# EVALUATION OF RELIABILITY AND MTSF OF A PARALLEL SYSTEM WITH WEIBULL FAILURE LAWS

### **\*S. K. Chauhan and S. C. Malik**

Department of Statistics, M.D. University, Rohtak, India E Mail: \*statskumar1@gmail.com; sc\_malik@rediffmail.com

> Received December 01, 2016 Modified May 09, 2017 Accepted June 06, 2017

#### Abstract

The performance of systems can be improved by providing appropriate structural design of the components. And, therefore, the basic concentration of the scholars is to identify the most suitable technique that can be used to improve the reliability of operating systems. The provision of series and parallel structures of the components in the systems has been considered as the effective one to maintain life of the systems for a considerable period with least possible costs. The reliability and mean time to system failure (MTSF) of such systems have been evaluated by the researchers with a common assumption that the failure rate of the components follows negative exponential distribution. But there are several systems in which components may have monotonic failure rates and in such cases Weibull distribution can be used due to its versatile character and relative simplicity. Here, the reliability and MTSF of a parallel system are obtained by considering Weibull failure laws. The behaviour of these measures has been examined for arbitrary values of the failure rates, operating time, shape parameter ( $\beta$ ) and number of components. The values of these measures have also been evaluated for a special case of Weibull distribution.

Key Words: Parallel System, Reliability, MTSF, Weibull Distribution, Rayleigh Distribution.

#### 1. Introduction

Over the years, the main concentration of the reliability engineers and system designers is on the identification of best possible structure of the components that can be used in the systems for providing better services to the users with overall least operating cost. And, up to some extent they succeeded in it. As a result of which, we have several structures of the components in the systems which fulfil the requirements in the form of durability and cost effectiveness. It is a common practice that the parallel structure of the components is being preferred over the others in order to reduce the working stress of the system. Besides, several research papers have been written by the scholars on the theoretical evaluation of reliability measures of a system under different configurations of the components. EI-Damcese (2009) evaluated reliability and mean time to system failure of Series-Parallel system using Weibull distribution. Mustafa et al. (2012) discussed reliability equivalence factors of a general parallel system with mixture of lifetimes. Elsayed (2012) developed reliability and mean time of system failure (MTSF) of some system configurations using Exponential, Rayleigh and Weibull distributions. Nandal et al. (2015) proved that a parallel system is more reliable to use then that of a series system having constant failure rate of the components. Chauhan et al. (2016) determine reliability measures of a series system with Weibull failure laws.

Keeping in view, the wide applications of the parallel structure of the components in operating systems, here we determine reliability and mean time to system failure (MTSF) of a system by considering Weibull failure laws of the identical and non-identical components. The behaviour of these measures has been observed for arbitrary values of the failure rates of the components, operating time of the components, shape parameter and number of components used in the parallel structure. The results of these measures have also been obtained for a particular case of Weibull distribution i.e. Rayleigh distribution in order to examine the effect of various parameters.

#### 2. Notations

R(t) = Reliability of the system, $R_i(t)$  = Reliability of the  $i^{th}$  component h(t)= Instantaneous failure rate of the system,  $h_i(t)$  = Instantaneous failure rate of  $i^{th}$  component  $\lambda$  = Constant failure rate T = Life time of the system, $T_i$  = Life time of the  $i^{th}$  component

### 3. System Description

Here, a parallel system of 'n' components is considered which can fail at the failure of all components. The state transition diagram is shown in Fig.: 1



Fig. 1: A Parallel System of 'n' Components

The reliability of the System is given by  $R(t) = Pr[T>t] = 1 - \prod_{i=1}^{n} [1 - R_i(t)]$ (1)The mean time to system failure is given by MTSF=  $\int_{0}^{\infty} [1 - \prod_{i=1}^{n} [1 - R_{i}(t)]] dt$ (2)

## 4. Reliability Measures

Suppose failure rate of all the components are governed by Weibull failure law i.e.  $h_i(t) = \lambda_i t^{\beta_i}$ 

