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Abstract 
An optimal variable ordering technique for Reduced Ordered Binary Decision Diagram 

(ROBDD) has been proposed to solve the network reliability analysis problem for complex 

communication networks. Several approaches have been proposed in the literature using the static 

and dynamic variable ordering techniques to solve the terminal network reliability problems. In 

this paper, the Minimal path set enumeration of the networks using Breadth first search traversal 

and ROBDD based Sift-reordering technique on manipulating the reliability evaluation is 

presented. The experimental results are compared with the previous approaches in computational 

time and number of ROBDD nodes to evaluate the K-terminal network reliability analysis. 
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1. Introduction 
 Network reliability has always been a core problem domain for design 

engineers to enhance their ability for designing reliable networks. Network models can 

represent varieties of applied problems like transportation networks, computer 

architectures, data and voice communication networks and electrical networks etc. 

Earlier attempts were concentrated mostly on systems whose failure could cause 

massive damage or loss of property or human life. But, recently, it has been recognized 

that highly reliable systems make economic sense in a wide range of industries. Thus in 

present work reliability analysis and design of communication networks is carried out 

using graph theoretic approach for evaluating the different reliability measures. In the 

case of large and complex communication networks, it is quite difficult to solve the 

reliability measure. Recent literature describes that this problem has been solved by 

introducing efficient algorithm to minimize the execution time and memory 

requirements. This paper concentrates on the ROBDD approach for solving the K-

terminal network reliability problem for large scale networks.  

  

 The general network reliability problem contains a graph G = (V, E) with a set 

of vertices (nodes) V  and the set of edges (links) E . The edges can fail randomly 

and independently with known probability. A computational measure of the network 

reliability problem has been classified into two major categories: approximation and 

exact methods. Approximation methods are a good solution for large networks. 
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Efficient algorithms have been proposed to solve the network reliability measures. 

Colbourn (1987) has proved that the exact method of solving the problem of network 

reliability analysis is NP-hard. The exact method of solving the network reliability 

measure involves two kinds of approaches, one is Path/Cut set method and the second 

method is based on the topology of the network. A path/cut is defined as a specified set 

of nodes that can communicate/not communicate with each other and leads to the 

functioning/non-functioning of the network. A path is a  minimal path if it has no 

proper subpaths. The reliability value is computed based on the formula of inclusion-

exclusion principle as done by Al-Ghanim (1999). Yeh (2008)  proposed branch and 

bound algorithm for multi-state networks. Soh and Rai (1993) used the sum of disjoint 

products technique for path/cut set approach and it has been improved by Yeh (2007). 

In general, the proposed algorithms based on the path/cut set methods by Kobayashi 

and Yamamoto (1999), Shen (1995) and Mishra and Chaturvedi (2009) for solving the 

two-terminal network reliability problem are not recommended for large-scale networks 

due to exponential complexity nature. Hui (2007) have estimated the reliability ranking 

for edge relocated networks and Gertsbakh and Shungin (2008) have proposed to solve 

the network reliability importance measures using Monte Carlo simulation technique. 

On the other hand, to overcome the limitations of the path/cut set methods, state 

enumeration methods, topological methods and decomposition methods have been used 

by Satyanarayana (1983), Li and He (2002) and Kim and Kang (2013) and also some of 

the transformation methods have been developed. Binary Decision Diagram (BDD) is 

used to manipulate the Boolean expressions and is quite efficient in time and memory 

management particularly in the case of large-scale networks. 

  

BDD-based methods have been studied by many authors, including Zang et al. 

(1999), Kuo et al. (1999) and Rauzy (2003) for 2-terminal reliability graph analysis, 

later, it has been extended to K-terminal as well as for all-terminal networks by Yeh et 

al. (2002), Hardy et al. (2007), Kuo et al. (2007) and Sekine (1999) with the extended 

BDDs. An efficient ROBDD based technique using cutsets has been developed by Xing 

(2008) for 2-terminal network reliability and sensitivity analysis. In this paper, the 

authors have tried to enhance the ROBDD based analysis of K-terminal network 

reliability analysis and compared the efficiency with Yeh et al. (2002) and Hardy et al. 

