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Abstract 
 The Dagum distribution is very useful to represent the distribution of income, actuarial, 

meteorological data as well for survival analysis. Moreover, it is considered to be the most 

suitable choice as compared to other three parameter distributions in several cases. It belongs to 

the generalized beta distribution and is generated from generalized beta-II by considering a shape 

parameter one and referred as inverse Burr distribution. In this paper, we obtain Bayesian 

estimation of the scale parameter of the Dagum distribution under informative and non-

informative prior. Bayes estimators are derived using different loss functions. These estimators 

are compared using risk functions.  

 

Key Words: Dagum Distribution, Mixture Distribution, Predictive Distribution, Extension of 

Jeffreys Prior, Loss Functions, Risk Function, Efficiency. 

 

1. Introduction 
  The Dagum distribution was proposed by Camilo Dagum in a series of papers 

in the 1970s to fit heavy tailed models present in empirical income and wealth 

distributions as well as permitting an interior mode. The classical distributions, such as 

Pareto distribution and the lognormal distribution, were used to summarize such data. 

The former aspect is well captured by the Pareto but not by the log-normal distribution, 

the latter by the log-normal but not the Pareto distribution. In this paper, the problem of 

Bayesian analysis of Dagum distribution for the complete sample is studied. The 

maximum likelihood and Bayes estimators of one shape parameter p under different 

priors using different loss functions are obtained by assuming other shape and scale 

parameters to be known. Also, these estimators are compared using risk functions in the 

simulation study. The estimates having minimum risk are considered to be better.  

  

 The CDF of Dagum distribution is given by 
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The parameters a and p are shape parameters and b is a scale parameter. 

 

 The Dagum distribution arose from several variants of a new model on the size 

distribution of personal income and is mostly associated with the study of income 

distribution. There are two forms of Dagum distribution namely a three-parameter 

specification (Type I) and a four-parameter specification (Type II).  A summary of the 
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genesis of this distribution can be found in "A Guide to the Dagum Distributions". 

Dagum (1983) refers to his system as the generalized logistic-Burr system. This is due 

to the fact that the Dagum distribution with p=1 is also known as the log-logistic 

distribution (the model Dagum 1975 experimented with). The Dagum distribution is a 

Burr III distribution with an additional scale parameter and therefore a rediscovery of a 

distribution that had been known for some 30 years prior to its introduction in 

economics. However, it is not the only rediscovery of this distribution. Mielke (1973), 

in a meteorological application, arrives at a three-parameter distribution he calls the 

kappa distribution. It amounts to the Dagum distribution in a different parametrization. 

Mielke and Johnson (1974) refer to it as the beta-K distribution. Even in the income 

distribution literature there is a parallel development: Fattorini and Lemmi (1979), 

starting from Mielke’s kappa distribution but apparently unaware of Dagum (1977), 

propose (1.1) as an income distribution and fit it to several data sets, mostly from Italy. 

 

 An interesting aspect of Dagum distribution is that it admits a mixture 

representation in terms of generalized gamma and inverse Weibull distributions. The 

Dagum distribution can be obtained as a compound generalized gamma (GG) 

distribution whose scale parameter follows an inverse Weibull (IW) distribution with 

identical shape parameters. 

 

The GG and IW distributions have the PDFs given by 
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Thus, the mixture distribution that results from marginalizing over θ is given by 
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The r
th

 moment of X is given by 
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 Domma, Giordano and Zenga (2011) and Domma (2007) estimated the parameters 

of Dagum distribution with censored samples and by the right-truncated Dagum 

distribution respectively by maximum likelihood estimation. McGarvey, et al. (2002) 
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studied the estimation and skewness test for the Dagum distribution. Shahzad and 

Asghar (2013) estimated the parameter of this distribution by TL-moments. Oluyede 

and Rajasooriya (2013) introduced the Mc-Dagum distribution. 