Then, the i<sup>th</sup> component's reliability is given by

$$R_i(t) = e^{-\lambda_i \frac{t^{\beta_{i+1}}}{\beta_{i+1}}}$$

Therefore, the system reliability is given by

$$R_{s}(t) = 1 - \prod_{i=1}^{n} (1 - R_{i}(t)) = 1 - \prod_{i=1}^{n} \left( 1 - e^{-\lambda_{i} \frac{t^{\beta_{i}+1}}{\beta_{i}+1}} \right)$$
$$= 1 - \left( 1 - e^{-\lambda_{1} \frac{t^{\beta_{1}+1}}{\beta_{1}+1}} \right) \left( 1 - e^{-\lambda_{2} \frac{t^{\beta_{2}+1}}{\beta_{2}+1}} \right) \dots \dots \left( 1 - e^{-\lambda_{n} \frac{t^{\beta_{n}+1}}{\beta_{n}+1}} \right)$$
$$R_{s}(t) = \sum_{i=1}^{n} e^{-\lambda_{i} \frac{t^{\beta_{i}+1}}{\beta_{i}+1}} \sum_{i=1}^{n} \sum_{j=i+1}^{n} e^{-\left[\lambda_{i} \frac{t^{\beta_{i}+1}}{\beta_{i}+1} + \lambda_{j} \frac{t^{\beta_{j}+1}}{\beta_{j}+1}\right]_{+}} + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=j+1}^{n} e^{-\left[\lambda_{i} \frac{t^{\beta_{i}+1}}{\beta_{i}+1} + \lambda_{j} \frac{t^{\beta_{k}+1}}{\beta_{k}+1}\right]_{+} \dots \dots + (-1)^{n+1} e^{-\sum_{i=1}^{n} \lambda_{i} \frac{t^{\beta_{i}+1}}{\beta_{i}+1}}}$$
(3)

and,

$$MTSF = \sum_{i=1}^{n} \frac{\Gamma^{1}/\beta_{i}+1}{\left[\lambda_{i}(\beta_{i}+1)^{\beta_{i}}\right]^{\frac{1}{\beta_{i}+1}}} - \sum_{i=1}^{n} \sum_{j=i+1}^{n} \left(\frac{\Gamma^{1}/\beta_{i}+1}{\left[\lambda_{i}(\beta_{i}+1)^{\beta_{i}}\right]^{\frac{1}{\beta_{i}+1}}} \frac{\Gamma^{1}/\beta_{j}+1}{\left[\lambda_{i}(\beta_{i}+1)^{\beta_{i}}\right]^{\frac{1}{\beta_{j}+1}}}}\right) + \dots + \sum_{i=1}^{n} \sum_{k=j+1}^{n} \sum_{k=j+1}^{n} \left(\frac{\Gamma^{1}/\beta_{i}+1}{\left[\lambda_{i}(\beta_{i}+1)^{\beta_{i}}\right]^{\frac{1}{\beta_{i}+1}}} \frac{\Gamma^{1}/\beta_{j}+1}{\left[\lambda_{j}(\beta_{j}+1)^{\beta_{j}}\right]^{\frac{1}{\beta_{j}+1}}} \frac{\Gamma^{1}/\beta_{k}+1}{\left[\lambda_{i}(\beta_{k}+1)^{\beta_{k}}\right]^{\frac{1}{\beta_{k}+1}}}}\right) + \dots + (-1)^{n+1} \sum_{i=1}^{n} \frac{\Gamma^{1}/\beta_{i}+1}{\left[\lambda_{i}(\beta_{i}+1)^{\beta_{i}}\right]^{\frac{1}{\beta_{i}+1}}}}$$
(4)

For identical components, we have  $h_i(t) = \lambda t^{\beta}$ Then the system reliability is given by

$$R_{s}(t) = 1 - \left(1 - e^{-\lambda \frac{t^{\beta+1}}{\beta+1}}\right)^{n}$$
  
$$= {\binom{n}{1}}e^{-\lambda \frac{t^{\beta+1}}{\beta+1}} - {\binom{n}{2}}e^{-2\lambda \frac{t^{\beta+1}}{\beta+1}} + {\binom{n}{3}}e^{-3\lambda \frac{t^{\beta+1}}{\beta+1}} + \dots \dots + (-1)^{n+1}e^{-n\lambda \frac{t^{\beta+1}}{\beta+1}}$$
  
$$R_{s}(t) = \sum_{i=1}^{n} (-1)^{i+1} {\binom{n}{i}}e^{-i\lambda \frac{t^{\beta+1}}{\beta+1}}$$
(5)

$$MTSF = \int_{0}^{\infty} R(t)dt = \int_{0}^{\infty} [\sum_{i=1}^{n} (-1)^{i+1} {n \choose i} e^{-i\lambda \frac{t^{\beta+1}}{\beta+1}}]dt$$
$$MTSF = \sum_{i=1}^{n} (-1)^{i+1} {n \choose i} \int_{0}^{\infty} e^{-i\lambda \frac{t^{\beta+1}}{\beta+1}}dt = \sum_{i=1}^{n} (-1)^{i+1} {n \choose i} \frac{(r_{\beta}^{1}+1)}{[n\lambda(\beta+1)^{\beta}]^{\frac{1}{\beta+1}}}$$
(6)

