

or component. Generally, Maintenance may be Corrective (CM) or Preventive (PM). A 

well-scheduled PM model reduces superfluous shutdowns because of unplanned failure. 

PM can be ideal or faulty. An ideal PM is presumed to reinstate the system as new; 

whereas faulty PM brings in repair state (Manzini, Regattieri, Pham, & Ferrari, 
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2010).An effective PM model is an indispensable need for present process industry to 

increase productivity and profits. The PM can also be helpful in preserving the quality 

of the products.  

With the development of industrial engineering, various complex industrial 

system designs come into existence. The increasing necessity for high reliable systems 

demands the exploration of reliability optimization. Optimization will enable more 

precise and competent methods for optimal system reliability, which assures efficiency 

and system safety (Wu et al., 2011) Reliability of systems has been a research area for 

many scientists and engineers. An industrial system can have a series, parallel or series- 

parallel configurations (Srinath, 2005). Aksu & Turan (2006) presents reliability and 

availability valuation of pod propulsion system using failure mode and effect analysis, 

fault tree analysis (FTA) and Markov analysis complementarily. Umemura & Dohi 

(2010) discussed the embedded Markov Chain approach in continuous-time and 

discrete-time scales stochastic behavior of an electronic system to maximize its steady-

state availability. Sharma and Kumar (2008) used RAM analysis on a urea production 

process plant to minimize system failures, maintainability requirements and optimizing 

equipment availability. Hassan et al. (2016) proposed Markov model for LNG 

processing plant for availability and PM. The optimum PM policy had been determined 

to maximize the availability. A comprehensive review on multi-component 

maintenance optimization was conducted by Nicolai & Dekker (2006). The research 

was based on mathematical modeling of industrial systems. Gupta & Goyal (2010) 

discussed the effect multi repair facilities and multi repair the bubble gum production 

system bubble gum production system. In order to cope with optimization problems 

arising in system reliability, important contributions have been made since 1960. Many 

researchers applied heuristic approaches to study the reliability problems (Tillman & 

Hwang, 1977). Hikita et al. (1992) reported nonlinear mixed-integer programming 

formulation and the surrogate dual method for optimizing redundancy and component 

reliability at various stages of a system. Genetic algorithms (GA) are nature inspired 

algorithms, generally used to solve combinatorial nature optimization problems 

(Holland, 1975). Yokota et al. (1996) and Hsieh et al. (1998) applied GA to solve 

reliability optimization problems. They reported, the solutions obtained by GAs can 

solve reliability problems efficiently and effectively. A design of a mixed configuration 

system comprising of multiple component available out of several k-out-of-n: G 

subsystems had been optimized using GA. A problem-specific genetic algorithm (GA) 

is developed and demonstrated to analyze series-parallel systems and to determine the 

optimal design configuration when there are multiple component choices available for 

each of several k-out-of-n: G subsystems (Doit & Smith, 1996).Kennedy & Eberhart  

(1995) developed an efficient particle swarm optimization (PSO) algorithm based on 

Gaussian distribution and chaotic sequence to optimize the reliability systems. Kuo and 

Wan (2007) presented a good comprehensive review in recent trends in optimal 

reliability problem and summarized various techniques. Another hybrid algorithm 

combining two heuristic techniques Particle swarm optimization (PSO) and genetic 

algorithms (GA) denoted by GA-PSO. This hybrid technique creates individuals in a 

new generation by crossover and mutation operations of GA and by mechanisms of 

PSO (Sheikhalishahi et al., 2013). 

 Yang and Deb (2013) proposed an efficient metaheuristic algorithm namely, 

Cuckoo search (CS). It mimics the behavior of the cuckoo species which lays their eggs 
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in the nests of other birds. CS found to be highly effective method in solving global 

optimization problems of reliability and redundancy designs (Valian & Valian, 2013). 