 

2. Maximum Likelihood Estimation 

 We assume that )...,,,( 21 nxxxX = is a random sample from ( )pbaDX ,,~ , 

then the likelihood function of the scale parameter, p (keeping a and b fixed) is given by 
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The log-likelihood equation is given by 
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Thus the MLE is obtained by the equation 

  01lnlnln

11

=



















+−+−=

∂

∂ ∑∑
==

n

i

a

i
n

i

i
b

x
xaban

p

n

p

l
 

∑∑
==









−




















+=⇒

n

i

a

i
n

i

a

i

b

x

b

x

p

n

11

ln1ln  

1

1

ˆ , ln 1

ln 1

an
i

an
ii

i

xn n
p T

T bx

b

−

−
=

=

  
 ∴ = = = +          +  

   

∑
∑

                   (2.3) 

 

3. Posterior Distribution of p|x under Different Prior Distributions 
 In this section, we present posterior distribution of p under an informative prior, 

i.e., Mukherjee-Islam (MI) prior and a non-informative, i.e., extension of Jeffreys prior. 

The likelihood function (2.1) of p can be written in terms of T as 
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3.1 Posterior distribution under Mukherjee-Islam prior 

 Assume that p has a Mukherjee-Islam prior with hyper parameters (α1, σ) > 0 

defined by 
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Then the posterior distribution of p is given by 
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where K is the normalized constant given by 
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which is a gamma density with parameters ., 11 αβ += nT
 

 

3.2 Posterior distribution under extension of Jeffreys prior 

 The extension of Jeffreys prior is defined by 
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where ( )[ ]pI  is the Fisher Information given by: 
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where l is the log-likelihood defined in (2.2). Thus, the extension of Jeffreys prior is 

given by 
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The posterior distribution is defined by 
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where K is the normalized constant given by 
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Thus the posterior distribution of p|x is given by 
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which is a gamma density with parameters .12, 2 +−= mnT β
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4. Bayes Estimators of p|x under Different Priors using Different Loss 

Functions 
 The choice of the loss function is very important in decision analysis. In some 

estimation problems overestimation may be more serious than underestimation, or vice-

versa, see Parsian and Kirmani (2002) and the references there in. In such cases, the 

usual methods of estimation may be inappropriate. To deal with such cases, a useful 

and flexible class of asymmetric loss functions were introduced. In this section we 

introduce the K-loss function, entropy loss function and squared logarithmic loss 

function. 

 

 We have already discussed in section (3) that using Mukherjee Islam prior and 

extension of Jeffreys prior given by (3.3) and (3.5) respectively leads to posterior 

distribution given by the Gamma density: 
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where )2,1(and =iii βθ  are shape and rate parameters of gamma distribution defined 

in (3.3) and  (3.5) respectively. Below are presented the loss functions- K-loss 

function, entropy loss function and squared logarithmic loss function and the Bayes 

estimators using these loss functions. 

 

4.1 K-loss function (KLF)  

 Wasan (1970) proposed the K-loss function (KLF) that is used as a measure of 

inaccuracy for an estimator of a scale parameter of a distribution defined on R
+ 

(0, ∞)  

by 
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Using K-loss function (K-LF), we have 

  ( ) ,|
T

xpE iβ=
 

& ( ) .
1

|1

−
=−

i

T
xpE

β
 

Thus, 
( )
( )

( )
.

1

|

|
ˆ

1 TxpE

xpE
p

ii

KL

−
==

−

ββ
                   (4.2) 

 

4.2 Entropy loss function (ELF)  

 In many practical situations, it appears to be more realistic to express the loss in 

terms of the ratio 
p

p̂
. In this case, the loss function used by Dey et al. (1987) is given 

by 
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whose minimum occurs at pp =ˆ . The Bayes estimator under the entropy loss function 

(ELF) is denoted by ELp̂  and defined by 
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4.3 Squared logarithmic loss function (SLLF)  

 The squared-log error loss function has the form 
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 The loss function is convex if epp ≤ˆ  and concave otherwise, and its risk 

function has a unique minimum w.r.t. p. The Bayes estimator using SLLF is denoted by

SLp̂  and is given by 

  ( )[ ]xpEpSL |lnexpˆ =  
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Table 1 shows Bayes estimators under MI prior and extended Jeffreys prior using K-

loss, entropy loss and squared logarithmic loss function: 