## Illustration

Suppose system has two components, then the system reliability is given by

$$R_{s}(t) = 1 - \prod_{i=1}^{2} (1 - R_{i}(t)) = 1 - \prod_{i=1}^{2} \left( 1 - e^{-\lambda_{i} \frac{t^{\beta_{i}+1}}{\beta_{i}+1}} \right)$$
$$R_{s}(t) = e^{-\lambda_{1} \frac{t^{\beta_{1}+1}}{\beta_{1}+1}} + e^{-\lambda_{2} \frac{t^{\beta_{2}+1}}{\beta_{2}+1}} - e^{-\left[\lambda_{1} \frac{t^{\beta_{1}+1}}{\beta_{1}+1} + \lambda_{2} \frac{t^{\beta_{2}+1}}{\beta_{2}+1}\right]}$$
(7)

$$MTSF = \frac{\Gamma^{1}/\beta_{1}+1}{[\lambda_{1}(\beta_{1}+1)^{\beta_{1}}]^{\frac{1}{\beta_{1}+1}}} + \frac{\Gamma^{1}/\beta_{2}+1}{[\lambda_{2}(\beta_{2}+1)^{\beta_{2}}]^{\frac{1}{\beta_{2}+1}}} - \frac{\Gamma^{1}/\beta_{1}+1}{[\lambda_{1}(\beta_{1}+1)^{\beta_{1}}]^{\frac{1}{\beta_{1}+1}}} \frac{\Gamma^{1}/\beta_{2}+1}{[\lambda_{2}(\beta_{2}+1)^{\beta_{2}}]^{\frac{1}{\beta_{2}+1}}}$$
(8)

For identical components, we have  $h_i(t) = \lambda t^{\beta}$ 

$$R_{s}(t) = 1 - \left(1 - e^{-\lambda \frac{t^{\beta+1}}{\beta+1}}\right)^{2} = 2e^{-\lambda \frac{t^{\beta+1}}{\beta+1}} - e^{-2\lambda \frac{t^{\beta+1}}{\beta+1}}$$
(9)

$$MTSF = \frac{\left(\Gamma_{\beta}^{1}+1\right)}{\left[\lambda(\beta+1)^{\beta}\right]^{\frac{1}{\beta+1}}} \left[2 - \frac{1}{2^{\frac{1}{\beta+1}}}\right]$$
(10)

In a similar way can obtain reliability and MTSF of a system having three or more component connected in parallel.

## 5. Special Case for Parameters following Weibull Distribution

Reliability and mean time to system failure (MTSF) of the system have been obtained for arbitrary values of the parameters associated with number of components (n), failure rate ( $\lambda$ ), operating time of the component (t) and shape parameter ( $\beta$ ). The results are shown numerically and graphically as:

|    | Reliability      |                  |                  |                  |                  |  |  |
|----|------------------|------------------|------------------|------------------|------------------|--|--|
|    | λ=0.01,          | λ=0.02,          | λ=0.03,          | λ=0.04,          | λ=0.05,          |  |  |
| n  | $t=10,\beta=0.1$ | $t=10,\beta=0.1$ | $t=10,\beta=0.1$ | $t=10,\beta=0.1$ | $t=10,\beta=0.1$ |  |  |
| 1  | 0.891858524      | 0.795411626      | 0.7093946        | 0.6326796        | 0.564261         |  |  |
| 2  | 0.988305421      | 0.958143597      | 0.9155485        | 0.8650757        | 0.810131         |  |  |
| 3  | 0.998735331      | 0.991436667      | 0.9754579        | 0.9504395        | 0.917267         |  |  |
| 4  | 0.999863237      | 0.998248042      | 0.9928679        | 0.9817954        | 0.963949         |  |  |
| 5  | 0.99998521       | 0.99964157       | 0.9979274        | 0.9933131        | 0.984291         |  |  |
| 6  | 0.999998401      | 0.999926669      | 0.9993977        | 0.9975438        | 0.993155         |  |  |
| 7  | 0.999999827      | 0.999984997      | 0.9998249        | 0.9990978        | 0.997017         |  |  |
| 8  | 0.999999981      | 0.999996931      | 0.9999491        | 0.9996686        | 0.998700         |  |  |
| 9  | 0.999999998      | 0.999999372      | 0.9999852        | 0.9998783        | 0.999434         |  |  |
| 10 | 0.9999999999     | 0.999999872      | 0.9999957        | 0.9999553        | 0.999753         |  |  |