This hybrid algorithm enhances the accuracy and convergence rate of the cuckoo search 

algorithm. Simulations by ICS reveal the effectiveness of the algorithm. Metaheuristic 

algorithms are frequently nature-inspired. They are the most widely used algorithms for 

achieving optimization. Kanagaraj & Jawahar (2011) proposed meta-heuristic 

optimization algorithm CS-GA to solve reliability problems. This algorithm is based on 

cuckoo search (CS) hybridized with genetic algorithm (GA). A new swarm intelligence 

optimization technique called a dragonfly algorithm (DA) was developed by Mirjalili 

(2016). This technique able to improve the initial random population and converges 

towards the global optimum. Mirjaliliet al. (2016) proposed a meta-heuristic algorithm 

called Grey Wolf Optimizer (GWO).The algorithm mimics the leadership hierarchy and 

the hunting mechanism of grey wolves in nature. Mirjalili (2015) proposed Moth-Flame 

Optimization (MFO) algorithm inspired from the navigation method of moths in nature 

called transverse orientation. MFO proves to be a better optimization technique in 

solving problems with constrained and unknown search spaces. Another nature-inspired 

algorithm, Ant Lion Optimizer (ALO) proposed by Mirjalili (2015). ALO mimics the 

hunting mechanism of antlions in nature. ALO proves its excellence in solving 

constrained problems with diverse search spaces. Recently, Mirjalili and Lewis (2016) 

proposed a newly developed nature based algorithm called Whale Optimization 

Algorithm (WOA) based on social behavior of humpback whales. In their research, 

authors optimize number of practical engineering problems with this technique. 

 To our best knowledge no, comparative study has addressed the availability 

optimization with nature-based algorithms of the production system with PM under 

faulty and ideal condition. The objective of this study is to illustrate the behavior of 

different algorithms with the similar level of input variables for availability. This is 

accomplished by deriving the full availability (AFC) and overall availability (AOC) using 

Markov modelling for evaluation and optimization. For this Rubber tube extraction 

system, a subsystem of Rubber tyre tube manufacturing plant located in Punjab, India. 

(Because of confidentiality issues, the name of the company is not quoted) is considered 

and the real time data of repair rates, failure rates, PM rates and transition rates are 

taken. Moreover, literature review suggests that most of the work on reliability 

optimization is done by taking a hypothetical system and data. Except genetic 

algorithm, very less work is done in the field of reliability optimization. Present work 

focuses on the applicability of different optimization techniques on the real practical 

problem. 

 

2. System Description 
The rubber sheets from warming mill is transfer to strainer, where the sheets 

are treated to remove foreign particles of metal or dust. These sheets are then, sent to 

refinement mill where the powdered accelerators (Sulphur, CBS and TMT) are 

impinged on sheets to enhance the rubber properties. The tubes will be formed with the 

help of extruders and cut with cutters according to the size. Figure 1 describes the 

various subsystems of Rubber tube extraction system. The rubber tube extraction 

system consists of three subsystems. Subsystem “S”, consists of one unit namely 

Strainer subjected to both revealed and unrevealed failures. Subsystem “R”, consists of 

one unit namely Refinement Mill subjected to both revealed and unrevealed failures. 

Subsystem “E” consists of five parallel systems, each comprising of one extruder and 
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one cutter in the series. This subsystem can work with three items in reduced capacity. 

If three or more than three items are failed, the subsystem - E will be in failed state. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Various subsystems of Rubber tube extraction system. 

 

2.1 Notations 
Various subscripts used for mathematical analysis of the system are as below:- 

“o”  :indicates system is functional 

“g”  :indicates system is good enough but not functional. 

“r”  :indicates system is under breakdown and in repair. 

“q”                       :indicates system is waiting for repair. 

“p”                       : indicates system is not functional and under preventive maintenance 

�� and �� : indicates failure rates of S and R respectively. 

��and �� : indicates repair rates of S and R respectively. 

α, β                       : indicates transition rates of systems S & R , to go to degraded state. 

θ, �  : indicates  PM rate of a “S” and “R” . 

η                           :constant probability that PM is carried out unsatisfactorily and  

                              causes the system to go to failed state immediately thereafter. 

(1-η)                     :represents constant probability that PM is carried out satisfactorily  

                              and this makes the system to operate immediately thereafter.   

���               : Respective failure rate of the two series units ei1 and ei2. As ei1 and    

                              ei2 are working in series therefore  	�� = ��
 + ��� .     

�
���                    :refer overall repair rate of the complete system initiated on failure of  

                              four or more parallel working units of subsystem B. 

��,��,�                   : Represents the working status of the subsystem B which consists of  

five identical units �
, ��, ��, ��and �� working in parallel. Further 

each Ei consists of two units working in series viz. ��
, ���where i = 

1,2,3,4,5. The subscript ‘m’ represents the number of operating units 

of E while ‘n’ represents the number of failed units of E. Pair ��� � 
designates the working status of ‘m’ operating units, while pair ���� 
represents the repair status of ‘n’ failed units and this pair can further 

be expanded as �
��
��
��
�������� �  if ‘n’ becomes more than one. 

