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Abstract

The Dagum distribution is very useful to represent the distribution of income, actuarial,
meteorological data as well for survival analysis. Moreover, it is considered to be the most
suitable choice as compared to other three parameter distributions in several cases. It belongs to
the generalized beta distribution and is generated from generalized beta-II by considering a shape
parameter one and referred as inverse Burr distribution. In this paper, we obtain Bayesian
estimation of the scale parameter of the Dagum distribution under informative and non-
informative prior. Bayes estimators are derived using different loss functions. These estimators
are compared using risk functions.
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1. Introduction

The Dagum distribution was proposed by Camilo Dagum in a series of papers
in the 1970sto fit heavy tailed models present in empirical income and wealth
distributions as well as permitting an interior mode. The classical distributions, such as
Pareto distribution and the lognormal distribution, were used to summarize such data.
The former aspect is well captured by the Pareto but not by the log-normal distribution,
the latter by the log-normal but not the Pareto distribution. In this paper, the problem of
Bayesian analysis of Dagum distribution for the complete sample is studied. The
maximum likelihood and Bayes estimators of one shape parameter p under different
priors using different loss functions are obtained by assuming other shape and scale
parameters to be known. Also, these estimators are compared using risk functions in the
simulation study. The estimates having minimum risk are considered to be better.

The CDF of Dagum distribution is given by
-p

F(x)= 1+(%]_a ,x>0. (1.1)

The parameters a and p are shape parameters and b is a scale parameter.

The Dagum distribution arose from several variants of a new model on the size
distribution of personal income and is mostly associated with the study of income
distribution. There are two forms of Dagum distribution namely a three-parameter
specification (Type I) and a four-parameter specification (Type II). A summary of the
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genesis of this distribution can be found in "A Guide to the Dagum Distributions".
Dagum (1983) refers to his system as the generalized logistic-Burr system. This is due
to the fact that the Dagum distribution with p=1 is also known as the log-logistic
distribution (the model Dagum 1975 experimented with). The Dagum distribution is a
Burr 111 distribution with an additional scale parameter and therefore a rediscovery of a
distribution that had been known for some 30 years prior to its introduction in
economics. However, it is not the only rediscovery of this distribution. Mielke (1973),
in a meteorological application, arrives at a three-parameter distribution he calls the
kappa distribution. It amounts to the Dagum distribution in a different parametrization.
Mielke and Johnson (1974) refer to it as the beta-K distribution. Even in the income
distribution literature there is a parallel development: Fattorini and Lemmi (1979),
starting from Mielke’s kappa distribution but apparently unaware of Dagum (1977),
propose (1.1) as an income distribution and fit it to several data sets, mostly from Italy.

An interesting aspect of Dagum distribution is that it admits a mixture
representation in terms of generalized gamma and inverse Weibull distributions. The
Dagum distribution can be obtained as a compound generalized gamma (GG)
distribution whose scale parameter follows an inverse Weibull (/W) distribution with
identical shape parameters.

The GG and IW distributions have the PDFs given by

___a ap-1 ‘(%J
fGG(x)_gap 1“(p)x e ,x>0,(a,p,6’)>0, (1.2)
asl (é)a”
and fow =a(5) e\’ :0>0,a,b>0. (1.3)

Thus, the mixture distribution that results from marginalizing over 6 is given by

1o~ [ Sl 107 000

F(p) Ha(p+1)+1 ¢ 7 do
.1~
_ap ap| (X
=48 or [1+[bj } . (1.4)

The " moment of X is given by

o 2]

T(p)

B a’ b* xap_lT 1 )
0

(1.5)

Domma, Giordano and Zenga (2011) and Domma (2007) estimated the parameters
of Dagum distribution with censored samples and by the right-truncated Dagum
distribution respectively by maximum likelihood estimation. McGarvey, et al. (2002)
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studied the estimation and skewness test for the Dagum distribution. Shahzad and
Asghar (2013) estimated the parameter of this distribution by TL-moments. Oluyede
and Rajasooriya (2013) introduced the Mc-Dagum distribution.