Table 1: Reliability Vs No. of Components (n)



Fig. 2: Reliability Vs No. of Components (n)

|    | MTSF                                     |                       |                                          |                       |                                          |  |  |
|----|------------------------------------------|-----------------------|------------------------------------------|-----------------------|------------------------------------------|--|--|
| n  | $\lambda = 0.01,$<br>t=10, $\beta = 0.1$ | λ=0.02,<br>t=10,β=0.1 | $\lambda = 0.03,$<br>t=10, $\beta = 0.1$ | λ=0.04,<br>t=10,β=0.1 | $\lambda = 0.05,$<br>t=10, $\beta = 0.1$ |  |  |
| 1  | 69.23057                                 | 36.8667               | 25.50065                                 | 19.63228              | 16.02768                                 |  |  |
| 2  | 101.5944                                 | 54.10113              | 37.42169                                 | 28.80996              | 23.52029                                 |  |  |
| 3  | 122.5923                                 | 65.2829               | 45.15611                                 | 34.76449              | 28.38153                                 |  |  |
| 4  | 138.0924                                 | 73.53705              | 50.86549                                 | 39.15999              | 31.96999                                 |  |  |
| 5  | 150.3587                                 | 80.06909              | 55.3837                                  | 42.63844              | 34.80978                                 |  |  |
| 6  | 160.4983                                 | 85.46864              | 59.11856                                 | 45.51381              | 37.15722                                 |  |  |
| 7  | 169.1344                                 | 90.06752              | 62.2996                                  | 47.9628               | 39.15656                                 |  |  |
| 8  | 176.6518                                 | 94.0707               | 65.06859                                 | 50.09458              | 40.89693                                 |  |  |
| 9  | 183.3049                                 | 97.61361              | 67.51922                                 | 51.98125              | 42.4372                                  |  |  |
| 10 | 189.2703                                 | 100.7903              | 69.71656                                 | 53.67293              | 43.81827                                 |  |  |

Table 2: MTSF Vs No. of Components (n)



Fig. 3: MTSF Vs No. of Components (n)

|    | Reliability                              |                                          |                                          |                                          |                                          |  |  |
|----|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|--|--|
| n  | $\lambda = 0.01,$<br>t=10, $\beta = 0.1$ | $\lambda = 0.01,$<br>t=10, $\beta = 0.2$ | $\lambda = 0.01,$<br>t=10, $\beta = 0.3$ | $\lambda = 0.01,$<br>t=10, $\beta = 0.4$ | $\lambda = 0.01,$<br>t=10, $\beta = 0.5$ |  |  |
| 1  | 0.891858524                              | 0.876275769                              | 0.85771644                               | 0.83575442                               | 0.809921                                 |  |  |
| 2  | 0.988305421                              | 0.984692315                              | 0.97975539                               | 0.97302339                               | 0.96387                                  |  |  |
| 3  | 0.998735331                              | 0.998106068                              | 0.99711952                               | 0.99556921                               | 0.9931324                                |  |  |
| 4  | 0.999863237                              | 0.999765675                              | 0.99959015                               | 0.99927226                               | 0.9986946                                |  |  |
| 5  | 0.99998521                               | 0.999971008                              | 0.99994168                               | 0.99988047                               | 0.9997519                                |  |  |
| 6  | 0.999998401                              | 0.999996413                              | 0.99999170                               | 0.99998037                               | 0.9999528                                |  |  |
| 7  | 0.999999827                              | 0.999999556                              | 0.99999881                               | 0.99999678                               | 0.999991                                 |  |  |
| 8  | 0.999999981                              | 0.999999945                              | 0.99999983                               | 0.99999947                               | 0.9999983                                |  |  |
| 9  | 0.999999998                              | 0.999999993                              | 0.99999997                               | 0.99999991                               | 0.9999997                                |  |  |
| 10 | 0.99999999997                            | 0.9999999999                             | 0.999999999                              | 0.999999999                              | 0.99999999                               |  |  |