� = �� 	 ℎ��	� = 1 

� = �� + �� 	 ℎ��	� = 2 

� = �� + �� + ��	 ℎ��	� = 3 

� = �� + �� + �� + �� 	 ℎ��	� = 4 

Strainer Refinement 

Extruder Cutter (e22) 

Extruder Cutter (e52) 

Extruder Cutter (e12) 

Extruder Cutter (e42) 

Extruder Cutter (e32) 

E1 

E2 

E3 

E4 

E5 
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&��'�  :State probability that the system is in i
th

 state at time t. 

&(�'� : State probability that the system at time‘t’ is working at full    

capacity. 

 

2.2 Assumptions 
In analyzing the system, following assumptions made - 

1. Initially, all the units are in a functional state. 

2. Units may be functional, failed or degraded. 

3. After repair, each unit will function as new. 

4. The various failure, repair, transition and PM rates are taken constant.  

5. At an instance, PM of only one subsystem can be performed.  

6. The PM will only be initiated, if no subsystem is under repair. 

7. A single repair unit exists in plant for repair and maintenance. 

8. Subsystems “S” and “R” are priority items whereas Subsystem-E is second priority 

unit because it consists of five subunits working in parallel. 

9. On pre-empting the repair of E units to perform the repair of higher priority 

subsystems S and R, there is a delay in the repair of these E units. This delay in repair 

reduces the repair rate and this effect is exhibited by using μ�∗��� in place of�����. 
μ�∗��� = +,���

-, , where .� is the delay factor and .� > 1. �1 = 1,2,3,4,5�in the present 

work we take.� = 1.35. 

10. The subsystem E will be working only, if at least two units remain functional. On 

failure of four or more units, the subsystem will be in failed state. 

 

3. Mathematical Modelling 
The system starts from a particular state at time ‘t’ and reaches failed state, 

PM state or remains in the operational state during the time interval ∆t. The 

mathematical formulation of the model is carried out using first order differential – 

difference equations associated with the state transition diagram of the system. Various 

probability considerations give the following differential equations associated with the 

Rubber tube extraction system. These equations are solved for determining the steady 

state availability of the system. 

&34�'� + F3P3�'� = μ7∗P��'� + μ8∗P
��'� + μ9∗P�3�'� + μ�P
�'� + μ�P��'� + μ:P���'� 
																																		+;�1 − =�P��'� + ��1 − =�P��'�                                            …   (1) 

&�4�'� + F
P��'� = λ7P3�'� + μ�P?�'� + μ�P��'� + ;�1 − =�P��'� + ��1 − =�P@�'� 
                                                                                                                                …   (2) 

&
34 �'� + F�P
3�'� = λ8P��'� + μ�P
��'� + μ�P

�'� + ;�1 − =�P
��'� 
																																						+��1 − =�P
��'�                                                                     …(3) 

&
�4 �'� + F�P
��'� = ��∗P
3�'� + μ�P
?�'� + μ�P
��'� + ;�1 − =�P
��'� 																																						+��1 − =�P
@�'�                                                                     …(4) 

&�34 �'� + F�P�3�'� = λ9P
3�'� + μ�P���'� + μ�P�
�'� + ;�1 − =�P���'� 																																						+��1 − =�P���'�                                                                     …(5) 

&��4 �'� + F�P���'� = λ9P
��'� + ��∗P�3�'� + μ�P�@�'� + μ�P���'� + ;�1 − =�P�?�'� 																																						+��1 − =�P���'�                                                                    …(6)   

&�34 �'� + F�P�3�'� = ��∗P���'� + μ�P���'� + μ�P�
�'� + ;�1 − =�P���'� 
																																							+��1 − =�P���'�                                                                   …(7) 

&��4 �'� + μ:P���'� = λAP�3�'�                                                                                  …(8) 

&���
4 �'� + μ�P���
�'� = λ�P���'� + ;=P�����'�                                                  …(9) 
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&����4 �'� + ;P�B���'� = αP�B�'�                                                                           …(10) 

&����4 �'� + μ�P�B���'� = λ�P���'� + �=P�B���'�                                                …(11) 

&����4 �'� + �P�B���'� = βP�B�'�                       , for a=0,1………5                    …(12) 