(2007).  

  

The rest of the paper is organized as follows: Section-2 describes the problem 

statement and its assumptions about the network. Section-3 explores the fundamentals 

of the ROBDD with variable ordering techniques. The proposed methodology and 

algorithms have been discussed in the Section-4. Further, the evaluation of the K-

terminal network reliability analysis and experimental results have been discussed in 

Sections 5 and 6. Finally, Section-7 concludes the paper. 

 

2. Problem description 
The main objective of the paper is to compute the K-terminal reliability of a 

given network via the minimal path by using the ROBDD method. Consider a network 

graph G = (V, E, P) as shown in Figure 1, where V - denotes the set of nodes, E - is the 

set of edges or arcs and P - is the probability assigned to each edge. Major assumptions 

about the network G are: each node or edge is subject to fail randomly and 

independently with known probability value. In this paper, the probability value of the 

each edge is fixed at 0.9. For efficient manipulation of the network reliability, Breadth 
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First Search Traversal Method is used for enumerating minimal path sets by traversing 

the network. Further, the reliability of the network is computed by using traditional 

reliability algorithm from the bottom-up approach using the canonical ROBDD. 

 

 
 

Figure 1: Sample Network 

 

3. Binary Decision Diagram 
Binary decision diagrams were discovered to represent the switching circuits 

and the basic definitions are given by Lee (1959) to represent the switching circuits. 

Later the research has been extended to VLSI design systems by Akers (1978). 

Efficient algorithms have been developed by introducing the Ordered BDDs and 

Reduced Ordered BDDs by Bryant (1986) to extend their application into various fields 

of research like reliability, computer science, data mining and graph theory. BDDs were 

first adapted to the network reliability analysis of binary state systems with Zang et al. 

(1999), in which the both system and its components are assumed to be in two states: 

operational or failed. 

 

3.1 Preliminaries 

BDDs are primarily defined as graph representation of boolean functions. Let 

}1,0{=B  and Nn∈ . The set of variables is denoted by },,2,1{ nxxxnX ⋅⋅⋅⋅⋅= .  

Definition 3.1: Let Nnm ∈, , 
mn

BBf →: is called a boolean function, in which f is a 

single output function for   m = 1, otherwise multi-output function.  A boolean variable 

ix  and ix  can be interpreted as  

ini

n

i yyyyyBBx →⋅⋅⋅⋅⋅⋅⋅⋅→ ),,,,,(;: 21         

ini

n

i yyyyyBBx →⋅⋅⋅⋅⋅⋅⋅⋅→ ),,,,,(;: 21  

 

Definition 3.2: BDD is a graph based data-structure and is defined as a rooted directed 

acyclic graph (DAG) with two terminal nodes and a set of non-terminal nodes. The two 

terminal nodes are labeled by logical values 0 and 1. Each non-terminal node associated 

with an input variable x of the boolean function and has two outgoing edges, termed as 

0-edge and 1-edge. Each node in the BDD represents the Shannon decomposition on 

the boolean function: :,: ni

m
XxBBf

n
∈∀→  01 ==

⋅+⋅=
i

xi
i

xi fxfxf
 

 

Definition 3.3: An Ordered Binary Decision Diagram (OBDD) is a BDD where the 

order of the input variables is fixed in all the paths of the graph and no variable appears 
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more than once in a path. OBDD is a pair of variable ordering and finite directed 

acyclic graph (G) with a set of vertices (V) and edges (E) with exactly one root node is 

derived from the graph (G) as shown in Figure 2. 

 

Definition 3.4: Any OBDD can be reduced to a Reduced Ordered Binary Decision 

Diagram (ROBDD) in linear time and linear space. ROBDD is the canonical form of 

boolean functions that can be derived by applying the following two reduction rules on 

ordered BDDs when the order of the variables is fixed. 

• Elimination rule: Eliminate all the redundant nodes of the OBDD whose two 

edge point to the same node (Figure  2(b)). 