Table 3: Reliability Vs No. of Components (n)



Fig. 4: Reliability Vs No. of Components (n)

|   | MTSF         |             |             |             |             |  |  |
|---|--------------|-------------|-------------|-------------|-------------|--|--|
|   | β=0.1,       | β=0.2,      | β=0.3,      | β=0.4,      | β=0.5,      |  |  |
| n | λ=0.01, t=10 | λ=0.01,t=10 | λ=0.01,t=10 | λ=0.01,t=10 | λ=0.0, t=10 |  |  |
| 1 | 69.23057     | 50.82565    | 39.04661    | 31.09362    | 25.48514    |  |  |
| 2 | 101.59444    | 73.12637    | 55.18339    | 43.23546    | 34.91564    |  |  |
| 3 | 122.59227    | 87.24829    | 65.18166    | 50.61187    | 40.5435     |  |  |
| 4 | 138.09242    | 97.52847    | 72.37083    | 55.85796    | 44.50689    |  |  |
| 5 | 150.3587     | 105.5874    | 77.96021    | 59.90692    | 47.54602    |  |  |
| 6 | 160.4983     | 112.2028    | 82.5205     | 63.19274    | 50.00064    |  |  |
| 7 | 169.13435    | 117.8065    | 86.36503    | 65.9513     | 52.05379    |  |  |

| 8  | 176.65178 | 122.6626 | 89.68385 | 68.32461 | 53.81494 |
|----|-----------|----------|----------|----------|----------|
| 9  | 183.30488 | 126.9444 | 92.6007  | 70.40458 | 55.35458 |
| 10 | 189.27034 | 130.7714 | 95.20055 | 72.25404 | 56.72068 |

Table 4: MTSF Vs No. of Components (n)



Fig. 5: MTSF Vs No. of Components (n)

|    | Reliability      |               |             |            |            |  |  |
|----|------------------|---------------|-------------|------------|------------|--|--|
|    | t=5,             |               | t=15,       | t=20,      | t=25,      |  |  |
|    | λ=0.01,          | t=10,         | λ=0.01,     | λ=0.01,    | λ=0.01,    |  |  |
| n  | β=0.1            | λ=0.01, β=0.1 | β=0.1       | β=0.1      | β=0.1      |  |  |
| 1  | 0.948008538      | 0.89185852    | 0.83629373  | 0.78245086 | 0.73082962 |  |  |
| 2  | 0.997296888      | 0.98830542    | 0.97320026  | 0.95267237 | 0.92754731 |  |  |
| 3  | 0.999859461      | 0.99873533    | 0.99561271  | 0.98970392 | 0.98049788 |  |  |
| 4  | 0.999992693      | 0.99986324    | 0.99928177  | 0.9977601  | 0.99475061 |  |  |
| 5  | 0.99999962       | 0.99998521    | 0.99988242  | 0.99951271 | 0.99858702 |  |  |
| 6  | 0.99999998       | 0.99999840    | 0.99998075  | 0.99989399 | 0.99961967 |  |  |
| 7  | 0.9999999999     | 0.99999983    | 0.99999685  | 0.99997694 | 0.99989763 |  |  |
| 8  | 0.999999999994   | 0.99999998    | 0.99999948  | 0.99999498 | 0.99997244 |  |  |
| 9  | 0.9999999999999  | 0.99999999    | 0.999999992 | 0.99999891 | 0.99999258 |  |  |
| 10 | 0.99999999999999 | 0.9999999999  | 0.999999999 | 0.99999976 | 0.999998   |  |  |

Table 5: Reliability Vs No. of Components (n)



Fig. 6: Reliability Vs No. of Components (n)

## 6. Reliability Measures for a Special Case of Weibull Distribution: Rayleigh Distribution

The Rayleigh distribution is a special case of Weibull distribution with the shape parameter  $\beta$ =1. The i<sup>th</sup> component's reliability in this case is given by  $R_i(t) = e^{\frac{-\lambda_i t^2}{2}}$ , where  $h_i(t) = \lambda_i t$ 