Where, 

F3 = α + β + λ� + λ� + λ7 F
 = α + β + λ� + λ� + λ8 + μ7∗ 
F� = α + β + λ� + λ� + λ9 + μ7∗ F� = α + β + λ� + λ� + λ9 + μ8∗ 
F� = α + β + λ� + λ� + λA + μ7∗ F� = α + β + λ� + λ� + μ8∗ 
F� = α + β + λ� + λ� + μ9∗  

 

Taking Laplace Transform of above (1-12) equations, the equations will be, 

E&3�E� + F3P3�E� = μ7∗P��E� + μ8∗P
��E� + μ9∗P�3�E� + μ�P
�E� + μ�P��E� + μ:P���E� 
																																						+;�1 − =�P��E� + ��1 − =�P��E�                                         …(13) 

E&��E� + F
P��E� = λ7P3�E� + μ�P?�E� + μ�P��E� + ;�1 − =�P��E� + ��1 − =�P@�E� 
                                                                                                                                 …(14) 

E&
3�E� + F�P
3�E� = λ8P��E� + μ�P
��E� + μ�P

�E� + ;�1 − =�P
��E� +
																																									��1 − =�P
��E�                                                                   …(15) 

E&
��E� + F�P
��E� = ��∗P
3�E� + μ�P
?�E� + μ�P
��E� + ;�1 − =�P
��E� +																																								��1 − =�P
@�E�                                                                     …(16) 

E&�3�E�� + F�P�3�E� = λ9P
3�E� + μ�P���E� + μ�P�
�E� + ;�1 − =�P���E� +																																											��1 − =�P���E�                                                                  …(17) 

E&���E� + F�P���E� = λ9P
��E� + ��∗P�3�E� + μ�P�@�E� + μ�P���E� 																																								+;�1 − =�P�?�E� + ��1 − =�P���E�                                  …(18) 

E&�3�E� + F�P�3�E� = ��∗P���E� + μ�P���E� + μ�P�
�E� + ;�1 − =�P���E� + 

																																									��1 − =�P���E�                                                                    …(19) 

E&���E� + μ:P���E� = λAP�3�E�                                                                               …(20) 

E&���
�E� + μ�P���
�E� = λ�P���E� + ;=P�����E�                                               …(21) 

E&�����E� + ;P�B���E� = αP�B�E�                                                                         …(22) 

E&�����E� + μ�P�B���E� = λ�P���E� + �=P�B���E�                                               …(23) 

E&�����E� + �P�B���E� = βP�B�E�                                                                         …(24) 

Solving recursively the above equations (13 to 24) we get, 

PF�s� = KFP3 where n=1, 2, 3, 4, 5……..35                                      …(25) 

Where, 

K
 = λ� + α=μ� ,																					K� = α;,																					K� =
λ� + β=
μ� ,																		K� = β� 

K� = λ7
�E + F
 − λ� − λ� − α − β�,																			K
3 =

K�λ8
�E + F� − λ� − λ� − α − β�,	 

K
� = ��∗K
3
E + F� − λ� − λ� − α − β,																					K�3 =

λ9K
3
�E + F� − λ� − λ� − α − β�,	 

K�� = λ9K
� + ��∗K�3
�E + F� − λ� − λ� − α − β�,																K�3 =

��∗K��
�E + F� − λ� − λ� − α − β�, 

K�� = IJ
KL K�3,             K��B = KBK�,															K
3�B = KBK
3,																	K
��B = KBK
�, 

K�3�B = KBK�3,								K���� = KBK��, 						K�3�� = KBK�3,			 ℎ�M�	N = 1,2,3,4,5	 
 



Performance optimization of rubber tube extraction …                                                               23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Transition diagram of Rubber Tube Extraction system 

 

Taking Laplace transform of equation- (1), using initial conditions and relations, we get 
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&3�E�
= 1
E + F3 − μ7∗K� − μ8∗K
� − μ9∗K�3 − μ�K
 − μ�K� − μ:K�� − ;�1 − =�K� − ��1 − =�K� 

                                                                                                                                …(26) 

The full Availability function AFC (s) for the system is given as, 

APQ�E� = &3�E�                                                                                                       …(27) 

 

Inversion of APQ�E� gives the full availability function APQ�'� 
The overall Availability function AOC (t) for the system is given as, 

ARQ�E� = &3�E� + &��E� + &
3�E� + &
��E� + &�3�E� + &���E� + &�3�E� 																													= P3�s��1 + K� + K
3 + K
� + K�3 + K�� + K�3�	,                     …(28) 

where	P3�s�	is	given	by	equation	�26� 
Inversion of ARQ�E� gives the overall availability function ARQ�'� 
 

The steady state probabilities are required to calculate the long run availability of the 

system. The steady state behavior of the system can be analyzed by setting t→ ∞ and 

d/dt → 0 in equations (18) to (34).  