• Merging rule: Share all the isomorphic sub-graphs as one sub-graph (OBDD) 

(Figure 2(b)). 

 

 
Figure 2: BDD construction: a) Original Decision Graph of the function 

3213121 xxxxxxxf ++= with the variable order 321 xxx <<   b) ROBDD reduction 

rules c) Reduced Ordered BDD 

 

4. Variable Ordering 
Computation of the optimal variable ordering for OBDD is NP-complete. 

Bollig and Wegener (1996) proved that the ROBDDs yield a minimized OBDD-

representation for a given network, provided the variable ordering is appeared to be 

fixed. Based on the analysis of boolean function manipulation, the variable ordering 

heuristics can be classified as static and dynamic variable ordering techniques. Static 

variable ordering allows establishing the particular variable order prior to the 

construction of the BDD. These methods are deterministic and are based on the analysis 

of the formula of the network. Dynamic variable ordering addresses the two limitations 

of static variable ordering selection: (1) it is constant across all functions and (2) it is 

constant over all time of the BDD construction. Since the static heuristics are quite 

effective in selecting a good variable order for the single function, it is difficult to solve 

the optimal variable order for multiple functions. The size of the ROBDD is heavily 

dependent on the order of the input variables and keeping the same variable ordering 

throughout the sequence of operations will affect the size of the BDD. To overcome the 

drawbacks of static variable ordering techniques, various minimization algorithm have 



An improved algorithm for K-terminal …                                                                      19 

 

been proposed in the literature. A dynamic variable ordering for OBDDs has been 

introduced by Rudell (1993) with an efficient Swap algorithm which involves in 

exchanging all BDD nodes from level i to i+1 and vice versa. Bollig and Ingo (1996) 

have investigated on other exchange operations and bounds on swap algorithm to 

improve the time complexity and succeed in obtaining the optimal solutions.  

 

 In the present paper, the authors have implemented a C++ program which 

uses the dynamic Sift_reordering algorithm, that the variable ordering is systematically 

improved by swapping the adjacent variables sequentially. The algorithm turned out to 

be most efficient and popular because of its ability to select the variable to any position 

in the order in a short time. Its efficiency is completely based on the swap adjacent 

variable. The CUDD library has been used to manipulate the ROBDD operations 

designed by Somenzi (2012).  

 

 

               a) Variable order 654321 ,,,,, xxxxxx   b) Variable order 642531 ,,,,, xxxxxx       

Figure 3: Variable ordering of the function  654321 xxxxxx ++  

 

 Further, the reliability is computed based on the ROBDD from the bottom-

up approach. Figure 3 describes the two different kinds of variable ordering of the 

function 654321 xxxxxx ++ . The linear variable ordering is presented in Figure 3 (a) 

and Figure 3(b) shows that exponential variable ordering for the same boolean function.  

 

5. Proposed Approach  

5.1 Algorithm 

 The Sift re-ordering technique has been implemented to enumerate the 

ROBDD number of nodes, in which the variables are moved in groups instead of a 

single variable. This section represents the algorithms which explain the proposed 

method for calculation of various measures of network reliability analysis. The pseudo 

code of the algorithm 1 explains the K - a terminal Network reliability evaluation 

procedure using ROBDD. The construction of the linear variable ordering ROBDD is 

shown in the algorithm 2. Finally, using the pseudocode given in the algorithm 3, it 

evaluates the reliability of the input network and combines the overall reliability in case 
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of 2/VK =  and VK = . The procedure for evaluation of the different measures of 

network reliability is discussed in the following sub-section. 
 