1 +2

and, the system reliability is given by

$$R_{s}(t) = 1 - \prod_{i=1}^{n} (1 - R_{i}(t)) = 1 - \prod_{i=1}^{n} \left( 1 - e^{-\frac{\lambda_{i}t^{2}}{2}} \right)$$
$$= 1 - \left( 1 - e^{-\frac{\lambda_{1}t^{2}}{2}} \right) \left( 1 - e^{-\frac{\lambda_{2}t^{2}}{2}} \right) \dots \dots \dots \left( 1 - e^{-\frac{\lambda_{n}t^{2}}{2}} \right)$$
$$R_{s}(t) = \sum_{i=1}^{n} e^{\frac{-\lambda_{i}t^{2}}{2}} - \sum_{i=1}^{n} \sum_{j=i+1}^{n} e^{\frac{-(\lambda_{i}+\lambda_{j})t^{2}}{2}} + \dots + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=j+1}^{n} e^{\frac{-(\lambda_{i}+\lambda_{j}+\lambda_{k})t^{2}}{2}} + \dots + (-1)^{n+1} e^{-\sum_{i=1}^{n} \frac{\lambda_{i}t^{2}}{2}}$$
(11)

Also,

$$MTSF = \sqrt{\frac{\pi}{2\sum_{i=1}^{n}\lambda_{i}}} - \sqrt{\frac{\pi}{2\sum_{i=1}^{n}\sum_{j=i+1}^{n}(\lambda_{i}+\lambda_{j})}} + \sqrt{\frac{\pi}{2\sum_{i=1}^{n}\sum_{j=i+1}^{n}\sum_{j=i+1}^{n}\sum_{k=j+1}^{n}(\lambda_{i}+\lambda_{j}+\lambda_{k})}}$$
(12)  
+  $(-1)^{n+1}\sqrt{\frac{\pi}{2\sum_{i=1}^{n}\lambda_{i}}}$  (12)  
For identical components, suppose  $\lambda_{i}t = \lambda t$ . The system reliability is given by  
 $R_{s}(t) = 1 - \left(1 - e^{\frac{-\lambda t^{2}}{2}}\right)^{n} = {n \choose 1}e^{\frac{-\lambda t^{2}}{2}} - {n \choose 2}e^{\frac{-2\lambda t^{2}}{2}} + {n \choose 3}e^{\frac{-3\lambda t^{2}}{2}} + \cdots + (-1)^{n+1}e^{\frac{-n\lambda t^{2}}{2}}$ 

$$R_{s}(t) = \sum_{i=1}^{n} (-1)^{i+1} {n \choose i} e^{\frac{-i\lambda t^{2}}{2}}$$
(13)

$$MTSF = \int_0^\infty R(t)dt = \int_0^\infty [\sum_{i=1}^n (-1)^{i+1} {n \choose i} e^{\frac{-i\lambda t^2}{2}}]dt$$
$$= \sum_{i=1}^n (-1)^{i+1} {n \choose i} \int_0^\infty e^{\frac{-i\lambda t^2}{2}} dt = \sum_{i=1}^n (-1)^{i+1} {n \choose i} \sqrt{\frac{n}{2i\lambda}}$$
(14)

### Illustration

The system reliability with two components is given by

Evaluation of reliability and MTSF of a parallel ...

$$R_{s}(t) = 1 - \prod_{i=1}^{2} \left( 1 - R_{i}(t) \right) = 1 - \prod_{i=1}^{2} \left( 1 - e^{\frac{-\lambda_{i}t^{2}}{2}} \right)$$
$$R_{s}(t) = 1 - \left( 1 - e^{\frac{-\lambda_{1}t^{2}}{2}} \right) \left( 1 - e^{\frac{-\lambda_{2}t^{2}}{2}} \right) = e^{\frac{-\lambda_{1}t^{2}}{2}} + e^{\frac{-\lambda_{2}t^{2}}{2}} - e^{\frac{-(\lambda_{1}+\lambda_{2})t^{2}}{2}}$$
(15)

$$MTSF = \int_0^\infty R_s(t)dt = \int_0^\infty \left[ e^{\frac{-\lambda_1 t^2}{2}} + e^{\frac{-\lambda_2 t^2}{2}} - e^{\frac{-(\lambda_1 + \lambda_2)t^2}{2}} \right]dt$$

$$MTSF = \sqrt{\frac{n}{2\lambda_1} + \sqrt{\frac{n}{2\lambda_2}} - \sqrt{\frac{n}{2(\lambda_1 + \lambda_2)}}}$$
(16)  
For identical case, we can assume  $\lambda_1 t = \lambda t$ . The system reliability is given by

