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Abstract

The cumulative sum (CUSUM) chart is commonly used for detecting small or
moderate shifts in the fraction of defective manufactured items. However, its construction relies
on the error-free inspection assumption, which can seldom be met in practice. This article has
studied the effect of inspection error on the parameter of the CUSUM chart and discussed the
construction of CUSUM chart in the presence of truncated normal distribution with inspection
error. Expression for the parameter of the CUSUM chart has also been derived.

Key Words: Truncated Normal Distribution, Inspection Error, Average Run Length, Lead
Distance and Angle of Mask.

Introduction

The normal distribution is a common model of randomness. Unlike the
uniform distribution, it proposes a most probable value which is also the mean, while
other values occur with a probability that decreases in a regular way with distance from
the mean. This behavior is mathematically very satisfying, and has an easily observed
correspondence with many physical processes. One drawback of the normal
distribution, however, is that it supplies a positive probability density to every value in
the range (-o0; +o0), although the actual probability of an extreme event will be very
low. In many cases, it is desired to use the normal distribution to describe the random
variation of a quantity that, for physical reasons, must be strictly positive. A
mathematically defensible way to preserve the main features of the normal distribution
while avoiding extreme values involves the truncated normal distribution, in which the
range of definition is made finite at one or both ends of the interval. Nelson (1990)
stresses the distinction between truncation and censoring. Chang (1990) and Schneider
(1986) contain some basic results concerning the properties of the truncated normal
distribution.

Inspections are performed in virtually every production system. Their purpose
is to verify that the production operations were carried out properly and that the
production output meets the expectations of the customer. Inspection operations can
often be seen as procedures used to classify a product unit into two or more classes
according to its conformance to a given set of requirements. Raz and Thomas (1990)
pointed the fact that inspection operations can be unreliable, resulting in classification
errors. These errors have both cost and quality implications. One common approach to
deal with inspection errors is to introduce redundancy into the inspection procedure by
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carrying out multiple inspections — either identical or unique — on each product unit and
to base the classification decision on their combined results. Jamkhaneh, E. B. ; Gildeh,
B. S. and Yari, G. (2011) showed the effect of Inspection error on single sampling
plans with fuzzy parameters. Gall, I. B.; Herer, Y. T. and Raz, T. (2002) used
inspection errors for Self-correcting inspection procedure.

In statistical quality control the cumulative sum control charts (CUSUM
Charts) have found importance as a parallel process control technique to the well-
known Shewhart control charts. An alternative method for testing statistical hypothesis
parallel to Neyman’s theory is the popular sequential probability ratio test (SPRT) due
to Wald (1942). Page (1954, 1961) suggested the cumulative sum charts which are
more effective than Shewhart control charts in detecting small and moderate size
departures from a simple acceptable quality level. Johnsom and Leone (1962)
considered mathematical procedure for construction of CUSUM control chart for
Poisson variable using the relationship between Wald’s Sequential Probability Ratio
Test (SPRT) and CUSUM on the assumption that the probability of the second kind of
error is small. They used this relationship to construct CUSUM charts for the mean and
standard deviation of a normal distribution. Singh et al. (2002) showed the effect of
inspection error on CUSUM chart for proportion. Singh and Sayyed (2001) constructed
CUSUM chart for Poisson variable under inspection error. Kantam and Rao (2006)
studied the cumulative sum control chart for log-logistic distributional Statistics. Ryu et
al. (2010) used ARL based performance measure and proposed a method to optimally
design a CUSUM chart based on expected weighted run length. Grigg and Spiegelhalter
(2008) developed an empirical approximation to the null steady —state distribution of
CUSUM. Chakraborty and Khurshid (2011) constructed one-sided cumulative sum
(CUSUM) control chart for the zero-truncated binomial distribution. Sankle et al.
(2012) introduced CUSUM chart for truncated normal distribution under measurement
error. Sayyed and Singh (2015) pointed out the effect of inspection error on CSCC
chart for Binomial parameter.