 

We get, 

F3P3 = μ7∗P� + μ8∗P
� + μ9∗P�3 + μ�P
 + μ�P� + μ:P�� + ;�1 − =�P� + ��1 − =�P� 

…(29) 

F
P� = λ7P3 + μ�P? + μ�P� + ;�1 − =�P� + ��1 − =�P@																																													…(30) 

F�P
3 = λ8P� + μ�P
� + μ�P

 + ;�1 − =�P
� + ��1 − =�P
�																																																			…(31) 

F�P
� = ��∗P
3 + μ�P
? + μ�P
� + ;�1 − =�P
� + ��1 − =�P
@																																		…(32) 

F�P�3 = λ9P
3 + μ�P�� + μ�P�
 + ;�1 − =�P�� + ��1 − =�P��																																														…(33) 

F�P�� = λ9P
� + ��∗P�3 + μ�P�@ + μ�P�� + ;�1 − =�P�? + ��1 − =�P��																							…(34) 

F�P�3 = ��∗P�� + μ�P�� + μ�P�
 + ;�1 − =�P�� + ��1 − =�P��																														…(35) 

μ:P�� = λAP�3																																																																																																																																																																										…(36) 

μ�P���
 = λ�P�� + ;=P����																																																																																												…(37) 

;P�B�� = αP�B																																																																																																																					…(38) 

μ�P�B�� = λ�P�� + �=P�B��																																																																																													…(39) 

�P�B�� = βP�B                                                                                                         …(40) 

 

Where, 

Z
 = λ� + α=μ� ,																					Z� = α;,																					Z� =
λ� + β=
μ� ,																		Z� = β�, 

Z� = λ7
F
 − λ� − λ� − α − β,																		Z
3 =

Z�λ8
F� − λ� − λ� − α − β,	 

Z
� = ��∗Z
3
F� − λ� − λ� − α − β,																					Z�3 =

λ9Z
3
F� − λ� − λ� − α − β,	 

Z�� = λ9Z
� + ��∗Z�3
F� − λ� − λ� − α − β,														Z�3 =

��∗Z��
F� − λ� − λ� − α − β, 

Z�� = IJ
KL Z�3,             Z��B = ZBZ�,															Z
3�B = ZBZ
3,																	Z
��B = ZBZ
�, 

Z�3�B = ZBZ�3,								Z���� = ZBZ��, 											Z�3�� = ZBZ�3,										 
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From eq. 29 , we get  

&3 = 1
F3 − μ7∗Z� − μ8∗Z
� − μ9∗Z�3 − μ�Z
 − μ�Z� − μ:Z�� − ;�1 − =�Z� − ��1 − =�Z� 

 

                                                                                                                                  …(41) 

Using normalizing condition,  

d&�
��

�e

= 1, �	f�' 

&3 = g1 + ∑ i����e
 jk
                                           …(42) 

 

The full Availability function AFC  for the system is given as, 

APQ = &3                                                                     …(43) 

 

Inversion of APQ gives the overall availability function APQ. 

 

The overall Availability function AOC (t) for the system is given as, 

ARQ = &3 + &� + &
3 + &
� + &�3 + &�� + &�3 

																																															= P3�1 + Z� + Z
3 + i
� + Z�3 + Z�� + Z�3�	,             …(44) 

where	P3	is	given	by	equation	�41� 
 

Inversion of ARQ�E� gives the overall availability function ARQ�'� 
 

 ThelPQ  and lRQ  can be evaluated by substituting the values of different 

variables in above equations. The values of different variables have been taken from the 

real data available with the maintenance department. The various values are λi= λj= λk= 

λl =0.012, λ6=0.01, λ7=0.012, µi= µj= µk= µl =0.35, µ6=0.2, µ7=0.2, µe=0.009, α=0.004, 

β=0.005, θ=0.4, �=0.5. 

 

Substituting values in equation (43), the value of lPQ  is  

lPQ = 0.8454, = = 0	 lPQ = 0.8131, = = 1	 
Substituting values in equation (44), the value of lRQ  is  

lRQ = 0.8849, = = 0	 lRQ = 0.8510, = = 1	 
 

4. Computation Results, Analysis and Discussion 
To optimize the performance and availability of the system, different nature 

based algorithms are used for best results. The algorithms were coded in C++ language. 