Algorithm 1. K-terminal Network Reliability 

1. Network _Reliability(Graph) 

2. K =  no. of terminals 

3. Terminal [N] are terminal values 

4. Final_ROBDD = 1 

5. for  i = 2 to n 

6. Final_ROBDD = (Final_ROBDD) and 

                (Create_ROBDD_2Terminals(Graph, Terminal[1], Terminal[i]))  

7. Reliability = Computation_Reliability(Final_ROBDD) 

8. return Reliability  
 

Algorithm 2. ROBDD Construction 

1. T_ROBDD = 0 

2. Initialize start_node 

3. Let e_i be an edge in the edge set E do 

4. Next_node == sink_node then 

5. Subpath_ROBDD = e_i_ROBDD 

6. else if next_node is already  in this path then 

7. continue; 

8. else 

9. Subpath_ROBDD = ROBDD gen(next_node) and e_i_ROBDD 

10. T_ROBDD = T_ROBDD or subpath_ROBDD 

11. end if 

12. end for 

13. clear start_node in this path 

14. return T_ROBDD 
 

Algorithm 3. Reliability Evaluation 

1. Compute_Reliability (Final_ROBDD) 

2. Require: Final_ROBDD 

3. float Rk, Prob_1, Prob_0 

4. if(Final_ROBDD == One) 

5. return 1 

6. if(Final_ROBDD == Zero) 

7. return 0 

8. if (Rk  = Computed  (Final_ROBDD)) 

9. return Rk 

10. Prob_1 = Compute_Reliabilty (Sub ROBDD at one  edge of final_ROBDD) 

11. Prob_0 = Compute_Reliabilty (Sub ROBDD at zero  edge of final_ROBDD) 

12. InsertComputed(Final_ROBDD, Rk) 

13. return Rk 

 

5.2 Estimation of Network Reliability 

  In this section, evaluation of the K-terminal network reliability of the 

benchmark graphs given in Figure 5, using the efficient ROBDD method has been 

presented. The size of ROBDD is mainly dependent upon the variable order and not on 
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the size of the network. Optimizing the size of ROBDD is recognized as an NP-

complete problem. Initially, the minimal path sets are being evaluated by traversing the 

network using breadth-first search and a state of art technique is adopted for efficient 

manipulation of the network. The resulting computation process of enumeration 1-paths 

of subgraphs of G is then combined to form the total number of minimal paths to K-

terminal subgraphs of G. By sharing these subgraphs of the binary decision diagram, 

the given network can be modified as a reduced ordered directed acyclic graph. Based 

on these disjoint property of BDD graph analysis the K-terminal network reliability can 

be evaluated. The probability of the edges of the given network are denoted by pk, thus 

the measure of the K-terminal reliability function f is evaluated recursively obtain by 

the formula: )Pr()]Pr(1[)Pr()Pr()Pr( 01 ==
⋅−+⋅=

i
xi

i
xi fxfxf .  

 

The two-terminal network reliability using ROBDD has been explained 

graphically in Figure 4. Further, the reliability function for an undirected graph given in 

Figure 1 of K-terminal network can be derived by connecting all the (K-1) 2-terminal 

networks if this terminal-pair set can cover all the nodes. Therefore, the reliability 

function for an undirected K-terminal network can be denoted as

∏= −1 ,2 )(Re)(Re k tsk GlGl .  

 

The reliability function can be derived from the paths:  

5452143214353)4,3,2(Re)(Re eeeeeeeeeeeeelGl kk ++++==  

 

 
 

Figure 4: Reliability evaluation using ROBDD path function 
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6. Experimental Results 
The proposed approach for determining the K-terminal reliability of the 

benchmark networks has been implemented on the Xeon E5 Workstation with 4GB 

memory. The algorithm is implemented using a C++ programming language and the 

program files were compiled with GNU g++ 4.8.4-2 library on Ubuntu operating 

system with kernel version 3.19.0-61-generic. The efficient manipulation of ROBDD 

operations was organized by CUDD library. Figure 5 shows the benchmark networks 

used to enumerate the K-terminal, 2-terminal and All-terminal network reliability using 

ROBDDs. Table 1 explores the simulation results developed for the benchmark 

networks imposed from Yeh et al. (2002). Important network reliability measures of 

which K = 2, 2/VK =  and VK =  are being evaluated for each network shown in 

Figure 5 and the experimental results are being compared with the previous works. In 

the Table 1, the EED_BFS column denotes the method of Edge Expansion Diagram, 

proposed by Yeh et al. (2002) and the column Hardy explores the results of the efficient 

algorithm proposed by Hardy et al. (2007). The columns ROBDD are the results 

obtained by the optimal variable ordering technique used in the present paper.  