Truncated CUSUM Chart Parameters
Let X be the true value of the variable which is distributed as

2
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If x4, Xp,... ,X, are m independent random variables whose pdf is given by (2.1). The
likelihood ratio of the hypothesis Hy: u = po vs Hi: 1 =y is given by



CUSUM control chart for truncated normal ... 107

f(x1x2 xm|ﬂ1°'p)

(u1- Ho) m(u1+uo)
= mlogR + ——= X; ———— 2.4
vy gR +8te {5 x, } 2.4)

2
Where
_ ¢ (11 Ip )

c(ko.0p )
The continuation region of SPRT discriminating between the two hypotheses, Hy:

K= po Vs Hi: p = py is given by
I B (M1t10)
log ({£;)+m[He~

P logh| <x s = log (Z£)+

(n1—po) ; (u1 uo) (n1—#o)

m [Ltte) 2=log R] 2.5)
Foe every small value of B above equation reduces to

X < s loga+m [atte) 2=lo ogR| 2.6)

A narrow V-mask will detect change more quickly but it will give more
frequent false alarms. On the other hand, we would reduce the frequency of false alarms
by widening the angle of mask, but the average run length for real changes would be
increased.

Under the inspection error the parameter of the mask, namely the angle of the
mask @ and the lead distance d are given by
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For ARL we consider the situation where the true mean 6 has shifted from 6, to 6,. Foe
every small value of a; the ARL that is expected number of observation before the
change from 6, to 0, is detected ( Mood and Grabill 1963) is approximately
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Truncated CUSUM Chart Parameters under Inspection Error

Let r be the probability that nonconformity is correctly noted by the inspector.
We note that r is assumed to be a constant over different values of u. In one study
reported by Harris and Chaney (1969) r varies from 0.58 to 0.80 where as u varies from
0.0025 to 0.16. However, this variability in r also included the variability among
different inspectors, since different inspectors were used for different values of
w.Therefore, the assumption of a constant r does not seen too be seriously. Especially
noting the large spread in values of u. If 1if is the average no. of false alarms per part

and p is the true average no. of true non conformities per part and p' is the average no.
per part observed by the inspector, then

W=rpt g

Every effort should be made to estimate both type of errors i. e. r close to one and
usclose to zero. If uis the target value then the control limits and ARL under
inspection error is obtained by the following formulae
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4. Tabulation of Results and Conclusions

To illustrate the effect on the dimensions of the mask on truncated CSCC
under the inspection error the values of the angle of the mask, lead distance and ARL
for the mean chart have been tabulated in Table -1 , Table-2 and Table-3 for the
different values of inspection rates (1,0),(1,2) (0.8,2) and (0.8,0) and the truncation
points +2.5, £2.25, £2, (0,2.5) and (0,2).The values of o are taken to be
0.05,0.025,0.01,0.005 and 0.001.

It is seen from Table-1 that the angle of the mask increases as the range of
truncation increased and is bigger in case of one sided truncation. Angle of the mask
increases as the type I error decreases and the angle of the mask decreases as the ratio
K o/ p, decreases. As the error term increase the angle of the mask also increases. From
Table-2 and Table -3 it is evident that for fixed a the values of d and ARL decreases as
the difference py — i, increases that’s mean as the error rates increases the value of
lead distance and ARL increases. Lead distance and ARL is higher in case when
average no. of false alarms per part is null as compare error free case.