2. Maximum Likelihood Estimation
We assume that X =(x;,X,,...,x,) is a random sample from X ~ D(a,b,p),
then the likelihood function of the scale parameter, p (keeping a and b fixed) is given by

(22 11 ”“H[H( J]“’”’

The log-likelihood equation is given by

I=nL=n(Ina+np—aphnb)+ Zlnx (p+1 Zln[lJ{ J] (2.2)

Thus the MLE is obtained by the equation

al n N x
—=—-nalnb+a ) Inx;— ) In|1+|—| [=0
RS [ Bl

op »p
= %:gln l+(%] ]—Zln(%}

n n < x )"
-— - “r? T:;h[b{;] } (2.3)
Zln 1+(lj
i=1 L b

3. Posterior Distribution of p|x under Different Prior Distributions

In this section, we present posterior distribution of p under an informative prior,
i.e., Mukherjee-Islam (MI) prior and a non-informative, i.e., extension of Jeffreys prior.
The likelihood function (2.1) of p can be written in terms of T as

= (p| )ocpe

where T = Zln{l +(

i=1

3.1)
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3.1 Posterior distribution under Mukherjee-Islam prior
Assume that p has a Mukherjee-Islam prior with hyper parameters (a; o) > 0
defined by
o o1
gl(p)zala 'p ;p>0,00>0,0>0. (3.2)

Then the posterior distribution of p is given by
mtog—1_—pT
7plx)ocp™ e

-1 —pT
=Kp"™ e
where K is the normalized constant given by

F(n+a1).

T

K:Ipn+al—l e—ppo:
0

Thus, the posterior distribution of p|x is given by

( )_ T n+a;-1_—-pT
m\p|x “Tora) e (3.3)
1

which is a gamma density with parameters 7, 8, = n+ «;.

)p

3.2 Posterior distribution under extension of Jeffreys prior
The extension of Jeffreys prior is defined by

g (p)e [1(p)]"sm>0.
where [1 ( p)] is the Fisher Information given by:

(o) -£| St |-

where / is the log-likelihood defined in (2.2). Thus, the extension of Jeffreys prior is
given by

1
p
The posterior distribution is defined by
r2m —pT 2m _—pT
7\ pljocp”™" e =K e

where K is the normalized constant given by

K 2 o7 g [(n—2m+1)
p P Tn—2m+1
0
Thus the posterior distribution of p|x is given by

n—2m+1 5 r
-y me—P ,
F(n—2m+1)p 3:3)

which is a gamma density with parameters 7, S, =n—2m+1.

”2(p|x):
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4. Bayes Estimators of p|x under Different Priors using Different Loss
Functions

The choice of the loss function is very important in decision analysis. In some
estimation problems overestimation may be more serious than underestimation, or vice-
versa, see Parsian and Kirmani (2002) and the references there in. In such cases, the
usual methods of estimation may be inappropriate. To deal with such cases, a useful
and flexible class of asymmetric loss functions were introduced. In this section we
introduce the K-loss function, entropy loss function and squared logarithmic loss
function.

We have already discussed in section (3) that using Mukherjee Islam prior and
extension of Jeffreys prior given by (3.3) and (3.5) respectively leads to posterior
distribution given by the Gamma density:

™ a0 r .

#lplx)=—r 7P, i=12,
r(s)

where 6;and f3; (i =1,2) are shape and rate parameters of gamma distribution defined

in (3.3) and (3.5) respectively. Below are presented the loss functions- K-loss

function, entropy loss function and squared logarithmic loss function and the Bayes

estimators using these loss functions.

4.1 K-loss function (KLF)
Wasan (1970) proposed the K-loss function (KLF) that is used as a measure of
inaccuracy for an estimator of a scale parameter of a distribution defined on R™ (0, «)

by
n 2
1(,p) =220 (1)
pp
Using K-loss function (K-LF), we have

E(plx)= £ &E( |)=L_1.

Thus, p p|x _1 4.2)

4.2 Entropy loss function (ELF)
In many practical situations, it appears to be more realistic to express the loss in

A

terms of the ratio P . In this case, the loss function used by Dey et al. (1987) is given

p

! (ﬁ,p){ﬁj—log[ﬁj—l (43)
p p

whose minimum occurs at p = p . The Bayes estimator under the entropy loss function

(ELF) is denoted by p, and defined by
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e =EG 15)]" = % (4.4)

4.3 Squared logarithmic loss function (SLLF)
The squared-log error loss function has the form

2
lﬁip)={bgffj} = (log p—log p)’ (4.5)

The loss function is convex if p / p < e and concave otherwise, and its risk
function has a unique minimum w.r.t. p. The Bayes estimator using SLLF is denoted by
D, and is given by

Pst= exp[E (lnp | x)]
In this case, Using squared logarithmic loss function (SLLF), we have
lni)=E(1HPIX)=V/(ﬂ,-)—1n9,--
AN

Psi :‘9—1'. (4.6)

Table 1 shows Bayes estimators under MI prior and extended Jeffreys prior using K-
loss, entropy loss and squared logarithmic loss function:

