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Abstract 
 This article discusses the problem of estimation of population mean in stratified 

sampling using information on two auxiliary variables. The expressions for the mean square error 

of the proposed estimator have been derived up to the first order of approximation and are 

compared with the existing estimators. Also, an empirical study has been carried out in order to 

show that the proposed estimator turns out to be more efficient than the existing estimators and 

for this we have considered real data sets. 
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1. Introduction 
 In survey sampling, it is always advantageous to use the information available 

on the auxiliary variable which is highly correlated with the variable of interest. The 

use of auxiliary information increases the precision of the estimators used for 

estimating the unknown population parameters. Several authors have used auxiliary 

information on auxiliary variable in the estimation of population parameters like 

Srivastava  and Jhajj (1981), Bahl and Tuteja (1991), Singh and Vishwakarma (2007), 

Sahai and Ray (1980), Srivastava and Jhajj (1983), Srivastava (1971), Swain (1970) 

and Perri (2007). 

 

 Here we have tried to incorporate the use of auxiliary information in stratified 

random sampling. Several authors like Haq and Shabbir (2013), Shabbir and Gupta 

(2006), Kadilar and Cingi (2003) have proposed estimators in stratified random 

sampling using information on a single auxiliary variable. It is seen that many a times 

instead of using information on a single auxiliary variable, we have information on two 

auxiliary variables like Tailor et al. (2012) suggested a ratio-cum-product estimator of 

population mean in stratified random sampling using two auxiliary variables. Koyuncu 

and Kadilar (2009) proposed a family of estimators of population mean using two 

auxiliary variables in stratified random sampling. Furthermore Verma et al. (2015) have 

given some families of estimators using two auxiliary variables in stratified random 

sampling. Likewise Singh and Kumar (2012) have proposed improved estimators of 

population mean using two auxiliary variables in stratified random sampling. Through 
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this paper the problem of estimation of finite population mean in stratified random 

sampling using information on two auxiliary variables has been discussed. 

Consider a finite population )(
N21 P,......,P,P=P  of size N is divided into L strata of 

size )( L,......,2,1=hN h  such that there are Nh  units in the h
th 

 stratum and 
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To obtain the MSE’s let us define  
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Using (1.1) we can write:- 
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2. Estimators available in literature 
 In this section, we consider several estimators of the finite population mean 

that are available in the sampling literature.  The variance and mean squared error’s 

(MSE’s) of all the estimators considered here are obtained under the first order of 

approximation. 

 

• The usual unbiased estimator of the population mean in stratified random 

sampling is defined as:- 

∑

l

1=h

hhst yW=y         (2.1) 

• The notations used here have been used by Dayal (1980). Other useful 

references for stratified sampling are Cochran (1977, chapter-5), Reddy 

(1978). 

Variance of the estimator sty  is defined as: 
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• Koyuncu and Kadilar (2009) suggested different ratio type estimators for 

population mean Y utilizing information on known value of population mean 

X and Z of auxiliary variables X and Z as:- 
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The mean square error of the estimator 
1y is given by:     

( )101011110002020200

2

1 222)( VVVVVVYyMSE −+−++=                 (2.5) 

 

The mean square error of the estimator 2y is given by:- 

)( 101011110002200020

2
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When we have information on two auxiliary variables then the usual regression 

estimator is defined as: 
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The mean square error of the estimator lry is given by:- 
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3. Proposed estimator 

 For estimating unknown population mean Y  of the study variable we propose 

an estimator as follows:  
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Here, W∈t,t,t 21o  
 Here W  denotes the set of all possible estimators for estimating the population 

mean Y . By definition, the set W  is a linear variety if:
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Such that 1w
2

0i

i =∑
=

 and R∈w i
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Where, )2,1,0=i(w i
 denotes the constants used for reducing the bias in the class of 

estimators. 

 

The form of the estimator defined in equation (3.1) has been so taken; so that it comes 

out to be an unbiased estimator for the population meanY . And the technique utilized 

here is the technique of “Filtration of Bias”. 

 

It is one of the methods used to remove Bias from ratio and product type estimators. 

Some other methods used to remove bias are Quenouille’s method, interpenetrating 

sampling method etc. [Singh (2003)]. 

 

Expressing the estimator t in terms of∈ ’s we get 
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By expanding the above equation (3.4) and keeping terms only up to order one in s'∈ , 

we can write 
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Now, subtracting Y  from both the sides of equation (3.5) and then taking expectation 

of both sides, the bias of the estimator t  is obtained up to the first order of 

approximation as: 
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Ignoring 1st and higher order terms in (3.5) we get 
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Squaring both the sides and then taking expectation we get 
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The MSE of the estimator t  is minimum when 
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Putting this value of Q in equation (3.8), we get the minimum value for the MSE of the 

estimator t which is by, 
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From equation (3.3) and (3.9) there are two equations and three unknown. It is not 

possible to find the unique values for s'w i
, 2,1,0=i . In order to get unique values 

of s'w i
, we impose the linear restriction as, 
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Where )t(B i
(i=0, 1, 2) denotes the Bias in the 

thi  estimator. 