Truncation Mo 19 A (1,1

Point (1,0) (1,2) (0.8,2) (0.8,0)
0.4 0.43 | 0.05 20.507 53.377 53.123 16.725
0.4 0.46 | 0.025 21.165 53.42 53.162 17.285
0.4 0.49 | 0.01 21.815 53.462 53.199 17.84
0.4 0.52 | 0.005 22.457 53.503 53.236 18.39
0.4 0.55 | 0.001 23.089 53.543 53.273 18.936
0.3 0.43 | 0.05 18.251 53.226 52.99 14.825

(-2.5,2.5) 0.3 0.46 | 0.025 18.933 53.272 53.03 15.398
0.3 0.49 | 0.01 19.607 53316 53.069 15.966
0.3 0.52 | 0.005 20273 53.359 53.108 16.53
0.3 0.55 | 0.001 20.931 53.402 53.146 17.09
0.2 0.43 | 0.05 15.913 53.064 52.848 12.88
0.2 0.46 | 0.025 16.616 53.112 52.89 13.464
0.2 0.49 | 0.01 17.312 53.158 52.931 14.045
0.2 0.52 | 0.005 18.001 53.204 52.972 14.622
0.2 0.55 | 0.001 18.682 53.249 53.011 15.194
04 | 043 |0.05 19.27 51.956 51.663 15.699
04 | 043 |0.025 19.893 52.005 51.707 16.227
04 | 043 |00l 20.508 52.054 51.75 16.75
04 | 043 |0.005 21.116 52.101 51.793 17.269
04 | 043 |0.001 21.716 52.148 51.835 17.784
03 | 043 |0.05 17.138 51.782 5151 13.909

(-2.25,2.25) 03 | 043 |0.025 17.781 51.834 51.556 14.448
03 | 043 | o001 18.417 51.885 51.601 14.983
03 | 043 | 0.005 19.046 51.935 51.646 15.514
03 | 043 | 0.001 19.668 51.984 51.689 16.041
02 | 043 |0.05 15.913 53.064 52.848 12.88
02 | 043 |0.025 16.616 53.112 52.89 13.464
02 | 043 |o001 17.312 53.158 52.931 14.045
02 | 043 |0.005 18.001 53.204 52.972 14.622
02 | 043 |0.001 18.682 53.249 53.011 15.194
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04 1[043 0.05 17.56 49.882 49.541 14.28
04 |043 |0.025 18.135 49.94 49.592 14.764
04 |043 | 0.01 18.702 49.997 49.642 15.244
04 |043 | 0.005 19.264 50.052 49.692 15.72

(-2,2) 04 | 043 0.001 19.818 50.107 49.74 16.193
03 ]043 |0.05 15.599 49.679 49364 12.641
0.3 | 043 | 0.025 16.19 49.739 49417 13.134
0.3 |043 | 0.01 16.774 49.799 49.469 13.624
0.3 | 043 | 0.005 17.353 49.857 49.521 14.11
0.3 |043 | 0.001 17.925 49915 49.571 14.592
02 1[043 |0.05 13.575 49 462 49.178 10.97
0.2 |043 |0.025 14.181 49.525 49233 11.47
0.2 |043 |0.01 14.781 49.588 49287 11.968
0.2 | 043 | 0.005 15.375 49.649 4934 12.463
02 |043 | 0.001 15.964 49.709 49392 12.954
04 |043 |0.05 41431 53.598 53.396 40.591
04 |043 |0.025 41.582 53.632 53.426 40.714
04 |043 |0.01 41.732 53.666 53.456 40.836
04 |043 ]0.005 41.882 53.7 53.485 40.958

0,2.5) 04 |043 0.001 42.032 53.732 53.514 41.081
03 |043 |0.05 40.929 53.477 53.292 40.184
0.3 | 043 |0.025 41.082 53.513 53.323 40.308
03 |043 |0.01 41235 53.549 53.354 40.431
0.3 | 043 ]0.005 41387 53.584 53.384 40.555
0.3 |043 | 0.001 41.539 53.618 53.414 40.678
0.2 |043 |0.05 40.425 53.35 53.183 39.776
0.2 |043 |0.025 40.581 53.388 53.215 39.901
02 |043 |0.01 40.736 53.425 53.247 40.026