 

 

 
Mukherjee-Islam Prior Extension of Jeffreys Prior 
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Table 1: Bayes Estimators of p under MI and extended Jeffreys Prior 

 

5. Posterior Variances under Different Priors Distributions 
 The variances of the posterior distribution under the informative and non- 

informative prior are calculated by assuming different set of values for hyper 

parameters, different sample size and different value of parameter which is given by  
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where )2,1(and =iT iβ  are shape and rate parameters of gamma distribution defined in 

(3.3) and (3.5) respectively. 
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6. Efficiency of the Estimators 

 Since X follows a Dagum distribution with parameters ( )pab ,, , then 
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 We now obtain the relative efficiency of the estimators SLELKL ppp ˆ,ˆ,ˆ  in case of 

both the priors. 

We have, 
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where )2,1(, =iT iβ  are shape and rate parameters of gamma distribution defined in 

(3.3) and (3.5) respectively. 

 

Thus, the efficiency of ELp̂
 
w.r.t. KLp̂  is given by 
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The efficiency of ELp̂  w.r.t. SLp̂  is given by 
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The efficiency of SLp̂  w.r.t. KLp̂  is given by 
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7. Risk Functions of Bayes Estimators using Loss Functions K-LF, ELF 

and SLLF 

 Using K-LF, the risk function of KLp̂  using K-loss function is given by 
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Using ELF, the risk function of 
ELp̂  using entropy loss function is given by 
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Using SLLF, the risk function of SLp̂  using entropy loss function is given by 
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  We observe from (7.1), (7.2) and (7.3) that the risk functions K-LF, ELF, and 

SLLF are constant w.r.t.p. Hence, ( ) ( ) ( )SLELKL pRpRpR ˆandˆ,ˆ  are minimax estimators 

for parameter p  in case of Dagum distribution. [Lehmann (1983); Theorem 2.1, 

corollary 2.1; section 2, chapter 4, p. 249-250]. 

 

8. Prior Predictive Distribution under Mukherjee-Islam Prior 
 The prior predictive distribution under the Mukherjee-Islam prior is defined by 
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9. Prior Predictive Distribution under Extension of Jeffreys Prior 
 The prior predictive distribution under the extension of Jeffreys prior is defined by 
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10.  Posterior Predictive Distribution under Different Priors 

 The posterior predictive distribution for 1+= nxy given ( )nxxxx ..., 21= under the 

exponential prior is defined by 
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where )2,1(and =iT iβ  are shape and rate parameters of gamma distribution defined in 

(3.3) and (3.5) respectively. 

 

11. Data set : (Gupta and Kundu, 2009) 
 A real data set is considered for illustration of the proposed methodology. This 

data set represents the marks in Mathematics for 48 students in the slow pace program 

in the year 2003: 
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29, 25, 50, 15, 13, 27, 15, 18, 7, 7, 8, 19, 12, 18, 5, 21, 15, 86, 21, 15, 14, 39, 15, 14, 70, 

44, 6, 23, 58, 19, 50, 23, 11, 6, 34, 18, 28, 34, 12, 37, 4, 60, 20, 23, 40, 65, 19, 31. 

 

 a b α1=1.2 α1=3.0 α1=3.5 

KLp̂  

3.0 1.49 
11.03563 

(0.02160) 

11.33146 

(0.02343) 

11.60454 

(0.02628) 

4.4 1.55 
6.98450 

(0.02160) 

7.17173 

(0.02343) 

7.34456 

(0.02628) 

 

ELp̂
 

3.0 1.49 
10.92244 

(0.01082) 

11.21826 

(0.01176) 

11.49132 

(0.01324) 

4.4 1.55 
6.91286 

(0.01082) 

7.10009 

(0.01176) 

7.27291 

(0.01324) 

SLp̂
 

3.0 1.49 
11.03641 

(0.02149) 

11.33222 

(0.02329) 

11.60528 

(0.02611) 

4.4 1.55 
6.98500 

(0.02149) 

7.17222 

(0.02329) 

7.34503 

(0.02611) 

 