Mukherjee-Islam Prior Extension of Jeffreys Prior
T.B,=n+a T,B,=n—-2m+1
~ x/(n+0{2)(n+052—1) \/(n—2m+1)(n—2m)
Pke
T T
b n+a, -1 n—2m+1
o T T
,\ e'/’(’”a’z) eu/(n—2m+1)
p -
SL T T

Table 1: Bayes Estimators of p under MI and extended Jeffreys Prior

5. Posterior Variances under Different Priors Distributions

The wvariances of the posterior distribution under the informative and non-
informative prior are calculated by assuming different set of values for hyper
parameters, different sample size and different value of parameter which is given by

Bi .
V@\ﬂ=;§u=LL (5.1)

where T and 3, (i =1,2) are shape and rate parameters of gamma distribution defined in
(3.3) and (3.5) respectively.
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6. Efficiency of the Estimators
Since X follows a Dagum distribution with parameters (b,a, p) , then

n —a
T= z In [1 + (%j } is distributed as a Gamma variate with parameters (n, p). Thus,
i=1

the PDF of T'is given by

gT(t)zﬁef’”t”*l;t>0,p>O (6.1)
Therefore,
-r pn T -pt n—r-1 ,F(I’l—l")
El )= Ie”t dt =p (6.2)
) T(n)y I(n)

n
and E(?)= E(ij I (6.3)

i, (1] :E@f _H;]T ﬁ (04

We now obtain the relative efficiency of the estimators pg;, Py, P in case of
both the priors.

We have,
b= P
ST T T )’
. BB . (B - 1)p’
and =7 =L 2
pKL T (pKL) (n_l)z(n_z)
. Bl . (8 -1 p*
and ==L _ =7 = P2
pEL T (pEL) (n _1)2 (n _2)
w(8) 20(p) 2
and Pst :e—:V(ﬁSL == 1

(n=1) (1-2)
where T, ; (i =1,2) are shape and rate parameters of gamma distribution defined in
(3.3) and (3.5) respectively.

Thus, the efficiency of py w.r.t. pg; is given by

:V(ﬁKL): ﬂl 1 65
V) B (©2)

The efficiency of pj w.r.t. pg is given by
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Vip 2v(8;)
- ({m) _¢ —. (6.6)
V(pEL) (ﬁi—l)
The efficiency of Dy w.r.t. ﬁKL is given by

Vb)) _ BB -1)
P V(ﬁSL) A2 ©7

7. Risk Functions of Bayes Estimators using Loss Functions K-LF, ELF
and SLLF
Using K-LF, the risk function of pg, using K-loss function is given by

R(ﬁKL ) = E[l(ﬁKL ) P)]

:p[_m iﬂf—ﬂg[gj_g £(7) ]
T

p’ P ﬁi(ﬂi‘l)
:\/ﬂi(ﬂi_lj_z_'_ n o
(”_1) \/ﬂ[(ﬂi_lj. .

Using ELF, the risk function of p,, using entropy loss function is given by
R(ﬁEL ) = E[l(ﬁELsP)]

_ {%E(%j “tog(p, ~1)+ E[ioglp 7)) 1}

:/2 —log(B, —1)+w(n)-1. (7.2)

Using SLLF, the risk function of pg; using entropy loss function is given by
R(ﬁSL) =E [l(ﬁSL ’ P)]
=y*(8,)-2y(p,)E (log pT)+ E(log pT
=y (8,)-2v/(B, )y (n)+y (n) +y (n). (73)

We observe from (7.1), (7.2) and (7.3) that the risk functions K-LF, ELF, and
SLLF are constant w.r.tp. Hence, R(px; ) R(Pg; JandR(pg; ) are minimax estimators
for parameter p in case of Dagum distribution. [Lehmann (1983); Theorem 2.1,
corollary 2.1; section 2, chapter 4, p. 249-250].

8. Prior Predictive Distribution under Mukherjee-Islam Prior
The prior predictive distribution under the Mukherjee-Islam prior is defined by

0 4 a _(P+1)
g(y)=aa o™ L parifpy | 2 dp
0 b b

aa, o % 7
_ 1 J'pale—psdp
a
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__aoc™® a, T(a,)

()]

9. Prior Predictive Distribution under Extension of Jeffreys Prior
The prior predictive distribution under the extension of Jeffreys prior is defined by

) a _(P+l)
gv)=a [p" y‘”’"b{%) ] dp
0

:%J.pz—hne—dep
Yy 0
1+|—
Y (b]
B aF(2—2m)
y ¢ 2-2m
IL+|=| |S
g (b]

10. Posterior Predictive Distribution under Different Priors
The posterior predictive distribution for y = x,,,; given x = (xl , X5 ...xn)under the

exponential prior is defined by

4019= [ 1001 P) (o

Bi 2 4
o jpﬁfe-f{u(%j } p
Ed )0

where T'and f; (i =1,2) are shape and rate parameters of gamma distribution defined in
(3.3) and (3.5) respectively.