0.2 ]10.43 |0.005 40.89 53.462 53.279 40.151

0.2 1043 |0.001 41.045 53.497 53.31 40.276

04 1043 |0.05 39.069 50.411 50.168 38.36
04 1043 |0.025 39.196 50.454 50.204 38.463
04 1043 |0.01 39.322 50.495 50.24 38.566

04 1043 |0.005 39.449 50.537 50.275 38.669

04 ]0.43 |0.001 39.575 50.577 50.31 38.772

0.3 1043 |0.05 38.644 50.266 50.045 38.015
0,2) 0.3 1043 ]0.025 38.773 50.309 50.082 38.119
0.3 1043 |0.01 38.901 50.353 50.118 38.224

0.3 10.43 |0.005 39.029 50.395 50.154 38.327

0.3 1043 |0.001 39.157 50.437 50.19 38.431

0.2 1043 |0.05 38.217 50.114 49.917 37.67
0.2 1043 ]0.025 38.347 50.159 49.955 37.775
0.2 1043 |0.01 38.477 50.203 49.993 37.88

0.2 ]10.43 |0.005 38.607 50.247 50.03 37.985

0.2 ]10.43 |0.001 38.736 50.291 50.066 38.089

Table 1: Angle of the Mask for different Truncation Points (a, b) under
Inspection Error
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Truncation Ko 19 A (1)

Point (1,0) (1,2) (0.8,2) (0.8,0)
0.4 | 043 | 0.05 266.6536 | 59.77988 | 76.20867 | 415.1839
0.4 | 043 | 0.025 158.5682 | 36.68101 | 46.78416 | 246.8266
0.4 | 0.43 | 0.0l 127.6243 | 3042625 | 38.82464 | 198.6025
0.4 | 0.43 | 0.005 106.6252 | 26.16803 | 33.40603 | 165.8742
0.4 | 0.43 | 0.001 107.7966 | 27.20513 | 34.74504 | 167.6426
03 | 0.43 | 0.05 69.82636 | 13.95879 | 17.76402 108.798

(-2.5,2.5) 03 | 043 | 0.025 67.15389 | 13.91682 | 17.71969 | 104.6058
03 | 043 |0.01 67.97114 | 14.58001 18.57332 | 105.8484
03 | 0.43 | 0.005 | 65.12261 14.43791 1840113 | 101.3816
03 | 0.43 | 0.001 72.14407 16.5094 21.05102 | 112.2763
02 | 043 | 0.05 4566678 | 7.988213 | 10.14615 | 71.19073
02 | 043 |0.025 | 4751938 | 8.670071 11.01824 | 74.05877
02 | 0.43 | 0.0l 5091451 | 9.669414 | 12.29478 | 79.32726
02 | 043 |0.005 | 5091778 10.0465 12.78082 | 79.30815
02 | 0.43 | 0.001 58.31954 11.9342 15.18985 | 90.80764
0.4 | 043 | 0.05 285.3539 66.1661 8427072 | 443.9238
0.4 | 043 | 0.025 169.7189 40.6062 51.74065 | 263.9435
0.4 | 0.43 | 0.0l 136.625 33.68751 | 42.94379 | 212.4018
0.4 | 0.43 | 0.005 114.1678 | 28.97743 | 36.95533 | 177.4229
0.4 | 0.43 | 0.001 1154463 | 30.13054 | 38.44179 | 179.3394
03 | 0.43 | 0.05 7468752 | 1544133 | 19.63388 | 116.2929

