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Abstract  
 This article deals with estimation of population mean for missing data in simple 

random sampling. The properties of the proposed procedure are studied up-to first order of 

approximation and under the optimality conditions proposed estimator outperforms other existing 

estimators. A numerical illustration, based on the two real data sets, highlights the efficiency gain 

using our proposed estimator. 
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1. Introduction 

 It is known that use of auxiliary information always results in improved 

procedures, common examples are ratio, product and regression estimators. Many 

authors including Upadhyaya and Singh (1999), Abu-Dayyeh et al. (2003), Kadilar and 

Cingi (2005), Khoshnevisan et al. (2007), Singh et al. (2007), Singh et al. (2008), Singh 

and Kumar (2011), Singh et al. (2012) and Sanaullah et al. (2012) proposed improved 

procedurs. 

 When one or more values are missing for a case, it creates problem for the 

analysis of data. Missing data introduces bias and makes the handling and analysis of 

data more strenuous, which in turn causes reduction in efficiency. Imputation is a 

technique in which missing values are filled in by substitutes based on the information 

available. These substitutes can be constructed in several ways. After imputing missing 

values, we get a complete data set which can be analyzed using standard techniques. 

Kalton et al. (1981) caused one to think for imputation technique for missing survey 

responses. For variance estimation under imputation Lee et al. (1994) proposed some 

improved estimators. Singh and Horn (2000), Ahmed et al. (2006), Shukla et al. (2009),  

Shukla and Thakur (2011), Thakur et al. (2012), Shukla et al. (2013), Omari et al. 

(2013), Singh et al. (2014), Pandey et al. (2015) also studied the problem of missing 

values using imputation techniques.  

 Motivated by the work of above authors, in this paper we have proposed an 

exponential method of imputation for missing values and compared the efficiency with 

the other estimators considered in the paper. 
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2. Notations 
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We will be using following approximations: 
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3. Existing Imputation Methods 

 Some common methods of imputation are : 

 

3.1. Imputation using simple mean 
 Here  for missing data we have 
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For unknown population mean Y  the point estimate is  
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3.2. Imputation by ratio method 

Here for missing data we have  
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The point estimator of Y  is given as-
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3.3. Singh and Horn (2000) method of imputation 
 Singh and Horn (2000) method of imputation is given as- 
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where α  is suitably chosen constant. 

 

The point estimator  for Y  is given as- 
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4. Proposed Method of Imputation for Missing Data 
 Motivated by Shabbir and gupta (2015)we proposed following exponential 

estimator for missing data:- 
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The point estimator of population mean under proposed method of imputation is 
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For different values of a, b, c and d we can generate following point estimators: 
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Based on the above approximations equation (4.2) can be written as 
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Following results we obtain for our proposed procedure: 

 

Theorem 4.1 : Bias of the suggested estimator of missing data up-to first order of 

approximation is given as:- 
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Theorem 4.2: Minimum MSE of the proposed is given by 
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Proof:         Squaring equation (4.5) on both the sides we get 
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  Where values of A, B and C are as given in equation (4.7), (4.8) and (4.9) 

respectively. 

Optimum value of K is obtained from equation (4.11) as 
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Substituting  optimum value of k in equation(4.11) we get min MSE of suggested 

estimator as  
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5. Empirical Study 

We have considered following two populations for  numerical illustration. 

 

 Population I 

(Shukla and Thakur (2008)) 

Population II 

(Singh et.Al. (1994)) 

Y 42.485 1031.82 

X 18.515 2934.58 

Z 20.52 3651.49 

YC 0.3287 1.59749 

XC 0.3755 
2.00625 

ZC 0.3296 2.48654 
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YXρ 0.8734 0.93 

YZρ 0.8667 0.77 

XZρ 0.9943 0.84 

N 200 200 

N 30 20 

R 22 15 

Table 5.1: Data statistics for two populations 

 

Using data for two different populations, percentage relative efficiency(PRE) of various 

estimators is listed in Table 5.2.  

 

 Population I Population II 

Estimator PRE PRE 

meany

 

100.00 100.00 

ratioy 126.0851 125.8006 

compy

 

129.6281 130.5069 

1pry 421.6341 740.1925 

2pry 421.6341 740.1925 

3pry 401.879 245.6399 

4pry 415.8384 432.598 

5pry

 

418.5873 544.9725 

6pry

 

412.177 347.8837 

Table 5.2: PRE of the estimators with respect to usual mean estimator

 

 From the Table 5.2, it can be seen  that our proposed estimator pry performs 

better than other estimators as it achieves the highest efficiency among all the 

estimators. 

 



40   Journal of Reliability and Statistical Studies, December 2017, Vol. 10(2) 
 

 

 

6. Conclusion 
 In this article under imputation we have proposed a generalized class of 

estimators. Our generalized class includes various estimators that are obtained after 

taking different values of constants. Properties of the proposed class of estimators are 

studied under first order of approximation and found that our proposed estimator pry  

has highest efficiency among all other estimators and 2pr1pr y and y turn out to be the 

best choices. Thus we conclude that our proposed method of imputation is preferable 

over other imputation methods considered in this article. 
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