Table 2: Posterior estimates ( )p̂  risks ( )pR ˆ   (in braces) under Mukherjee-Islam 

prior 

 

 b a m=0.5 m=1.3 m=3.0 

KLp̂  

3.0 1.49 
10.80807 

(0.02116) 

10.44397 

(0.02235) 

9.67024 

(0.03368) 

4.4 1.55 
6.84047 

(0.02116) 

6.61003 

(0.02235) 

6.12034 

(0.03368) 

 

ELp̂
 

3.0 1.49 
10.69489 

(0.01060) 

10.33081 

(0.01119) 

9.55714 

(0.01670) 

4.4 1.55 
6.76884 

(0.01060) 

6.53842 

(0.01119) 

6.04876 

(0.01670) 

SLp̂
 

3.0 1.49 
10.80887 

(0.02105) 

10.44479 

(0.02223) 

9.67114 

(0.03342) 

4.4 1.55 
6.84098 

(0.02105) 

6.61056 

(0.02223) 

6.12091 

(0.03342) 

 

Table 3: Posterior estimates ( )p̂  risks ( )pR ˆ   (in braces) under Mukherjee-Islam 

prior 

 

12. Simulation Study 
 The simulation study was conducted in R-software to examine the performance 

of Bayes estimates for the scale (p) parameter of the Dagum distribution under 

Mukherjee-Islam prior and the extension of Jeffreys prior. The process is replicated 

1000 times and the average of the results has been presented in the tables below. The 

VGAM package is used for the simulation study. We choose n=25, 50, 100 to represent 

different sample sizes. Tables 4 and 5 summarizes the results for different values of 
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p=10.95, 6.92; b =3.0, 4.4; a=1.49, 1.55. The hyper-parameter values are chosen as: 

α1=(1.2, 3.0, 3.5); m=(0.5, 1.3, 3.0). These values are chosen using MLE values in R 

software. The estimators are obtained and their respective risks are computed for 

admissibility under different loss functions. 

 

 

n  b a p α1=1.2 α1=3.0 α1=3.5 

20 

KLp̂  

3.0 1.49 10.95 
13.34204 

(0.05453) 

14.18861 

(0.06474) 

14.97003 

(0.08001) 

4.4 1.55 6.92 
6.34090 

(0.05453) 

6.74323 

(0.06474) 

7.11461 

(0.08001) 

 

ELp̂
 

3.0 1.49 10.95 
13.02050 

(0.02742) 

13.86683 

(0.03287) 

14.64806 

(0.04122) 

4.4 1.55 6.92 
6.18808 

(0.02742) 

6.59031 

(0.03287) 

6.96159 

(0.04122) 

SLp̂
 

3.0 1.49 10.95 
13.34733 

(0.05377) 

14.19358 

(0.06370) 

14.97475 

(0.07851) 

4.4 1.55 6.92 
6.34341 

(0.05377) 

6.74560 

(0.06370) 

7.11685 

(0.07851) 

50 

KLp̂  

3.0 1.49 10.95 
11.86409 

(0.02071) 

12.16954 

(0.02239) 

12.45148 

(0.02502) 

4.4 1.55 6.92 
7.29153 

(0.02071) 

7.47925 

(0.02239) 

7.65253 

(0.02502) 

 

ELp̂
 

3.0 1.49 10.95 
11.74720 

(0.01037) 

12.05263 

(0.01124) 

12.33456 

(0.01261) 

4.4 1.55 6.92 
7.21969 

(0.01037) 

7.40740 

(0.01124) 

7.58068 

(0.01261) 

SLp̂
 

3.0 1.49 10.95 
11.86487 

(0.02060) 

12.17029 

(0.02226) 

12.45222 

(0.02487) 

4.4 1.55 6.92 
7.29201 

(0.02060) 

7.47972 

(0.02226) 

7.65299 

(0.02487) 

100 

KLp̂  

3.0 1.49 10.95 
9.94729 

(0.01018) 

10.07596 

(0.01060) 

10.19474 

(0.01128) 

4.4 1.55 6.92 
6.71789 

(0.01018) 

6.80478 

(0.01060) 