(-2.25,2.25) 03 | 043 [0.025 | 71.84197 | 1539749 | 19.58769 | 111.8251
03 | 0.43 | 0.01 7273019 | 16.13392 | 20.53423 | 113.1677
03 | 0.43 | 0.005 | 69.69629 | 1597927 | 2034671 | 108.4064
03 | 0.43 | 0.001 7722725 | 18.27485 | 23.28001 120.0728
02 | 043 | 0.05 48.82903 | 8.831432 | 11.20858 | 76.07776
02 | 0.43 | 0.025 | 5081914 | 9.586938 12.1738 79.15208
02 | 0.43 | 0.0l 54.46051 10.6938 13.58619 84.7936
02 | 0.43 | 0.005 | 5447507 | 11.11272 | 14.12533 | 84.78449
02 | 0.43 | 0.001 6240723 | 13.20296 | 16.79018 | 97.09168
0.4 | 043 | 0.05 3153421 | 7476902 | 95.17468 | 490.2811
0.4 | 0.43 | 0.025 187.5787 | 45.89018 | 5844033 | 291.5306
0.4 | 043 |0.01 151.0225 | 38.07474 | 4850837 | 234.6225
0.4 | 0.43 | 0.005 1262166 | 32.75426 | 41.74731 | 196.0027

(-2,2) 0.4 | 0.43 | 0.001 127.649 34.06071 | 43.42997 | 198.1394
03 | 0.43 | 0.05 82.50852 | 17.44322 22.168 128.4085
03 | 0.43 | 0.025 | 7937515 | 17.39542 | 22.11774 | 123.4855
03 | 0.43 | 0.01 80.36739 | 18.22919 23.1885 124.9793
03 | 0.43 | 0.005 77.02589 | 18.05618 | 22.97866 | 119.7324
03 | 0.43 | 0.001 8536162 | 20.65206 | 2629356 | 132.6308
02 | 043 | 0.05 53.9289 9.972877 | 12.65148 | 83.99016
02 | 0.43 | 0.025 56.1341 10.82715 | 13.74216 87.3916
02 | 0.43 | 0.0l 60.1645 12.07843 | 1533786 | 93.62877
02 | 0.43 | 0.005 60.18921 12.55284 | 15.94788 | 93.62757
02 | 0.43 | 0.001 68.96381 14.91541 18.95818 | 107.2291
0.4 | 043 | 0.05 109.2372 | 5872769 | 74.61625 | 141.1904
0.4 | 043 | 0.025 | 66.85158 | 36.05498 | 4583023 | 86.50813
0.4 | 0.43 | 0.01 5530331 | 29.92262 | 38.05205 | 71.64838
0.4 | 043 | 0.005 | 4743341 | 2574786 | 32.75719 | 61.52458
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(0,2.5) 04 | 043 | 0.001 | 49.17604 | 26.78129 | 34.08627 | 63.85953
03 | 0.43 | 0.05 2571866 | 13.68571 | 17.36054 | 33.11203
03 | 0.43 | 0.025 | 2557514 | 13.65255 17.3267 32.96676
03 | 043 | 0.01 2672329 | 1431124 | 18.17106 | 34.48803
03 | 043 | 0.005 | 2639171 | 14.17946 18.0119 34.10085
03 | 043 | 0.001 | 30.09565 | 16.22237 | 20.61608 | 38.93316
02 | 043 | 0.05 14.83004 | 7.814176 | 9.895346 | 19.01884
02 | 043 | 0.025 16.05533 | 8.486551 | 10.75215 | 20.61538
02 | 043 |0.01 17.85978 | 9.470523 | 12.00464 | 22.96032
02 | 043 | 0.005 18.50744 | 9.845649 | 12.48607 | 23.82194
02 | 043 | 0.001 | 21.92589 | 11.70225 | 14.84747 | 28.25635
0.4 | 043 | 0.05 119.9329 | 72.61986 | 92.01326 | 154.1311
0.4 | 043 | 0.025 | 73.47457 | 44.60494 | 56.53887 94.5148
04 | 043 |0.01 60.84681 | 37.03557 | 46.96224 | 7834467
04 | 043 | 0.005 | 52.24395 | 31.88296 | 4044368 | 67.33092
04 | 043 | 0.001 5422177 | 33.17749 42.1012 69.94505
03 | 0.43 | 0.05 28.14066 | 16.89527 | 2137799 | 36.05034