The computations were done on AMD A10-8700P (x64 based Processor-64 bit) 

Windows 10 Compute Cores 4C+6G, 1.8 GHz Having 8 GB of memory. The task of 

optimizing with different algorithms was performed in 40 runs, with each run iterated 

until the best solution was found. The local maxima were found by using the maximum 

and minimum value of the input variables. The values are chosen such that the extreme 

values are ± 25% of the mean values as shown in Table 1. 
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Parameter λi λ6 λ7 µi µ6 µ7 µe α β θ φ 

Minimum 0.009 0.0075 0.009 0.2625 0.15 0.1125 0.15 0.00625 0.00375 0.3 0.375 

Maximum 0.015 0.0125 0.015 0.4375 0.25 0.1875 0.25 0.01125 0.00625 0.5 0.625 

 

Table 1: Minimum and Maximum values of parameters used in the analysis 

 

 

We compare the different ten nature based algorithms from literature, namely: 

GA  -Genetic Algorithm 

PSO  -Particle Swarm Optimization 

CS  -Cuckoo Search Algorithm 

CS-GA               -Cuckoo Search- genetic algorithm 

GA-PSO -Genetic Algorithm- Particle Swarm Optimization 

GWA  -Grey Wolf Algorithm 

MFO               -Moth Flame Optimization 

DAO               -Dragonfly Algorithm 

ALO  -Ant Lion Algorithm 

WOA  -Whale Optimization Algorithm 

 

The numerical results are shown in Tables 2–5, where the best solutions are 

reported corresponding to optimization technique. For measuring the improvement, 

MI% (maximum improvement percentage) can be used to measure the percentage 

improvement of the solutions found by the algorithms to the present availability and is 

described as:  

 

pq% = sl��t( − l�
��l�
�� u ∗ 100 

Where, 

l��t(= best system availability obtained corresponding to the algorithm  

l�
��= Present availability of the system as described in section 2.3 

By using MI%, it shows the change in the availability of the system from the mean. In 

high reliable systems, a small increment in reliability is often difficult to be achieved.  

 
 

Algorithm AFC λi λ6 λ7 µi µ6 

GA 0.886833 0.009214 0.007745 0.009623 0.437348 0.249758 

PSO 0.906047 0.009001 0.0075002 0.0095001 0. 437381 0.243258 

CS 0.906114 0.009003 0.0075002 0.0095006 0. 437499 0.248756 

CS-GA 0.906294 0.009 0.0075 0.0095001 0. 437498 0.249997 

GA-PSO 0.906295 0.009 0.0075 0.0095 0. 437496 0.25 

GWA 0.905838 0.009004 0.007508 0.0095003 0. 437412 0.249916 

MFO 0.906099 0.009005 0.0075001 0.0095002 0. 437466 0.248569 

DAO 0.90614 0.009007 0.0075003 0.0095 0. 437485 0.249999 

ALO 0.905976 0.009008 0.007501 0.0095001 0. 437499 0.249999 

WOA 0.906295 0.009 0.0075 0.0095001 0. 4375 0.2499998 
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Algorithm µ7 µe α β θ φ 

GA 0. 24932 0.011231 0.003751 0.003795 0.499999 0.623986 

PSO 0. 249262 0.011245 0.003 0.003768 0.497906 0.624365 

CS 0. 249358 0.011247 0.003001 0.003765 0.499899 0.624953 

CS-GA 0. 2495 0.011246 0.003 0.00375 0.499912 0.625 

GA-PSO 0. 2495 0.011247 0.003 0.00375 0.5 0.625001 

GWA 0. 2493 0.011246 0.003001 0.003786 0.499848 0.624788 

MFO 0. 249400 0.011246 0.003008 0.003758 0.498528 0.624997 

DAO 0. 249363 0.011246 0.003007 0.003798 0.499758 0.624997 

ALO 0. 249402 0.011221 0.003005 0.003776 0.499988 0.624997 

WOA 0. 249362 0. 011245 0.003 0.003751 0.499996 0.624996 
 

Table 2: Best result for the AFC with various nature based algorithms when PM is 

ideal 

 