6.88499 

(0.01128) 

 

KLp̂
 

3.0 1.49 10.95 
9.89792 

(0.00509) 

10.02660 

(0.00531) 

10.14537 

(0.00565) 

4.4 1.55 6.92 
6.68454 

(0.00509) 

6.77143 

(0.00531) 

6.85165 

(0.00565) 

SLp̂
 

3.0 1.49 10.95 
9.94745 

(0.01015) 

10.07613 

(0.01057) 

10.19490 

(0.01125) 

4.4 1.55 6.92 
6.71799 

(0.01015) 

6.80488 

(0.01057) 

6.88510 

(0.01125) 

 

Table 4: Posterior estimates ( )p̂ and risks ( )pR ˆ  under Mukherjee-Islam prior 
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n  b a p m=0.5 m=1.3 m=3.0 

20 

KLp̂
 

3.0 1.49 10.95 
12.69081 

(0.05196) 

11.64880 

(0.05949) 

9.43425 

(0.14284) 

4.4 1.55 6.92 
6.03140 

(0.05196) 

5.53617 

(0.05949) 

4.48369 

(0.14284) 

ELp̂
 

3.0 1.49 10.95 
12.36947 

(0.02609) 

11.32783 

(0.02984) 

9.11435 

(0.06831) 

4.4 1.55 6.92 
5.87868 

(0.02609) 

5.38363 

(0.02984) 

4.33166 

(0.06831) 

SLp̂
 

3.0 1.49 10.95 
12.69637 

(0.05127) 

11.65486 

(0.05860) 

9.44173 

(0.13899) 

4.4 1.55 6.92 
6.03404 

(0.05127) 

5.53905 

(0.05860) 

4.48725 

(0.13899) 

50 

KLp̂
 

3.0 1.49 10.95 
11.62914 

(0.02031) 

11.25321 

(0.02140) 

10.45435 

(0.03177) 

4.4 1.55 6.92 
7.14713 

(0.02031) 

6.91609 

(0.02140) 

6.42512 

(0.03177) 

ELp̂
 

3.0 1.49 10.95 
11.51226 

(0.01017) 

11.13635 

(0.01071) 

10.33754 

(0.01576) 

4.4 1.55 6.92 
7.07530 

(0.01017) 

6.84427 

(0.01071) 

6.35333 

(0.01576) 

SLp̂
 

3.0 1.49 10.95 
11.62993 

(0.02020) 

11.25403 

(0.02128) 

10.45523 

(0.03154) 

4.4 1.55 6.92 
7.14762 

(0.02020) 

6.91659 

(0.02128) 

6.42566 

(0.03154) 

100 

KLp̂
 

3.0 1.49 10.95 
9.84831 

(0.01008) 

9.68994 

(0.01034) 

9.35341 

(0.01275) 

4.4 1.55 6.92 
6.65103 

(0.01008) 

6.54407 

(0.01034) 

6.31680 

(0.01275) 

ELp̂
 

3.0 1.49 10.95 
9.79894 

(0.00504) 

9.64058 

(0.00517) 

9.30405 

(0.00636) 

4.4 1.55 6.92 
6.61769 

(0.00504) 

6.51074 

(0.00517) 

6.28346 

(0.00636) 

SLp̂
 

3.0 1.49 10.95 
9.84848 

(0.01005) 

9.69011 

(0.01031) 

9.35358 

(0.01271) 

4.4 1.55 6.92 
6.65114 

(0.01005) 

6.54419 

(0.01031) 

6.31692 

(0.01271) 

 

Table 5: Posterior estimates ( )p̂ and risks ( )pR ˆ  under extended Jeffreys prior 

 

13. Results and Discussion 
 The results of the real data example and the simulation study are presented in 

tables 2 to 5 for different values of n, a, b and hyper-parameters. It is observed that  

 

1. the risk values of the p under both Mukherjee-Islam prior and extension of Jeffreys 

prior are increasing as the hyper-parameter values increase. 
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2. the risk functions are constant w.r.t. p. i.e., there is no effect of increasing of the 

true values of the parameter p which implies that the Bayes estimators are 

minimax estimators for parameter p in case of Dagum distribution. 