0,2) 03 | 0.43 | 0.025 | 28.01324 | 16.86262 | 2134533 | 35.92179
03 | 043 | 0.01 29.30208 17.6847 2239486 | 37.61065
03 | 043 | 0.005 | 2896962 | 17.53017 | 2220783 | 37.21956
03 | 043 | 0.001 | 33.07117 | 20.06519 | 2542897 | 42.52966
02 | 0.43 | 0.05 16.17311 9.62999 12.16732 | 20.65274
02 | 043 | 0.025 17.52795 | 1046394 | 13.22659 | 22.40493
02 | 043 | 001 19.51877 | 11.68303 | 14.77366 | 24.97419
02 | 043 | 0.005 | 2024842 | 12.15178 | 1537265 | 25.93312
02 | 043 | 0.001 | 24.01453 | 14.45024 18.2876 30.78652

Table 2: Lead Distance for Mean for different Truncation Points (a, b) under

Inspection Error

Truncation Mo 15 A (r 1)

Point (1,0 (1,2) (0.8,2) (0.8,0)
04 |043 |0.05 227.3715 7432166 8933626 | 353.4115
04 | 043 |0.025 135.0868 | 46.77862 55.69083 210.0127
04 | 043 |0.01 108.6142 39.89782 | 46.98156 168.8946
04 | 043 |0.005 90.6397 35.37885 41.14275 140.9782
04 | 043 |0.001 91.52072 | 38.03856 | 43.60812 142.3852

(-2.5,2.5) 03 | 043 |0.05 59.27161 17.36265 20.73138 92.29594
03 | 043 |0.025 56.95104 17.74212 20.98659 88.70091
03 | 043 |0.01 57.58454 19.09556 22.34748 89.70806
0.3 | 0.43 | 0.005 55.10777 19.47696 | 22.51791 85.87086
03 | 043 |0.001 60.97213 23.00741 26.23221 95.03408
02 [043 |0.05 38.60103 9.815693 11.70945 60.19526
02 | 043 |0.025 40.12991 10.90372 12.89413 62.59277
0.2 | 043 |0.01 42.95221 12.47321 14.60404 | 67.01049
0.2 | 043 |0.005 42.90506 13.32523 1542574 | 66.95382
0.2 | 043 |0.001 49.07925 16.32 18.6499 76.60944
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04 043 ]0.05 220.0917 90.9534 106.1048 340.7783
04 |043 ]0.025 130.8094 | 58.76688 67.20312 202.5719
04 | 043 |0.01 105.2116 51.65833 57.6926 162.9618
04 | 043 ]0.005 87.82933 47.4435 51.50694 136.067
04 | 043 | 0.001 88.71113 53.16066 55.77482 137.4646
0.3 | 043 ]0.05 57.17864 | 22.18172 | 25.26383 88.77029

(-2.25,2.25) 03 | 0.43 | 0.025 5495904 | 23.34486 | 26.01327 | 85.33974
0.3 | 043 |0.01 55.58863 25.99504 | 28.22277 86.33499
0.3 | 043 ]0.005 5321427 | 27.58649 29.03117 82.66611
0.3 | 0.43 | 0.001 58.89454 | 34.14734 34.6034 91.51279
0.2 | 043 ]0.05 37.12099 12.98738 14.57611 57.75856
0.2 |043 ]0.025 38.60401 14.89047 16.33754 | 60.07763
0.2 | 043 |o0.01 4133187 17.66608 18.86754 | 64.33685
0.2 |0.43 ]0.005 41.29864 19.69112 2036141 64.30057
0.2 | 043 | 0.001 4725478 | 2535412 | 2520967 | 73.59334
04 | 043 ]0.05 210.9755 120.5302 133.6799 | 324.9536
04 |043 ]0.025 125.483 82.23594 87.28764 193.2788
04 | 043 |0.01 101.0004 | 77.43804 | 77.62711 155.5762
04 | 043 ]0.005 84.37412 77.79865 72.23059 129.9747