11. Data set : (Gupta and Kundu, 2009)

A real data set is considered for illustration of the proposed methodology. This
data set represents the marks in Mathematics for 48 students in the slow pace program
in the year 2003:
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29, 25,50, 15,13,27,15,18,7,7,8,19, 12, 18, 5, 21, 15, 86, 21, 15, 14, 39, 15, 14, 70,
44,6,23,58,19,50,23,11, 6, 34, 18, 28, 34, 12, 37, 4, 60, 20, 23, 40, 65, 19, 31.

a b (11=1.2 a1=3.0 (11=3.5
10 49 11.03563 11.33146 11.60454
. : . (0.02160) (0.02343) (0.02628)
Pr » 155 6.98450 717173 734456
: : (0.02160) (0.02343) (0.02628)
20 L4 10.92244 11.21826 11.49132
: : (0.01082) (0.01176) (0.01324)
P » - 6.91286 7.10009 727291
: : (0.01082) (0.01176) (0.01324)
20 L4 11.03641 11.33222 11.60528
) : . (0.02149) (0.02329) (0.02611)
Psi » - 6.98500 7.17222 734503
: : (0.02149) (0.02329) (0.02611)

Table 2: Posterior estimates ( f?) risks R( f?) (in braces) under Mukherjee-Islam

prior
b a m=0.5 m=1.3 m=3.0
30 | 149 10.80807 10.44397 9.67024
. . : (0.02116) (0.02235) (0.03368)
Pxi a4 | 1ss 6.84047 6.61003 6.12034
: : (0.02116) (0.02235) (0.03368)
30 | 149 10.69489 10.33081 955714
: : (0.01060) (0.01119) (0.01670)
Pu a4 | 1ss 6.76334 6.53842 6.04876
: : (0.01060) (0.01119) (0.01670)
30 | 140 10.80887 10.44479 967114
) : : (0.02105) (0.02223) (0.03342)
Psi a4 | 1ss 6.84098 6.61056 6.12091
: : (0.02105) (0.02223) (0.03342)

Table 3: Posterior estimates ( ]5) risks R( ]5) (in braces) under Mukherjee-Islam
prior

12. Simulation Study

The simulation study was conducted in R-software to examine the performance
of Bayes estimates for the scale (p) parameter of the Dagum distribution under
Mukherjee-Islam prior and the extension of Jeffreys prior. The process is replicated
1000 times and the average of the results has been presented in the tables below. The
VGAM package is used for the simulation study. We choose #n=25, 50, 100 to represent
different sample sizes. Tables 4 and 5 summarizes the results for different values of
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p=10.95, 6.92; b =3.0, 4.4; a=1.49, 1.55. The hyper-parameter values are chosen as:
0,;=(1.2, 3.0, 3.5); m=(0.5, 1.3, 3.0). These values are chosen using MLE values in R
software. The estimators are obtained and their respective risks are computed for
admissibility under different loss functions.

n b a P o=1.2 0=3.0 o0=3.5
1334204 | 14.18861 | 14.97003

5 301 149 11095 1 05453) | (0.06474) | (0.08001)

KL 634000 | 6.74323 | 7.11461

441 1551 692 1 05453) | (0.06474) | (0.08001)

13.02050 | 13.86683 | 14.64806

2 3.0 1 149 11095 1 02742) | (0.03287) | (0.04122)
P [aa| 155 | g0z | O18808 | 639031 | 696159
4L 92 1 0.02742) | (0.03287) | (0.04122)

1334733 | 14.19358 | 14.97475

5 3.0 1 149 11095 1 55377) | (0.06370) | (0.07851)

st 634341 | 674560 | 7.11685
4411551692 1 (05377) | (0.06370) | (0.07851)

11.86400 | 12.16954 | 12.45148

5 3.0 1 149 11095 1 05071) | (0.02239) | (0.02502)

KL 720153 | 747925 | 7.65253
4411551692 1 402071) | (0.02239) | (0.02502)

1174720 | 12.05263 | 12.33456

% 301 149 11095 1 01037) | (0.01124) | (0.01261)
Prr [aa | 155 | cog | 721969 | 740740 | 7538068
4|1 92 | 0.01037) | (0.01124) | (0.01261)