Algorithm AFC λi λ6 λ7 µi µ6 

GA 0.878854 0.009158 0.007627 0.0096221 0. 437441 0.239952 

PSO 0.878914 0.009008 0.007504 0.0095951 0. 437475 0.241211 

CS 0.879441 0.009003 0.007501 0.0095055 0. 437395 0.24998 

CS-GA 0.87943 0.009 0.0075 0.0095018 0. 4375 0.24999 

GA-PSO 0.879270 0.009001 0.0075 0.0095 0. 4375 0.25 

GWA 0.879123 0.009012 0.007601 0.0095037 0. 43721 0.249841 

MFO 0.879312 0.009014 0.007707 0.0095511 0. 437423 0.248952 

DAO 0.879443 0.009025 0.007512 0.0095062 0. 437489 0.249999 

ALO 0.879443 0.009 0.0075 0.0095001 0. 437499 0.249998 

WOA 0.879423 0.009091 0.007612 0.009508 0. 437452 0.24125 

 

Algorithm µ7 µe Α β θ φ 

GA 0. 249418 0.011231 0.003368 0.003759 0.499984 0.624997 

PSO 0. 249399 0.011245 0.003022 0.0037511 0.499999 0.624874 

CS 0. 249425 0.01124 0.003041 0.0037574 0.499952 0.624922 

CS-GA 0. 249399 0.011243 0.003235 0.0037512 0.499966 0.624985 

GA-PSO 0. 2494999 0.0112479 0.003001 0.0037501 0.5 0.62499 

GWA 0. 249444 0.011246 0.00301 0.0037592 0.499156 0.624995 

MFO 0. 249441 0.011243 0.003012 0.0037522 0.499965 0.624959 

DAO 0. 249969 0.0112421 0.003061 0.0037541 0.499852 0.62492 

ALO 0. 2495 0.011221 0.003 0.0037501 0.499988 0.625 

WOA 0. 249402 0. 011245 0.003005 0.0037595 0.499588 0.62491 

 

Table 3: Best result for the AFC with various nature based algorithms when PM is 

faulty 
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Algorithm AOC λi λ6 λ7 µi µ6 

GA 0.954102 0.009041 0.007568 0.009504 0. 437325 0.2497521 

PSO 0.96125 0.009000 0.007502 0.009513 0. 437380 0.2497899 

CS 0.961825 0.009000 0.0075 0.0095 0. 437498 0.24999985 

CS-GA 0.961907 0.009012 0.007502 0.009512 0. 4375 0.24989965 

GA-PSO 0.963845 0.009 0.0075 0.0095 0. 437492 0.24989965 

GWA 0.960803 0.009000 0.007502 0.009501 0. 437428 0.24999016 

MFO 0.961998 0.009055 0.007500 0.009515 0. 437474 0.24999852 

DAO 0.961022 0.009035 0.007500 0.009506 0. 437413 0.2499523 

ALO 0.962559 0.009000 0.0075 0.009503 0. 437473 0.24999852 

WOA 0.963841 0.009002 0.0075 0.009502 0. 437953 0.25 

 
Algorithm µ7 µe α β θ φ 

GA 0. 249399 0.01124 0.003118 0.003871 0.489458 0.624999 

PSO 0. 249261 0.011245 0.003009 0.003755 0.499906 0.624865 

CS 0. 249499 0.011241 0.003024 0.003756 0.498998 0.624953 

CS-GA 0. 249499 0.011243 0.003009 0.003757 0.5 0.625 

GA-PSO 0. 249499 0.011248 0.003001 0.00375 0.499999 0.624999 

GWA 0. 249495 0.01125 0.0030004 0.003777 0.499948 0.624882 

MFO 0. 249389 0.01125 0.003005 0.003765 0.499997 0.624995 

DAO 0. 249357 0.0112421 0.0030065 0.003778 0.499998 0.624995 

ALO 0. 249491 0.01125 0.003005 0.003859 0.499997 0.624995 

WOA 0. 249425 0. 011235 0.003008 0.003759 0.5 0.624999 

 
Table 4: Best result for the AOC with various nature based algorithms when PM is 

ideal 

 

 

 