(-2,2) 0.4 | 043 | 0.001 85.28155 08.51488 82.15345 131.3841
0.3 | 043 ]0.05 54.594 32.68012 33.75035 84.39413
0.3 | 043 ]0.025 5251119 37.04827 36.04585 81.17892
0.3 | 043 |0.01 53.14907 | 45.44169 | 40.81305 82.17172
0.3 | 0.43 ] 0.005 5091324 | 54.99152 | 44.15583 78.72325
0.3 | 0.43 | 0.001 56.38543 82.34286 55.92171 87.19548
0.2 | 043 ]0.05 3530914 | 21.33984 | 2061224 | 54.75368
0.2 |043 ]0.025 36.74408 | 26.93968 24.10464 | 56.98356
0.2 043 |o0.01 39.36609 36.35395 2926012 61.05657
0.2 | 043 ]0.005 39.35959 48.6391 33.5092 61.05474
0.2 | 043 | 0.001 45.06442 8327512 | 44.58763 69.91516
04 | 043 ]0.05 89.22489 72.15262 86.55645 117.1087
04 |043 ]0.025 54.60567 454714 54.02195 71.65148
04 | 043 |o0.01 45.18806 38.82982 | 45.62583 59.27439
04 | 043 ]0.005 38.78224 | 34.47121 39.99961 50.858

0,2.5) 0.4 | 043 | 0.001 40.24404 37.10262 4244156 52.74497
0.3 | 043 ]0.05 2131471 16.90035 20.13361 27.89392
0.3 | 043 ]0.025 21.17769 17.29214 | 2040569 | 27.71357
0.3 | 043 |o0.01 22.11717 18.63431 21.75389 | 28.93976
0.3 | 0.43 ] 0.005 21.83879 19.02892 | 21.94416 | 28.57035
0.3 | 043 | 0.001 24.90703 22.50341 25.59129 32.5764
0.2 | 043 ]0.05 12.5056 9.583975 11.40174 16.30362
0.2 |043 ]0.025 13.51438 10.66035 12.57021 17.62259
0.2 | 043 |o0.01 15.01181 12.21024 14.25355 19.57777
0.2 | 043 ]0.005 15.53965 13.06015 15.07235 | 20.26717
0.2 | 043 | 0.001 18.39671 16.01403 18.24237 | 23.99283
04 | 043 ]0.05 99.34995 113.295 125.9201 128.969
04 |043 ]0.025 60.87125 77.15463 82.19727 | 78.97012
04 | 043 |o0.01 50.43205 72.43375 73.05549 | 65.38103
04 | 043 ]0.005 43.33526 7242014 | 67.90704 | 56.13636
04 | 043 |0.001 45.02503 90.9772 7711419 | 58.27458
0.3 | 043 ]0.05 23.49688 30.69831 31.83385 30.5066
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0,2)

03 |043 |0.025 23.36993 34.70443 33.9848 30.33152

03 (043 |0.01 24.43256 42.37395 38.44899 31.69702

0.3 | 043 | 0.005 24.15141 50.89178 41.5448 31.31596

03 043 | 0.001 27.57564 75.16943 52.51211 35.73432

0.2 |1043 | 0.05 13.66965 20.07529 19.4913 17.72521
0.2 |1043 |0.025 14.78604 25.25523 22.78387 19.17206
02 (043 |0.01 16.44001 33.88116 27.63388 21.31362

0.2 | 043 | 0.005 17.0347 44.85624 31.60359 22.07934

0.2 043 | 0.001 20.18693 75.15477 41.963 26.15642

Table 3: ARL for mean for different Truncation points (a, b) and Inspection

Error

Since angle of mask is grater for one sided truncation as compare to

symmetrical truncation it shows that it will detect change more quickly and give more
frequently false alarms as compare to ARL.

This paper indicated that both types of error seriously affect the control limits

d and ARL from that which would be obtained under error from inspection. This
statement is especially true when one is setting up CSCC for truncated data.
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