Equations (3.3), (3.9) and (3.12) can be written in the matrix form as, 
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Solving (3.13) we get the unique values of 
0w  , 

1w  and 
2w  as, 
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4.  Empirical study 
 To examine the merits of the proposed estimator over the other existing 

estimators at optimum conditions, we have considered two natural population data sets 

from the literature. The source of population is given below: 

 

Population 1 [Source: Koyuncu and Kadilar (2009)]  

Y: Number of teachers,  

X: Number of students,  

Z: Number of classes in both primary and secondary school 

1271 =N  1172 =N  1033 =N  1704 =N  2055 =N  2016 =N  311 =n    

212 =n   293 =n  384 =n  225 =n  396 =n  74.7031 =Y  4132 =Y  

17.5733 =Y  66..4244 =Y  03.2675 =Y  84.3936 =Y  59.208041 =X  

79.92112 =X  30.143093 =X  85.9478 4 =X  95.55695 =X  

59.129976 =X  28.4981 =Z  33.3182 =Z  36.4313 =Z  32.3114 =Z  

20.2275 =Z  71.3136 =Z  835.8881 =yS  922.6442 =yS  467.10333 =yS  

585.8104 =yS  654.4035 =yS  723.7116 =yS  751.304861 =xS  

760.151802 =xS  697.275493 =xS  931.182184 =xS  776.84975 =xS  

141.230946 =xS  5816.5551 =zS   4576.3652 =zS  9509.6123 =zS  
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0282.4584 =zS  8511.2605 =zS  0481.3976 =zS  52.252371531 =yxS  

85.97479422 =yxS  04.282943973 =yxS  53.145238854 =yxS  

75.33935915 =yxS  97.158645736 =yxS  2.4806881 =yzS  

8.2300922 =yzS  3.6230193 =yzS  4.3649434 =yzS  1015395 =yzS  

1.2776966 =yzS  159146481 =xzS  53791902 =xzS  56.164906743 =xzS  

80412544 =xzS  21440575 =xzS  88577296 =xzS  936.01 =yxρ  

996.02 =yxρ  994.03 =yxρ  983.04 =yxρ  989.05 =yxρ  965.06 =yxρ  

978.01 =yzρ  976.02 =yzρ  983.03 =yzρ  982.04 =yzρ  964.05 =yzρ  

982.06 =yzρ  

 

Population 2 (Source: Murthy (1967)) 

Y: Output 

X: Fixed Capital 

Z: Number of workers 

10=N , 5=n , 2=n1
, 3=n 2

, 5=N1
, 5=N 2

 

, 80.1925=Y1 , 60.315=Y2  40.214=X1
, 80.333=X2 , 80.51=Z1 , 

60.60=Z2  , 92.615=S 1y , 38.340=S 2y , 87.74=S 1x
35.66=S 2x  

75.0=S 1z
, 84.4=S 2z

, 68.39360=S 1yx , 50.22356=S 2yx ,

16.411=S 1yz , 24.1536=S 2yz , 08.38=S 1zx
, 92.287=S 2zx   

 

ESTIMATORS VARIANCE/MSE’s PRE with respect to 

sty  

sty  2228.52 100 

1y  1613.59 138.10 

2y  1489.095 149.65 

lry  2072.674 107.51 

T 0.0296 309.7493 

 

Table 1: MSE’s and Percent Relative Efficiencies (PRE’s) of the estimators w. r.  

to sty  
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ESTIMATORS VARIANCE/MSE’S PRE with respect to 

sty  

sty  32313.7599 100 

1y  10647.1302 303.4974 

2y  13130.03 246.1058 

lry  17611.89 183.477 

T 8948.4080 361.1118 

 

Table 2: MSE’s and Percent Relative Efficiencies (PRE’s) of the estimators w. r. to 

sty  

 

The Percent Relative Efficiencies (PRE’s) of the estimators with respect to the usual 

unbiased estimator sty  are obtained from the following mathematical formula. 

( )
( ) 100

( )st

MSE ESTIMATOR
PRE ESTIMATOR

MSE y
= ×  

 

5. Conclusion 
 In this paper, we have proposed an estimator for the population mean in 

stratified random sampling utilizing information on two auxiliary variables. The MSE 

of the proposed estimator has been derived up to first order of approximation. 

Furthermore, we have used empirical approach for comparing the efficiency of the 

proposed estimator with other estimators for which we have used known natural 

population datasets, see Murthy (1967) and Koyuncu and Kadilar (2009). The results 

have been shown above in the Table 1 and Table 2. From both the tables, it is clear that 

the proposed estimator turns out to be more efficient as compared to the existing 

estimators because of smaller value of MSE and higher value of PRE. So it is clearly 

more desirable to use the proposed estimator in practical surveys. 
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