 

 
Figure 5: Benchmark Networks 
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Network |K|=2 |K| = |V|/2 

Type  |V| |E| 
EED

_BFS 
Hardy 

ROB

DD 
Reliability 

EED_

BFS 
Hardy 

ROB

DD 

Relia 

bility 

1 6 15 148 154 121 0.99998 176 145 162 0.99997 

2 20 30 423 65665 260 0.994395 518 424450 530 0.984681 

3 16 24 302 8452 184 0.995553 356 31659 362 0.988922 

4 14 23 292 1810 154 0.98739 294 2639 199 0.98520 

5 20 30 3591 5370 1204 0.99712 5697 6995 1728 0.989092 

6 30 47 257 356 235 0.964474 310 415 259 0.954935 

7 36 57 317 440 295 0.96173 383 376 330 0.95108 

8 25 40 1149 2425 1269 0.975557 1633 1794 2139 0.95742 

9 40 58 115 152 113 0.784482 136 989 133 0.765248 

 

Network |K|=|V| 

Type  |V| |E| EED_BFS Hardy ROBDD Reliability 

1 6 15 173 174 158 0.99994 

2 20 30 221 45307 295 0.973503 

3 16 24 295 5961 221 0.979658 

4 14 23 232 2567 102 0.980765 

5 20 30 1903 4813 1511 0.960069 

6 30 47 184 236 183 0.924055 

7 36 57 226 290 289 0.9173 

8 25 40 697 1397 879 0.93981 

9 40 58 97 1541 1503 0.7453 

 

Table 1: Results of Network Reliability measures 
 

Network |K|=2 |K| = |V|/2 

Type |V| |E| EED_BFS Hardy ROBDD EED_BFS Hardy ROBDD 

1 6 15 0.02 0.03   0.00 0.77 0.03   0.00 

2 20 30 0.08 0.35   0.07 1.03 1.50   0.55 

3 16 24 0.02 0.11   0.00 0.87 0.50   0.03 

4 14 23 0.02 0.06   0.00 0.76 0.07   0.00 

5 20 30 0.33 0.09   0.13 2.18 0.12   0.29 

6 30 47 0.55 0.06   2.01 2.50 0.40   6.22 

7 36 57 2.88 0.05   5.26 7.80 0.02   9.22 

8 25 40 0.43 0.05   0.56 2.50 0.08   3.05 

9 40 58 0.02 0.08 29.32 1.33 0.07 29.80 
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Network |K|=|V| 

Type  |V| |E| EED_BFS Hardy ROBDD 

1 6 15 0.82 0.04   0.00 

2 20 30 0.95 0.20   1.32 

3 16 24 1.08 0.06   0.09 

4 14 23 0.83 0.07   0.02 

5 20 30 2.50 0.12   0.65 

6 30 47 2.40 0.08  18.90 

7 36 57 7.73 0.04  25.46 

8 25 40 2.72 0.07    7.87 

9 40 58 1.55 0.05 171.19 

 

Table 2: Execution time for estimating the ROBDD nodes and Reliability 

 

The proposed method shows comparatively good results than previous 

approaches for the various measures of network reliability analysis. The computation 

time for the enumeration of ROBDD nodes to represent the minimal number of paths of 

the input network and reliability evaluation is shown in Table 2. But in the case of 

complete networks, sift-reordering technique performance is efficient in ROBDD 

number of nodes but the computation time increases with the size of the network. 

 

7. Conclusion 
 In this paper, the network reliability analysis problem has been solved to 

enhance the effort of optimal variable ordering of the ROBDD with the sift-reordering 

technique. The results have been improved using this technique. Execution time to 

enumerate the ROBDD number of nodes and the reliability value are compared with the 

recent approaches with same benchmark networks given in the literature. Breadth First 

Traversal Method is used to find the minimal paths of the given graph and reliability is 

evaluated using efficient ROBDD approach. The execution time to enumerate the 

ROBDD number of nodes and reliability analysis is less than other algorithms. 
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