3. using ELF, the risk based on both priors is minimum and hence it is admissible 

for all n. 

4. under K-LF and SLLF, the risks (although greater than that using ELF) based on 

both priors are almost same. 

5. the risks are also seen decreasing for increasing sample size. 

6.  

 Finally, from the results, we conclude that in situations involving estimation of 

parameter p of Dagum distribution, entropy loss function could be effectively 

employed instead of using a K-loss and squared log loss function owing to the least risk 

values among all the three loss functions. 

 

 Furthermore, for future attempt, other prior distributions can also be used for 

posterior analysis to see the impact of loss functions on them as well. 

 

References 
1. Dagum, C. (1977). A new model of personal income distribution: 

Specification and estimation,  Economie Appliqu´ee, 30,  p. 413–437. 

2. Dagum, C. (1983). Income Distribution Models. In: S. Kotz, N.L. Johnson, 

and C. Read (eds.): Encyclopedia of Statistical Sciences, Vol. 4. New York: 

John Wiley, p. 27–34. 

3. Degum, C. (1975). A model of income distribution and the conditions of 

existence of moments of finite order, Bulletin of the International Statistical 

Institute, 46 (Pro- ceedings of the 40th Session of the ISI, Warsaw, 

Contributed Papers),  p. 199–205. 

4. Dey, D.K., Ghosh, M. and Srinivasan, C. (1987). Simultaneous estimation of 

parameters under entropy loss, J. Statist. Plan. and  Infer.,  p. 347–363.  

5. Domma, F. (2007). Asymptotic distribution of the maximum likelihood 

estimators of the parameters of the right-truncated Dagum distribution, 

Communications in Statistics-Simulation and Computation, 36 (6), p. 1187-

1199. 

6. Domma, F., Giordano, S. and Zenga, M. M. (2011). Maximum likelihood 

estimation in Dagum distribution with censored sample, Journal of Applied 

Statistics, 38 (12), p. 2971-2985. 

7.     Fattorini, L., and Lemmi, A. (1979). Proposta di un modello alternativo per 

l’analisi della distribuzione personale del reddito, Atti Giornate di Lavoro 

AIRO, 28, p. 89–117. 

8. Gupta, R.D. and Kundu, D. (2009). A new class of weighted exponential 

distribution,  Statistics, 43, p. 621-634.  

9.     Lehmann, E. L., (1983). Theory of Point Estimation, New York. John Wiley. 

10.     McGarvey, R.G., Del Castillo, E., Cavalier, T. M. and Lehtihet, E. (2002). 

Four-parameter beta distribution estimation and skewness test, Quality and 

Reliability Engineering International, 18 (5), p. 395-402. 

11. Mielke, P.W. (1973). Another family of distributions for describing and 

analyzing precipitation data,  Journal of Applied Meteorology 12, p. 275–280. 



136                                         Journal of Reliability and Statistical Studies, June 2017, Vol. 10(1) 

12. Mielke, P.W., and Johnson, E.S. (1974). Some generalized beta distributions 

of the second kind having desirable application features in hydrology and 

meteorology, Water Resources Research, 10, p. 223–226. 

13. Oluyede, B.O. and Rajasooriya, S. (2013). The Mc-Dagum distribution and its 

statistical proper ties with applications, Asian Journal of Mathematics and 

Applications, 44, p. 1-16. 

14. Parsian, A. and Kirmani, S. N. U. A. (2002). Estimation under LINEX loss 

function, In Handbook of Applied Econometrics and Statistical Inference, Eds. 

Aman Ullah, Alan T. K. Wan, and Anoop Chaturvedi. Marcel Dekker, Inc. p. 

53-76. 

15. Shahzad, M. N. and Asghar, Z. ( 2013). Comparing TL-moments, L-moments 

and conventional moments of Dagum distribution by simulated data, Revista 

Colombiana de Estadistica,  36 (1), p. 79-93. 

16. Wasan, M.T. (1970). Parametric Estimation, New York:Mcgraw-Hill. 

  