For identical case, we can assume  $\lambda_i t = \lambda t$ . The system reliability is given by

$$R_{s}(t) = 1 - \left(1 - e^{-\lambda t^{2}}\right)^{2} = 1 - \left[1 + e^{\frac{-2\lambda t^{2}}{2}} - 2e^{\frac{-\lambda t^{2}}{2}}\right] = 2e^{-\lambda t^{2}} - e^{-\lambda t^{2}}$$
(17)

And, MTSF= 
$$\int_0^\infty \left(2e^{\frac{-\lambda t^2}{2}} - e^{-\lambda t^2}\right) dt = \sqrt{\frac{\pi}{2\lambda}} - \frac{1}{2}\sqrt{\frac{\pi}{\lambda}} = \sqrt{\frac{\pi}{2\lambda}} \left[1 - \frac{1}{\sqrt{2}}\right]$$
 (18)

The reliability and MTSF of a system having three or more components connected in parallel can be obtained in a similar way.

## 7. Special Case for Parameters following Rayleigh Distribution

For arbitrary values of the parameters, reliability and mean time to system failure (MTSF) of the system have been evaluated which are shown numerically and graphically as:

|    | Reliability |             |             |             |             |  |
|----|-------------|-------------|-------------|-------------|-------------|--|
| n  | λ=0.01,t=10 | λ=0.02,t=10 | λ=0.03,t=10 | λ=0.04,t=10 | λ=0.05,t=10 |  |
| 1  | 0.60653066  | 0.367879441 | 0.22313016  | 0.13533528  | 0.082085    |  |
| 2  | 0.845181878 | 0.600423599 | 0.39647325  | 0.25235493  | 0.1574321   |  |
| 3  | 0.939083816 | 0.747419542 | 0.53113827  | 0.35353769  | 0.2265942   |  |
| 4  | 0.976031349 | 0.8403387   | 0.63575546  | 0.44102685  | 0.2900793   |  |
| 5  | 0.990569071 | 0.89907481  | 0.71702941  | 0.51667564  | 0.3483531   |  |
| 6  | 0.996289218 | 0.936203112 | 0.78016868  | 0.58208648  | 0.4018435   |  |
| 7  | 0.998539921 | 0.959672676 | 0.82921968  | 0.63864492  | 0.4509432   |  |
| 8  | 0.999425504 | 0.974508269 | 0.86732592  | 0.68754901  | 0.4960125   |  |
| 9  | 0.999773953 | 0.983886153 | 0.89692951  | 0.72983466  | 0.5373823   |  |
| 10 | 0.999911058 | 0.989814106 | 0.91992764  | 0.76639756  | 0.5753563   |  |

Table 6: Reliability Vs No. of Components (n)



Fig.7: Reliability Vs No. of Components (n)

|    | MTSF         |              |              |              |              |  |
|----|--------------|--------------|--------------|--------------|--------------|--|
| n  | λ=0.01, t=10 | λ=0.02, t=10 | λ=0.03, t=10 | λ=0.04, t=10 | λ=0.05, t=10 |  |
| 1  | 12.53314     | 8.86227      | 7.23601      | 6.26657      | 5.60499      |  |
| 2  | 16.20401     | 11.45797     | 9.35539      | 8.10201      | 7.24666      |  |
| 3  | 18.24863     | 12.90373     | 10.53585     | 9.12431      | 8.16103      |  |
| 4  | 19.63643     | 13.88505     | 11.3371      | 9.81821      | 8.78168      |  |
| 5  | 20.67528     | 14.61963     | 11.93688     | 10.33764     | 9.24627      |  |
| 6  | 21.49981     | 15.20266     | 12.41292     | 10.74991     | 9.61501      |  |
| 7  | 22.18026     | 15.68381     | 12.80578     | 11.09013     | 9.91932      |  |
| 8  | 22.75764     | 16.09208     | 13.13913     | 11.37882     | 10.17753     |  |
| 9  | 23.25786     | 16.44579     | 13.42793     | 11.62893     | 10.40123     |  |
| 10 | 23.69832     | 16.75724     | 13.68223     | 11.84916     | 10.59821     |  |

Table 7: MTSF Vs No. of Components (n)