Algorithm AOC λi λ6 λ7 µi µ6 

GA 0.920833 0.009214 0.007745 0.009623 0. 437348 0.249758 

PSO 0.934523 0.0090001 0.0075 0.009502 0. 437489 0.249985 

CS 0.931547 0.0090002 0.007505 0.0095 0. 437395 0.24998 

CS-GA 0.942568 0.0090032 0.0075 0.0095 0. 437451 0.25 

GA-PSO 0.945426 0.009 0.0075 0.00955 0. 437352 0.24995 

GWA 0.935248 0.0090002 0.007601 0.0095 0. 4374 0.249854 

MFO 0.93241 0.0090004 0.0075 0.0096 0. 437459 0.24995 

DAO 0.935395 0.0090003 0.007523 0.009511 0. 437477 0.249981 

ALO 0.945405 0.0090002 0.007513 0.0095 0. 437476 0.249966 

WOA 0.945426 0.009 0.007509 0.0095 0. 437489 0.249999 
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Algorithm µ7 µe α β θ Φ 

GA 0.24932 0.011238 0.003751 0.0037951 0.499999 0.623986 

PSO 0. 2494 0.01125 0.003 0.003775 0.499999 0.62458 

CS 0. 249495 0.011246 0.003004 0.003761 0.499951 0.624999 

CS-GA 0. 249499 0.011241 0.003 0.003781 0.499999 0.624875 

GA-PSO 0. 2495 0.01125 0.003001 0.00375 0.5 0.62498 

GWA 0. 24999 0.011246 0.003001 0.003777 0.499525 0.62412 

MFO 0. 2495 0.011244 0.003006 0.003769 0.499965 0.624999 

DAO 0. 249395 0.0112421 0.003 0.0037526 0.499951 0.624875 

ALO 0. 249476 0.01125 0.003001 0.0037516 0.499991 0.624877 

WOA 0. 249496 0. 01125 0.003 0.0037501 0.499999 0.62492 

 

Table 5: Best result for the AOC with various nature based algorithms when PM is 

faulty 

 

 

Algorithm 
M I % 

AFC   (η=0) AFC   (η=1) AOC   (η=0) AOC   (η=1) 

GA 4.67651 8.080128 5.559324 4.69865 

PSO 6.944417 8.087497 6.350117 6.255202 

CS 6.952325 8.152321 6.413688 5.916831 

CS-GA 6.973688 8.151841 6.42433 7.169918 

GA-PSO 6.973689 8.131188 6.63722 7.494872 

GWA 6.919747 8.113103 6.220705 6.337634 

MFO 6.950554 8.136408 6.432874 6.014954 

DAO 6.955394 8.152497 6.324891 6.354348 

ALO 6.936036 8.152497 6.494941 7.492484 

WOA 6.973689 0.009 0.007509 0.0105 

 

Table 6: M I % of availability with various algorithms 

 

By critically observing, Table 2 indicates that the best solution of AFC when 

PM is ideal, obtained by GA-PSO and WOA is 0.906295 which is better to other 

optimization techniques. Table-3 indicates the best solution of AFC when PM is faulty, 

obtained by DAO is 0.879443. Table-4 indicates that the best solution of AOC when PM 

is ideal, obtained by GA-PSO is 0.963845. Table-5 indicates the best solution of AOC 

with faulty PM, obtained by WOA is 0.945426. The MI% in table 6 indicates the 

increment in the availability of the system. The corresponding input values also 

represented in the tables.  

 

5. Conclusion 
 This paper presented a comparative analysis of various nature-based 

algorithms to optimize the availability of a series-parallel continuous production 

system. Various thirteen nature based algorithms are used to find the local maxima of 
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the availability of the system under ideal and faulty PM. The best values obtained and 

the MI % is shown in table-7.  

 

 For any system, failure rates can be decreased. Eliminating or making a system 

failure free is not possible. The present study optimizes the system by taking ± 25% of 

the present values of failure rates, repair rates, transition rate and PM rates. The local 

maxima has been found. By making necessary changes and adjusting the parameters, 

the same system can be optimized for higher reliability. The various algorithms indicate 

the values of parameters corresponding to the availability. Simulation results show the 

vital role of hybrid algorithms in reliability optimization. Hybrid algorithms combine 

two different algorithms and improves the efficiency of the algorithms. We can 

conclude from the Results (Table2- 6) that best results are found with hybrid algorithm 

GA-PSO and recently developed DAO and WAO. The application of these algorithms 

may prove to be beneficial in increasing the availability of the system in the given 

constraints. 

 

 

Availability PM Optimization Technique MI% 

AFC 

Ideal GA-PSO & WOA 6.973689 

Faulty  DAO 8.152497 

AOC 
Ideal  GA-PSO 6.63722 

Faulty WOA 7.49487 

Table 7: Summary of best-obtained results 
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