11.86487 | 1217029 | 12.45222

5 301 149 11095 1 6 02060) | (0.02226) | (0.02487)

st 729201 | 7.47972 | 7.65299
4411551692 1 602060) | (0.02226) | (0.02487)

9.94729 | 10.07596 | 10.19474

5 3.0 1 149 11095 1 61018) | (0.01060) | (0.01128)

KL 671789 | 6.80478 | 6.88499
4411551692 1 401018) | (0.01060) | (0.01128)

9.89792 | 10.02660 | 10.14537

100 3.0 1 149 11095 1 00500) | (0.00531) | (0.00565)
P [aa | 155 | cop | 668454 | 677143 | 685165
4L 92 | 0.00509) | (0.00531) | (0.00565)

9.94745 | 10.07613 | 10.19490

5 301 149 11095 1 1015 | (0.01057) | (0.01125)

st 671799 | 6.80488 | 6.88510

441 1551692 1 (01015 | (0.01057) | (0.01125)

Table 4: Posterior estimates ( ﬁ) and risks R( ]5) under Mukherjee-Islam prior
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n b a p m=0.5 m=1.3 m=3.0
12.69081 | 11.64880 | 9.43425
5 3.0 11491 1095 1 05196) | (0.05949) | (0.14284)
K 6.03140 | 553617 | 4438369
44 11551 692 1 05196) | (0.05949) | (0.14284)
12.36947 | 1132783 | 9.11435

L | 3O 1095 1 0.02609) | (0.02984) | (0.06831)

20| P s | 155 | ooz | 587868 | 538363 | 433166
4L 92 | 0.02609) | (0.02984) | (0.06831)

12.69637 | 11.65486 | 9.44173
5 3.0 1149 1 1095 | 05127) | (0.05860) | (0.13899)
st 6.03404 | 553905 | 448725

44 11551692 | 05127) | (0.05860) | (0.13899)
1162014 | 1125321 | 10.45435
5 3.0 11491 1095 1 10031) | (0.02140) | (0.03177)
KL 714713 | 691609 | 642512

4411551692 1 10031) | (0.02140) | (0.03177)
1151226 | 11.13635 | 10.33754

| 30 A9 1095 6 61017) | (0.01071) | (0.01576)
50 | P aa | 155 | 692 7.07530 6.84427 6.35333
4L 92 | 0.01017) | (0.01071) | (0.01576)

11.62993 | 11.25403 | 10.45523

| 3O A T09S 6 00020) | (0.02128) | (0.03154)

Pst
714762 | 691659 | 642566
44 11551692 1 02020) | (0.02128) | (0.03154)

084831 | 9.68994 | 9.35341
5 3.0 | 1491 1095 | 01008) | (0.01034) | (0.01275)
K 665103 | 654407 | 631680
44 | 155|692 | (01008) | (0.01034) | (0.01275)
9.79894 | 9.64058 | 9.30405
wo | 5 3011491 1095 1 00504y | (0.00517) | (0.00636)
P T o [ aoy | 661769 | 6351074 | 628346
401 92 | 0.00504) | (0.00517) | (0.00636)
0.84848 | 9.69011 | 9.35358

5 3.0 11491 1095 1 41005) | (0.01031) | (0.01271)
st 6.65114 | 654419 | 631692
44 | 155 | 692 | (01005) | (0.01031) | (0.01271)

Table 5: Posterior estimates ( f)) and risks R( f?) under extended Jeffreys prior

13. Results and Discussion
The results of the real data example and the simulation study are presented in
tables 2 to 5 for different values of n, @, b and hyper-parameters. It is observed that

1. the risk values of the p under both Mukherjee-Islam prior and extension of Jeffreys
prior are increasing as the hyper-parameter values increase.
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5.
6.

the risk functions are constant w.r.t. p. i.e., there is no effect of increasing of the
true values of the parameter p which implies that the Bayes estimators are
minimax estimators for parameter p in case of Dagum distribution.

using ELF, the risk based on both priors is minimum and hence it is admissible
for all n.

under K-LF and SLLF, the risks (although greater than that using ELF) based on
both priors are almost same.

the risks are also seen decreasing for increasing sample size.

Finally, from the results, we conclude that in situations involving estimation of
parameter p of Dagum distribution, entropy loss function could be effectively
employed instead of using a K-loss and squared log loss function owing to the least risk
values among all the three loss functions.

Furthermore, for future attempt, other prior distributions can also be used for
posterior analysis to see the impact of loss functions on them as well.
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