Fig. 8: MTSF Vs No. of Components (n)

|    | Reliability  |             |             |             |             |  |  |
|----|--------------|-------------|-------------|-------------|-------------|--|--|
| n  | λ=0.01,t=5   | λ=0.01,t=10 | λ=0.01,t=15 | λ=0.01,t=20 | λ=0.01,t=25 |  |  |
| 1  | 0.882496903  | 0.6065306   | 0.32465246  | 0.135335    | 0.0439369   |  |  |
| 2  | 0.986193022  | 0.84518187  | 0.5439057   | 0.252354    | 0.0859434   |  |  |
| 3  | 0.998377637  | 0.93908381  | 0.69197785  | 0.353537    | 0.1261043   |  |  |
| 4  | 0.999809367  | 0.97603135  | 0.79197799  | 0.441026    | 0.1645006   |  |  |
| 5  | 0.9999776    | 0.99056907  | 0.85951285  | 0.516675    | 0.2012098   |  |  |
| 6  | 0.999997368  | 0.99628922  | 0.90512235  | 0.582086    | 0.2363062   |  |  |
| 7  | 0.999999691  | 0.99853992  | 0.93592461  | 0.638644    | 0.2698606   |  |  |
| 8  | 0.999999964  | 0.9994255   | 0.95672684  | 0.687549    | 0.3019407   |  |  |
| 9  | 0.999999996  | 0.99977395  | 0.97077558  | 0.729834    | 0.3326113   |  |  |
| 10 | 0.9999999999 | 0.99991106  | 0.98026336  | 0.766397    | 0.3619343   |  |  |

Table 8: Reliability Vs No. of Components (n)



Fig. 9: Reliability Vs No. of Components (n)

#### 8. Discussion of the Research Findings

A parallel system of ten identical components with Weibull failure laws has been analyzed to see the effect of number of components, failure rates of the components, shape parameter and operating time of the components on reliability and mean time to system failure. It is found that these measures keep on increasing with the increase of number of components while they decline with the increase of failure rates of the components. The values of reliability and MTSF have also been obtained for a special case of Weibull distribution i.e. Rayleigh distribution. The system has more values of reliability and MTSF when components follow Weibull failure laws. However, the effect of number of components on reliability is much more when components follow Rayleigh failure laws than that of Weibull failure laws. Further, reliability of a parallel system goes on decreasing with the increase of operating time irrespective of distributions related to failure time of the components. But, comparatevily the system has more reliability when its components follow Weibull distribution. The reliability and MTSF of this system decrese with the increase of the value of the shape parameter  $\beta$ . The results are shown graphically and numerically in respective tables and figures.

### 9. Conclusion

The reliability of a parallel system can be increased by increasing the number of components irrespective of the distributions related to failure time of the components. However, reliability of such a system becomes less with the increase of operating time of the components.

### 10. References

- 1. Barlow, R.E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing, Holt, Rinehart and Winston, Inc., New York, NY.
- Dhillon, B.S. and Singh, C. (1981). Engineering Reliability, John Wiley & Sons, New York, NY.
- 3. Balagurusamy, E. (1984). Reliability Engineering, Tata McGraw Hill Publishing Co. Ltd., India.
- 4. Srinath, L.S. (1985). Concept in Reliability Engineering, Affiliated East-West Press (P) Ltd.
- 5. Rausand, M. and Hsyland, A. (2003). System Reliability Theory Models, Statistical Methods and Applications, John Wiley & Sons, Inc., Publication.
- 6. MI-Damcese, M.A. (2009). Reliability equivalence factors of a series-parallel system in Weibull Distribution, International Mathematical Forum, 4(9), p. 941-951.
- 7. Navarro, J. and Spizzichino, F. (2010). Comparisons of series and parallel systems with components sharing the same Copula, Applied Stochastic Models in Business and Industry, 26(6), p. 775-791.
- 8. Elsayed, A. (2012). Reliability Engineering, Wiley Series in Systems Engineering and Management.
- 9. Mustafa, A. and EI-Faheem, A. A. (2012). Reliability equivalence factors of a general parallel system with mixture of lifetimes, Applied Mathematical Science, 6 (76), p. 3769-3784.
- Nandal, J., Chauhan, S. K. and Malik, S. C. (2015). Reliability and MTSF of a series and parallel systems, International Journal of Statistics and Reliability Engineering, 2(1), p. 74-80.
- Chauhan, S. K. and Malik, S.C. (2016). Reliability evaluation of a series and parallel systems for arbitrary values of the parameters, International Journal of Statistics and Reliability Engineering, 3(1), p.10-19.
- 12. Chauhan, S.K. and Malik, S. C. (2016). Reliability measures of a series system with Weibull failure laws, International Journal of Statistics and Systems, 11(2), p. 173-186.